Example #1
0
File: gen.go Project: jvlmdr/go-cv
// ToImageRect converts a point in the feature pyramid to a rectangle in the image.
func (pyr *Generator) ToImageRect(level int, pt image.Point, interior image.Rectangle) image.Rectangle {
	// Translate interior by position (scaled by rate) and subtract margin offset.
	rate := pyr.Transform.Rate()
	offset := pyr.Pad.Margin.TopLeft()
	scale := pyr.Image.Scales[level]
	rect := interior.Add(pt.Mul(rate)).Sub(offset)
	return scaleRect(1/scale, rect)
}
Example #2
0
File: hog.go Project: jvlmdr/go-cv
func MinInputSize(feat image.Point, conf Config) image.Point {
	// One feature pixel on all sides.
	feat = feat.Add(image.Pt(2, 2))
	// Multiply by cell size to get pixels.
	pix := feat.Mul(conf.CellSize)
	// Add floor(half a cell) on all sides.
	half := conf.CellSize / 2
	pix = pix.Add(image.Pt(half, half).Mul(2))
	// Leave one pixel to compute derivatives.
	pix = pix.Add(image.Pt(1, 1).Mul(2))
	return pix
}
func eval(t *testing.T, path string, f storage.Image, size image.Point, colors []int) string {
	var b []byte
	w := bytes.NewBuffer(b)
	p := processor.New()
	f.ValidatedWidth *= u
	f.ValidatedHeight *= u
	pixels, err := p.Preprocess(path)
	if err != nil {
		t.Fatalf("cannot preprocess image: error=%v", err)
	}

	f, err = f.Normalize(pixels.Bounds().Size())
	if err != nil {
		t.Fatalf("fail to normalize: error=%v", err)
	}

	if _, err := p.Process(pixels, w, f); err != nil {
		t.Fatalf("cannot process image: %v", err)
		return ""
	}

	r := bytes.NewReader(w.Bytes())
	img, format, err := image.Decode(r)
	if err != nil {
		t.Fatalf("cannot decode image: %v", err)
		return ""
	}

	expectedSize := size.Mul(u)
	rect := img.Bounds()
	actualSize := rect.Size()
	if !actualSize.Eq(expectedSize) {
		t.Fatalf("wrong size expected %v, but actual %v", expectedSize, actualSize)
		return ""
	}

	evalPixels(t, img, size, colors)

	return format
}
Example #4
0
// Converts the position of a detection in a feature image to a rectangle in the intensity image.
//
// Additional arguments are:
// the integer downsample rate of the feature transform,
// the margin which was added to the image before taking the feature transform,
// the rectangular region within the window which corresponds to the annotation.
func featPtToImRect(pt image.Point, rate int, margin feat.Margin, interior image.Rectangle) image.Rectangle {
	return interior.Add(pt.Mul(rate)).Sub(margin.TopLeft())
}
Example #5
0
func ExpandedNodeNew(getPositioner GetPositioner, userObj bh.NodeIf, nId bh.NodeIdIf) (ret *ExpandedNode) {
	positioner := getPositioner(nId)
	pos := positioner.Position()
	path := nId.String()
	config := DrawConfig{ColorInit(ColorOption(NormalExpandedNode)),
		ColorInit(ColorOption(HighlightExpandedNode)),
		ColorInit(ColorOption(SelectExpandedNode)),
		ColorInit(ColorOption(BoxFrame)),
		ColorInit(ColorOption(Text)),
		image.Point{global.padX, global.padY}}
	cconfig := ContainerConfig{expandedPortWidth, expandedPortHeight, 120, 80}
	// Add children
	var g bh.SignalGraphTypeIf
	nt := userObj.ItsType()
	for _, impl := range nt.Implementation() {
		if impl.ImplementationType() == bh.NodeTypeGraph {
			g = impl.Graph()
			break
		}
	}
	var children []ContainerChild
	if g != nil {
		empty := image.Point{}
		first := image.Point{16, 32}
		shift := image.Point{16, 16}
		for i, n := range g.ProcessingNodes() {
			var ch ContainerChild
			var mode gr.PositionMode
			if n.Expanded() {
				mode = gr.PositionModeExpanded
			} else {
				mode = gr.PositionModeNormal
			}
			proxy := gr.PathModePositionerProxyNew(n)
			proxy.SetActivePath(path)
			proxy.SetActiveMode(mode)
			log.Printf("ExpandedNodeNew TODO: position of child nodes. path=%s, mode=%v\n", path, mode)
			chpos := proxy.Position()
			if chpos == empty {
				chpos = pos.Add(first.Add(shift.Mul(i)))
				proxy.SetPosition(chpos)
			}
			id := freesp.NodeIdNew(nId, n.Name())
			if n.Expanded() {
				ch = ExpandedNodeNew(getPositioner, n, id)
			} else {
				ch = NodeNew(getPositioner, n, id)
			}
			children = append(children, ch)
		}
	}
	ret = &ExpandedNode{ContainerInit(children, config, userObj, cconfig),
		userObj, positioner, nil, nil}
	ret.ContainerInit()
	empty := image.Point{}
	config = DrawConfig{ColorInit(ColorOption(InputPort)),
		ColorInit(ColorOption(HighlightInPort)),
		ColorInit(ColorOption(SelectInPort)),
		ColorInit(ColorOption(BoxFrame)),
		Color{},
		image.Point{}}
	for i, p := range userObj.InPorts() {
		pos := p.ModePosition(gr.PositionModeExpanded)
		if pos == empty {
			pos = ret.CalcInPortPos(i)
		}
		positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded)
		ret.AddPort(config, p, positioner)
	}
	config = DrawConfig{ColorInit(ColorOption(OutputPort)),
		ColorInit(ColorOption(HighlightOutPort)),
		ColorInit(ColorOption(SelectOutPort)),
		ColorInit(ColorOption(BoxFrame)),
		Color{},
		image.Point{}}
	for i, p := range userObj.OutPorts() {
		pos := p.ModePosition(gr.PositionModeExpanded)
		if pos == empty {
			pos = ret.CalcOutPortPos(i)
		}
		positioner := gr.ModePositionerProxyNew(p, gr.PositionModeExpanded)
		ret.AddPort(config, p, positioner)
	}
	for _, n := range g.ProcessingNodes() {
		from, ok := ret.ChildByName(n.Name())
		if !ok {
			log.Printf("ExpandedNodeNew error: node %s not found\n", n.Name())
			continue
		}
		for _, p := range n.OutPorts() {
			fromId := from.OutPortIndex(p.Name())
			for _, c := range p.Connections() {
				to, ok := ret.ChildByName(c.Node().Name())
				if ok {
					toId := to.InPortIndex(c.Name())
					ret.connections = append(ret.connections, ConnectionNew(from, to, fromId, toId))
				} else {
					portname, ok := c.Node().PortLink()
					if !ok {
						log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name())
						continue
					}
					ownPort, ok := ret.OutPortByName(portname)
					if !ok {
						log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", portname, c.Node().Name())
						continue
					}
					nodePort, ok := from.OutPortByName(p.Name())
					if !ok {
						log.Printf("ExpandedNodeNew error: port %s of output node %s not found\n", p.Name(), from.Name())
						continue
					}
					ret.portconn = append(ret.portconn, PortConnectorNew(nodePort, ownPort))
				}
			}
		}
	}
	for _, n := range g.InputNodes() {
		for _, p := range n.OutPorts() {
			fromlink, ok := p.Node().PortLink()
			if !ok {
				log.Printf("ExpandedNodeNew error: input node %s not linked\n", p.Node().Name())
				continue
			}
			fromPort, ok := ret.InPortByName(fromlink)
			if !ok {
				log.Printf("ExpandedNodeNew error: linked port %s of input node %s not found\n", fromlink, n.Name())
				continue
			}
			for _, c := range p.Connections() {
				to, ok := ret.ChildByName(c.Node().Name())
				if ok {
					// TODO: connect with node
					toPort, ok := to.InPortByName(c.Name())
					if !ok {
						log.Printf("ExpandedNodeNew error: port %s of node %s not found\n", c.Name(), to.Name())
						continue
					}
					ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort))
				} else {
					tolink, ok := c.Node().PortLink()
					if !ok {
						log.Printf("ExpandedNodeNew error: output node %s not linked\n", c.Node().Name())
						continue
					}
					toPort, ok := ret.OutPortByName(tolink)
					if !ok {
						log.Printf("ExpandedNodeNew error: linked port %s of output node %s not found\n", tolink, c.Node().Name())
						continue
					}
					ret.portconn = append(ret.portconn, PortConnectorNew(fromPort, toPort))
				}
			}
		}
	}
	ret.RegisterOnDraw(func(ctxt interface{}) {
		expandedNodeOnDraw(ret, ctxt)
	})
	return
}