Example #1
0
func main() {

	var tree base.Classifier

	rand.Seed(time.Now().UTC().UnixNano())

	// Load in the iris dataset
	iris, err := base.ParseCSVToInstances("../datasets/iris_headers.csv", true)
	if err != nil {
		panic(err)
	}

	// Discretise the iris dataset with Chi-Merge
	filt := filters.NewChiMergeFilter(iris, 0.99)
	filt.AddAllNumericAttributes()
	filt.Build()
	filt.Run(iris)

	// Create a 60-40 training-test split
	insts := base.InstancesTrainTestSplit(iris, 0.60)

	//
	// First up, use ID3
	//
	tree = trees.NewID3DecisionTree(0.6)
	// (Parameter controls train-prune split.)

	// Train the ID3 tree
	tree.Fit(insts[0])

	// Generate predictions
	predictions := tree.Predict(insts[1])

	// Evaluate
	fmt.Println("ID3 Performance")
	cf := eval.GetConfusionMatrix(insts[1], predictions)
	fmt.Println(eval.GetSummary(cf))

	//
	// Next up, Random Trees
	//

	// Consider two randomly-chosen attributes
	tree = trees.NewRandomTree(2)
	tree.Fit(insts[0])
	predictions = tree.Predict(insts[1])
	fmt.Println("RandomTree Performance")
	cf = eval.GetConfusionMatrix(insts[1], predictions)
	fmt.Println(eval.GetSummary(cf))

	//
	// Finally, Random Forests
	//
	tree = ensemble.NewRandomForest(100, 3)
	tree.Fit(insts[0])
	predictions = tree.Predict(insts[1])
	fmt.Println("RandomForest Performance")
	cf = eval.GetConfusionMatrix(insts[1], predictions)
	fmt.Println(eval.GetSummary(cf))
}
Example #2
0
// Fit builds the RandomForest on the specified instances
func (f *RandomForest) Fit(on base.FixedDataGrid) {
	f.Model = new(meta.BaggedModel)
	f.Model.RandomFeatures = f.Features
	for i := 0; i < f.ForestSize; i++ {
		tree := trees.NewID3DecisionTree(0.00)
		f.Model.AddModel(tree)
	}
	f.Model.Fit(on)
}
Example #3
0
// Fit builds the RandomForest on the specified instances
func (f *RandomForest) Fit(on base.FixedDataGrid) error {
	numNonClassAttributes := len(base.NonClassAttributes(on))
	if numNonClassAttributes < f.Features {
		return errors.New(fmt.Sprintf(
			"Random forest with %d features cannot fit data grid with %d non-class attributes",
			f.Features,
			numNonClassAttributes,
		))
	}

	f.Model = new(meta.BaggedModel)
	f.Model.RandomFeatures = f.Features
	for i := 0; i < f.ForestSize; i++ {
		tree := trees.NewID3DecisionTree(0.00)
		f.Model.AddModel(tree)
	}
	f.Model.Fit(on)
	return nil
}
Example #4
0
func main() {

	var tree base.Classifier

	rand.Seed(44111342)

	// Load in the iris dataset
	iris, err := base.ParseCSVToInstances("../datasets/iris_headers.csv", true)
	if err != nil {
		panic(err)
	}

	// Discretise the iris dataset with Chi-Merge
	filt := filters.NewChiMergeFilter(iris, 0.999)
	for _, a := range base.NonClassFloatAttributes(iris) {
		filt.AddAttribute(a)
	}
	filt.Train()
	irisf := base.NewLazilyFilteredInstances(iris, filt)

	// Create a 60-40 training-test split
	trainData, testData := base.InstancesTrainTestSplit(irisf, 0.60)

	//
	// First up, use ID3
	//
	tree = trees.NewID3DecisionTree(0.6)
	// (Parameter controls train-prune split.)

	// Train the ID3 tree
	err = tree.Fit(trainData)
	if err != nil {
		panic(err)
	}

	// Generate predictions
	predictions, err := tree.Predict(testData)
	if err != nil {
		panic(err)
	}

	// Evaluate
	fmt.Println("ID3 Performance (information gain)")
	cf, err := evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(cf))

	tree = trees.NewID3DecisionTreeFromRule(0.6, new(trees.InformationGainRatioRuleGenerator))
	// (Parameter controls train-prune split.)

	// Train the ID3 tree
	err = tree.Fit(trainData)
	if err != nil {
		panic(err)
	}

	// Generate predictions
	predictions, err = tree.Predict(testData)
	if err != nil {
		panic(err)
	}

	// Evaluate
	fmt.Println("ID3 Performance (information gain ratio)")
	cf, err = evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(cf))

	tree = trees.NewID3DecisionTreeFromRule(0.6, new(trees.GiniCoefficientRuleGenerator))
	// (Parameter controls train-prune split.)

	// Train the ID3 tree
	err = tree.Fit(trainData)
	if err != nil {
		panic(err)
	}

	// Generate predictions
	predictions, err = tree.Predict(testData)
	if err != nil {
		panic(err)
	}

	// Evaluate
	fmt.Println("ID3 Performance (gini index generator)")
	cf, err = evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(cf))
	//
	// Next up, Random Trees
	//

	// Consider two randomly-chosen attributes
	tree = trees.NewRandomTree(2)
	err = tree.Fit(testData)
	if err != nil {
		panic(err)
	}
	predictions, err = tree.Predict(testData)
	if err != nil {
		panic(err)
	}
	fmt.Println("RandomTree Performance")
	cf, err = evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(cf))

	//
	// Finally, Random Forests
	//
	tree = ensemble.NewRandomForest(70, 3)
	err = tree.Fit(trainData)
	if err != nil {
		panic(err)
	}
	predictions, err = tree.Predict(testData)
	if err != nil {
		panic(err)
	}
	fmt.Println("RandomForest Performance")
	cf, err = evaluation.GetConfusionMatrix(testData, predictions)
	if err != nil {
		panic(fmt.Sprintf("Unable to get confusion matrix: %s", err.Error()))
	}
	fmt.Println(evaluation.GetSummary(cf))
}