Ejemplo n.º 1
0
// prev gives the right boundary of the union of all requests which don't
// affect keys larger than the given key.
// TODO(tschottdorf): again, better on BatchRequest itself, but can't pull
// 'keys' into 'roachpb'.
func prev(ba roachpb.BatchRequest, k roachpb.RKey) (roachpb.RKey, error) {
	candidate := roachpb.RKeyMin
	for _, union := range ba.Requests {
		inner := union.GetInner()
		if _, ok := inner.(*roachpb.NoopRequest); ok {
			continue
		}
		h := inner.Header()
		addr, err := keys.Addr(h.Key)
		if err != nil {
			return nil, err
		}
		eAddr, err := keys.AddrUpperBound(h.EndKey)
		if err != nil {
			return nil, err
		}
		if len(eAddr) == 0 {
			eAddr = addr.Next()
		}
		if !eAddr.Less(k) {
			if !k.Less(addr) {
				// Range contains k, so won't be able to go lower.
				return k, nil
			}
			// Range is disjoint from [KeyMin,k).
			continue
		}
		// We want the largest surviving candidate.
		if candidate.Less(addr) {
			candidate = addr
		}
	}
	return candidate, nil
}
Ejemplo n.º 2
0
// next gives the left boundary of the union of all requests which don't
// affect keys less than the given key.
// TODO(tschottdorf): again, better on BatchRequest itself, but can't pull
// 'keys' into 'proto'.
func next(ba roachpb.BatchRequest, k roachpb.RKey) (roachpb.RKey, error) {
	candidate := roachpb.RKeyMax
	for _, union := range ba.Requests {
		inner := union.GetInner()
		if _, ok := inner.(*roachpb.NoopRequest); ok {
			continue
		}
		h := inner.Header()
		addr, err := keys.Addr(h.Key)
		if err != nil {
			return nil, err
		}
		if addr.Less(k) {
			eAddr, err := keys.AddrUpperBound(h.EndKey)
			if err != nil {
				return nil, err
			}
			if k.Less(eAddr) {
				// Starts below k, but continues beyond. Need to stay at k.
				return k, nil
			}
			// Affects only [KeyMin,k).
			continue
		}
		// We want the smallest of the surviving candidates.
		if addr.Less(candidate) {
			candidate = addr
		}
	}
	return candidate, nil
}
Ejemplo n.º 3
0
// getCachedRangeDescriptorLocked is a helper function to retrieve the
// descriptor of the range which contains the given key, if present in the
// cache. It is assumed that the caller holds a read lock on rdc.rangeCache.
func (rdc *rangeDescriptorCache) getCachedRangeDescriptorLocked(
	key roachpb.RKey, inclusive bool,
) (rangeCacheKey, *roachpb.RangeDescriptor, error) {
	// The cache is indexed using the end-key of the range, but the
	// end-key is non-inclusive by default.
	var metaKey roachpb.RKey
	var err error
	if !inclusive {
		metaKey, err = meta(key.Next())
	} else {
		metaKey, err = meta(key)
	}
	if err != nil {
		return nil, nil, err
	}

	k, v, ok := rdc.rangeCache.cache.Ceil(rangeCacheKey(metaKey))
	if !ok {
		return nil, nil, nil
	}
	metaEndKey := k.(rangeCacheKey)
	rd := v.(*roachpb.RangeDescriptor)

	containsFn := (*roachpb.RangeDescriptor).ContainsKey
	if inclusive {
		containsFn = (*roachpb.RangeDescriptor).ContainsExclusiveEndKey
	}

	// Return nil if the key does not belong to the range.
	if !containsFn(rd, key) {
		return nil, nil, nil
	}
	return metaEndKey, rd, nil
}
Ejemplo n.º 4
0
// RangeLookup implements the RangeDescriptorDB interface.
// RangeLookup dispatches a RangeLookup request for the given metadata
// key to the replicas of the given range. Note that we allow
// inconsistent reads when doing range lookups for efficiency. Getting
// stale data is not a correctness problem but instead may
// infrequently result in additional latency as additional range
// lookups may be required. Note also that rangeLookup bypasses the
// DistSender's Send() method, so there is no error inspection and
// retry logic here; this is not an issue since the lookup performs a
// single inconsistent read only.
func (ds *DistSender) RangeLookup(
	ctx context.Context, key roachpb.RKey, desc *roachpb.RangeDescriptor, useReverseScan bool,
) ([]roachpb.RangeDescriptor, []roachpb.RangeDescriptor, *roachpb.Error) {
	ba := roachpb.BatchRequest{}
	ba.ReadConsistency = roachpb.INCONSISTENT
	ba.Add(&roachpb.RangeLookupRequest{
		Span: roachpb.Span{
			// We can interpret the RKey as a Key here since it's a metadata
			// lookup; those are never local.
			Key: key.AsRawKey(),
		},
		MaxRanges: ds.rangeLookupMaxRanges,
		Reverse:   useReverseScan,
	})
	replicas := newReplicaSlice(ds.gossip, desc)
	replicas.Shuffle()
	br, err := ds.sendRPC(ctx, desc.RangeID, replicas, ba)
	if err != nil {
		return nil, nil, roachpb.NewError(err)
	}
	if br.Error != nil {
		return nil, nil, br.Error
	}
	resp := br.Responses[0].GetInner().(*roachpb.RangeLookupResponse)
	return resp.Ranges, resp.PrefetchedRanges, nil
}
func (m *modelTimeSeriesDataStore) ContainsTimeSeries(start, end roachpb.RKey) bool {
	if !start.Less(end) {
		m.t.Fatalf("ContainsTimeSeries passed start key %v which is not less than end key %v", start, end)
	}
	m.Lock()
	defer m.Unlock()
	m.containsCalled++
	return true
}
Ejemplo n.º 6
0
// ObjectIDForKey returns the object ID (table or database) for 'key',
// or (_, false) if not within the structured key space.
func ObjectIDForKey(key roachpb.RKey) (uint32, bool) {
	if key.Equal(roachpb.RKeyMax) {
		return 0, false
	}
	if encoding.PeekType(key) != encoding.Int {
		// TODO(marc): this should eventually return SystemDatabaseID.
		return 0, false
	}
	// Consume first encoded int.
	_, id64, err := encoding.DecodeUvarintAscending(key)
	return uint32(id64), err == nil
}
Ejemplo n.º 7
0
// LookupReplica looks up replica by key [range]. Lookups are done
// by consulting each store in turn via Store.LookupReplica(key).
// Returns RangeID and replica on success; RangeKeyMismatch error
// if not found.
// If end is nil, a replica containing start is looked up.
// This is only for testing usage; performance doesn't matter.
func (ls *Stores) LookupReplica(
	start, end roachpb.RKey,
) (roachpb.RangeID, roachpb.ReplicaDescriptor, error) {
	ls.mu.RLock()
	defer ls.mu.RUnlock()
	var rangeID roachpb.RangeID
	var repDesc roachpb.ReplicaDescriptor
	var repDescFound bool
	for _, store := range ls.storeMap {
		replica := store.LookupReplica(start, nil)
		if replica == nil {
			continue
		}

		// Verify that the descriptor contains the entire range.
		if desc := replica.Desc(); !desc.ContainsKeyRange(start, end) {
			ctx := ls.AnnotateCtx(context.TODO())
			log.Warningf(ctx, "range not contained in one range: [%s,%s), but have [%s,%s)",
				start, end, desc.StartKey, desc.EndKey)
			err := roachpb.NewRangeKeyMismatchError(start.AsRawKey(), end.AsRawKey(), desc)
			return 0, roachpb.ReplicaDescriptor{}, err
		}

		rangeID = replica.RangeID

		var err error
		repDesc, err = replica.GetReplicaDescriptor()
		if err != nil {
			if _, ok := err.(*roachpb.RangeNotFoundError); ok {
				// We are not holding a lock across this block; the replica could have
				// been removed from the range (via down-replication) between the
				// LookupReplica and the GetReplicaDescriptor calls. In this case just
				// ignore this replica.
				continue
			}
			return 0, roachpb.ReplicaDescriptor{}, err
		}

		if repDescFound {
			// We already found the range; this should never happen outside of tests.
			err := errors.Errorf("range %+v exists on additional store: %+v", replica, store)
			return 0, roachpb.ReplicaDescriptor{}, err
		}

		repDescFound = true
	}
	if !repDescFound {
		return 0, roachpb.ReplicaDescriptor{}, roachpb.NewRangeNotFoundError(0)
	}
	return rangeID, repDesc, nil
}
Ejemplo n.º 8
0
// findTimeSeries searches the supplied engine over the supplied key range,
// identifying time series which have stored data in the range, along with the
// resolutions at which time series data is stored. A unique name/resolution
// pair will only be identified once, even if the range contains keys for that
// name/resolution pair at multiple timestamps or from multiple sources.
//
// An engine snapshot is used, rather than a client, because this function is
// intended to be called by a storage queue which can inspect the local data for
// a single range without the need for expensive network calls.
func findTimeSeries(
	snapshot engine.Reader, startKey, endKey roachpb.RKey, now hlc.Timestamp,
) ([]timeSeriesResolutionInfo, error) {
	var results []timeSeriesResolutionInfo

	iter := snapshot.NewIterator(false)
	defer iter.Close()

	// Set start boundary for the search, which is the lesser of the range start
	// key and the beginning of time series data.
	start := engine.MakeMVCCMetadataKey(startKey.AsRawKey())
	next := engine.MakeMVCCMetadataKey(keys.TimeseriesPrefix)
	if next.Less(start) {
		next = start
	}

	// Set end boundary for the search, which is the lesser of the range end key
	// and the end of time series data.
	end := engine.MakeMVCCMetadataKey(endKey.AsRawKey())
	lastTS := engine.MakeMVCCMetadataKey(keys.TimeseriesPrefix.PrefixEnd())
	if lastTS.Less(end) {
		end = lastTS
	}

	thresholds := computeThresholds(now.WallTime)

	for iter.Seek(next); iter.Valid() && iter.Less(end); iter.Seek(next) {
		foundKey := iter.Key().Key

		// Extract the name and resolution from the discovered key.
		name, _, res, tsNanos, err := DecodeDataKey(foundKey)
		if err != nil {
			return nil, err
		}
		// Skip this time series if there's nothing to prune. We check the
		// oldest (first) time series record's timestamp against the
		// pruning threshold.
		if threshold, ok := thresholds[res]; !ok || threshold > tsNanos {
			results = append(results, timeSeriesResolutionInfo{
				Name:       name,
				Resolution: res,
			})
		}

		// Set 'next' is initialized to the next possible time series key
		// which could belong to a previously undiscovered time series.
		next = engine.MakeMVCCMetadataKey(makeDataKeySeriesPrefix(name, res).PrefixEnd())
	}

	return results, nil
}
Ejemplo n.º 9
0
// findTimeSeries searches the supplied engine over the supplied key range,
// identifying time series which have stored data in the range, along with the
// resolutions at which time series data is stored. A unique name/resolution
// pair will only be identified once, even if the range contains keys for that
// name/resolution pair at multiple timestamps or from multiple sources.
//
// An engine snapshot is used, rather than a client, because this function is
// intended to be called by a storage queue which can inspect the local data for
// a single range without the need for expensive network calls.
func findTimeSeries(
	snapshot engine.Reader, startKey, endKey roachpb.RKey,
) ([]timeSeriesResolutionInfo, error) {
	var results []timeSeriesResolutionInfo

	iter := snapshot.NewIterator(false)
	defer iter.Close()

	// Set start boundary for the search, which is the lesser of the range start
	// key and the beginning of time series data.
	start := engine.MakeMVCCMetadataKey(startKey.AsRawKey())
	next := engine.MakeMVCCMetadataKey(keys.TimeseriesPrefix)
	if next.Less(start) {
		next = start
	}

	// Set end boundary for the search, which is the lesser of the range end key
	// and the end of time series data.
	end := engine.MakeMVCCMetadataKey(endKey.AsRawKey())
	lastTS := engine.MakeMVCCMetadataKey(keys.TimeseriesPrefix.PrefixEnd())
	if lastTS.Less(end) {
		end = lastTS
	}

	for iter.Seek(next); iter.Valid() && iter.Less(end); iter.Seek(next) {
		foundKey := iter.Key().Key

		// Extract the name and resolution from the discovered key.
		name, _, res, _, err := DecodeDataKey(foundKey)
		if err != nil {
			return nil, err
		}
		results = append(results, timeSeriesResolutionInfo{
			Name:       name,
			Resolution: res,
		})

		// Set 'next' is initialized to the next possible time series key
		// which could belong to a previously undiscovered time series.
		next = engine.MakeMVCCMetadataKey(makeDataKeySeriesPrefix(name, res).PrefixEnd())
	}

	return results, nil
}
Ejemplo n.º 10
0
// validateRangeMetaKey validates that the given key is a valid Range Metadata
// key. This checks only the constraints common to forward and backwards scans:
// correct prefix and not exceeding KeyMax.
func validateRangeMetaKey(key roachpb.RKey) error {
	// KeyMin is a valid key.
	if key.Equal(roachpb.RKeyMin) {
		return nil
	}
	// Key must be at least as long as Meta1Prefix.
	if len(key) < len(Meta1Prefix) {
		return NewInvalidRangeMetaKeyError("too short", key)
	}

	prefix, body := key[:len(Meta1Prefix)], key[len(Meta1Prefix):]
	if !prefix.Equal(Meta2Prefix) && !prefix.Equal(Meta1Prefix) {
		return NewInvalidRangeMetaKeyError("not a meta key", key)
	}

	if roachpb.RKeyMax.Less(body) {
		return NewInvalidRangeMetaKeyError("body of meta key range lookup is > KeyMax", key)
	}
	return nil
}
Ejemplo n.º 11
0
// MetaReverseScanBounds returns the range [start,end) within which the desired
// meta record can be found by means of a reverse engine scan. The given key
// must be a valid RangeMetaKey as defined by validateRangeMetaKey.
func MetaReverseScanBounds(key roachpb.RKey) (roachpb.Key, roachpb.Key, error) {
	if err := validateRangeMetaKey(key); err != nil {
		return nil, nil, err
	}

	if key.Equal(roachpb.RKeyMin) || key.Equal(Meta1Prefix) {
		return nil, nil, NewInvalidRangeMetaKeyError("KeyMin and Meta1Prefix can't be used as the key of reverse scan", key)
	}
	if key.Equal(Meta2Prefix) {
		// Special case Meta2Prefix: this is the first key in Meta2, and the scan
		// interval covers all of Meta1.
		return Meta1Prefix, key.Next().AsRawKey(), nil
	}
	// Otherwise find the first entry greater than the given key and find the last entry
	// in the same prefix. For MVCCReverseScan the endKey is exclusive, if we want to find
	// the range descriptor the given key specified,we need to set the key.Next() as the
	// MVCCReverseScan`s endKey. For example:
	// If we have ranges [a,f) and [f,z), then we'll have corresponding meta records
	// at f and z. If you're looking for the meta record for key f, then you want the
	// second record (exclusive in MVCCReverseScan), hence key.Next() below.
	return key[:len(Meta1Prefix)].AsRawKey(), key.Next().AsRawKey(), nil
}
Ejemplo n.º 12
0
// MetaScanBounds returns the range [start,end) within which the desired meta
// record can be found by means of an engine scan. The given key must be a
// valid RangeMetaKey as defined by validateRangeMetaKey.
// TODO(tschottdorf): a lot of casting going on inside.
func MetaScanBounds(key roachpb.RKey) (roachpb.Key, roachpb.Key, error) {
	if err := validateRangeMetaKey(key); err != nil {
		return nil, nil, err
	}

	if key.Equal(Meta2KeyMax) {
		return nil, nil, NewInvalidRangeMetaKeyError("Meta2KeyMax can't be used as the key of scan", key)
	}

	if key.Equal(roachpb.RKeyMin) {
		// Special case KeyMin: find the first entry in meta1.
		return Meta1Prefix, Meta1Prefix.PrefixEnd(), nil
	}
	if key.Equal(Meta1KeyMax) {
		// Special case Meta1KeyMax: this is the last key in Meta1, we don't want
		// to start at Next().
		return Meta1KeyMax, Meta1Prefix.PrefixEnd(), nil
	}
	// Otherwise find the first entry greater than the given key in the same meta prefix.
	return key.Next().AsRawKey(), key[:len(Meta1Prefix)].PrefixEnd().AsRawKey(), nil
}
func (m *modelTimeSeriesDataStore) PruneTimeSeries(
	ctx context.Context,
	snapshot engine.Reader,
	start, end roachpb.RKey,
	db *client.DB,
	now hlc.Timestamp,
) error {
	if snapshot == nil {
		m.t.Fatal("PruneTimeSeries was passed a nil snapshot")
	}
	if db == nil {
		m.t.Fatal("PruneTimeSeries was passed a nil client.DB")
	}
	if !start.Less(end) {
		m.t.Fatalf("PruneTimeSeries passed start key %v which is not less than end key %v", start, end)
	}

	m.Lock()
	defer m.Unlock()
	m.pruneCalled++
	m.pruneSeenStartKeys[start.String()] = struct{}{}
	m.pruneSeenEndKeys[end.String()] = struct{}{}
	return nil
}
Ejemplo n.º 14
0
// fillSkippedResponses after meeting the batch key max limit for range
// requests.
func fillSkippedResponses(ba roachpb.BatchRequest, br *roachpb.BatchResponse, nextKey roachpb.RKey) {
	// Some requests might have NoopResponses; we must replace them with empty
	// responses of the proper type.
	for i, req := range ba.Requests {
		if _, ok := br.Responses[i].GetInner().(*roachpb.NoopResponse); !ok {
			continue
		}
		var reply roachpb.Response
		switch t := req.GetInner().(type) {
		case *roachpb.ScanRequest:
			reply = &roachpb.ScanResponse{}

		case *roachpb.ReverseScanRequest:
			reply = &roachpb.ReverseScanResponse{}

		case *roachpb.DeleteRangeRequest:
			reply = &roachpb.DeleteRangeResponse{}

		case *roachpb.BeginTransactionRequest, *roachpb.EndTransactionRequest:
			continue

		default:
			panic(fmt.Sprintf("bad type %T", t))
		}
		union := roachpb.ResponseUnion{}
		union.MustSetInner(reply)
		br.Responses[i] = union
	}
	// Set the ResumeSpan for future batch requests.
	isReverse := ba.IsReverse()
	for i, resp := range br.Responses {
		req := ba.Requests[i].GetInner()
		if !roachpb.IsRange(req) {
			continue
		}
		hdr := resp.GetInner().Header()
		origSpan := req.Header()
		if isReverse {
			if hdr.ResumeSpan != nil {
				// The ResumeSpan.Key might be set to the StartKey of a range;
				// correctly set it to the Key of the original request span.
				hdr.ResumeSpan.Key = origSpan.Key
			} else if roachpb.RKey(origSpan.Key).Less(nextKey) {
				// Some keys have yet to be processed.
				hdr.ResumeSpan = &origSpan
				if nextKey.Less(roachpb.RKey(origSpan.EndKey)) {
					// The original span has been partially processed.
					hdr.ResumeSpan.EndKey = nextKey.AsRawKey()
				}
			}
		} else {
			if hdr.ResumeSpan != nil {
				// The ResumeSpan.EndKey might be set to the EndKey of a
				// range; correctly set it to the EndKey of the original
				// request span.
				hdr.ResumeSpan.EndKey = origSpan.EndKey
			} else if nextKey.Less(roachpb.RKey(origSpan.EndKey)) {
				// Some keys have yet to be processed.
				hdr.ResumeSpan = &origSpan
				if roachpb.RKey(origSpan.Key).Less(nextKey) {
					// The original span has been partially processed.
					hdr.ResumeSpan.Key = nextKey.AsRawKey()
				}
			}
		}
		br.Responses[i].GetInner().SetHeader(hdr)
	}
}
Ejemplo n.º 15
0
// ContainsTimeSeries returns true if the given key range overlaps the
// range of possible time series keys.
func (tsdb *DB) ContainsTimeSeries(start, end roachpb.RKey) bool {
	return !lastTSRKey.Less(start) && !end.Less(firstTSRKey)
}
Ejemplo n.º 16
0
// ComputeSplitKeys takes a start and end key and returns an array of keys
// at which to split the span [start, end).
// The only required splits are at each user table prefix.
func (s SystemConfig) ComputeSplitKeys(startKey, endKey roachpb.RKey) []roachpb.RKey {
	tableStart := roachpb.RKey(keys.SystemConfigTableDataMax)
	if !tableStart.Less(endKey) {
		// This range is before the user tables span: no required splits.
		return nil
	}

	startID, ok := ObjectIDForKey(startKey)
	if !ok || startID <= keys.MaxSystemConfigDescID {
		// The start key is either:
		// - not part of the structured data span
		// - part of the system span
		// In either case, start looking for splits at the first ID usable
		// by the user data span.
		startID = keys.MaxSystemConfigDescID + 1
	} else {
		// The start key is either already a split key, or after the split
		// key for its ID. We can skip straight to the next one.
		startID++
	}

	// Build key prefixes for sequential table IDs until we reach endKey. Note
	// that there are two disjoint sets of sequential keys: non-system reserved
	// tables have sequential IDs, as do user tables, but the two ranges contain a
	// gap.
	var splitKeys []roachpb.RKey
	var key roachpb.RKey

	// appendSplitKeys generates all possible split keys between the given range
	// of IDs and adds them to splitKeys.
	appendSplitKeys := func(startID, endID uint32) {
		// endID could be smaller than startID if we don't have user tables.
		for id := startID; id <= endID; id++ {
			key = keys.MakeRowSentinelKey(keys.MakeTablePrefix(id))
			// Skip if this ID matches the startKey passed to ComputeSplitKeys.
			if !startKey.Less(key) {
				continue
			}
			// Handle the case where EndKey is already a table prefix.
			if !key.Less(endKey) {
				break
			}
			splitKeys = append(splitKeys, key)
		}
	}

	// If the startKey falls within the non-system reserved range, compute those
	// keys first.
	if startID <= keys.MaxReservedDescID {
		endID, err := s.GetLargestObjectID(keys.MaxReservedDescID)
		if err != nil {
			log.Errorf(context.TODO(), "unable to determine largest reserved object ID from system config: %s", err)
			return nil
		}
		appendSplitKeys(startID, endID)
		startID = keys.MaxReservedDescID + 1
	}

	// Append keys in the user space.
	endID, err := s.GetLargestObjectID(0)
	if err != nil {
		log.Errorf(context.TODO(), "unable to determine largest object ID from system config: %s", err)
		return nil
	}
	appendSplitKeys(startID, endID)

	return splitKeys
}