Exemple #1
0
func (r *objReader) readSym() {
	if c, err := r.rd.ReadByte(); c != symPrefix || err != nil {
		log.Fatalln("readSym out of sync")
	}
	t := obj.SymKind(r.readInt())
	s := r.readSymIndex()
	flags := r.readInt()
	dupok := flags&1 != 0
	local := flags&2 != 0
	makeTypelink := flags&4 != 0
	size := r.readInt()
	typ := r.readSymIndex()
	data := r.readData()
	nreloc := r.readInt()
	pkg := pathtoprefix(r.lib.Pkg)
	isdup := false

	var dup *Symbol
	if s.Type != 0 && s.Type != obj.SXREF {
		if (t == obj.SDATA || t == obj.SBSS || t == obj.SNOPTRBSS) && len(data) == 0 && nreloc == 0 {
			if s.Size < int64(size) {
				s.Size = int64(size)
			}
			if typ != nil && s.Gotype == nil {
				s.Gotype = typ
			}
			return
		}

		if (s.Type == obj.SDATA || s.Type == obj.SBSS || s.Type == obj.SNOPTRBSS) && len(s.P) == 0 && len(s.R) == 0 {
			goto overwrite
		}
		if s.Type != obj.SBSS && s.Type != obj.SNOPTRBSS && !dupok && !s.Attr.DuplicateOK() {
			log.Fatalf("duplicate symbol %s (types %d and %d) in %s and %s", s.Name, s.Type, t, s.File, r.pn)
		}
		if len(s.P) > 0 {
			dup = s
			s = r.dupSym
			isdup = true
		}
	}

overwrite:
	s.File = pkg
	if dupok {
		s.Attr |= AttrDuplicateOK
	}
	if t == obj.SXREF {
		log.Fatalf("bad sxref")
	}
	if t == 0 {
		log.Fatalf("missing type for %s in %s", s.Name, r.pn)
	}
	if t == obj.SBSS && (s.Type == obj.SRODATA || s.Type == obj.SNOPTRBSS) {
		t = s.Type
	}
	s.Type = t
	if s.Size < int64(size) {
		s.Size = int64(size)
	}
	s.Attr.Set(AttrLocal, local)
	s.Attr.Set(AttrMakeTypelink, makeTypelink)
	if typ != nil {
		s.Gotype = typ
	}
	if isdup && typ != nil { // if bss sym defined multiple times, take type from any one def
		dup.Gotype = typ
	}
	s.P = data
	if nreloc > 0 {
		s.R = r.reloc[:nreloc:nreloc]
		if !isdup {
			r.reloc = r.reloc[nreloc:]
		}

		for i := 0; i < nreloc; i++ {
			s.R[i] = Reloc{
				Off:  r.readInt32(),
				Siz:  r.readUint8(),
				Type: obj.RelocType(r.readInt32()),
				Add:  r.readInt64(),
				Sym:  r.readSymIndex(),
			}
		}
	}

	if s.Type == obj.STEXT {
		s.FuncInfo = new(FuncInfo)
		pc := s.FuncInfo

		pc.Args = r.readInt32()
		pc.Locals = r.readInt32()
		if r.readUint8() != 0 {
			s.Attr |= AttrNoSplit
		}
		flags := r.readInt()
		if flags&(1<<2) != 0 {
			s.Attr |= AttrReflectMethod
		}
		n := r.readInt()
		pc.Autom = r.autom[:n:n]
		if !isdup {
			r.autom = r.autom[n:]
		}

		for i := 0; i < n; i++ {
			pc.Autom[i] = Auto{
				Asym:    r.readSymIndex(),
				Aoffset: r.readInt32(),
				Name:    r.readInt16(),
				Gotype:  r.readSymIndex(),
			}
		}

		pc.Pcsp.P = r.readData()
		pc.Pcfile.P = r.readData()
		pc.Pcline.P = r.readData()
		n = r.readInt()
		pc.Pcdata = r.pcdata[:n:n]
		if !isdup {
			r.pcdata = r.pcdata[n:]
		}
		for i := 0; i < n; i++ {
			pc.Pcdata[i].P = r.readData()
		}
		n = r.readInt()
		pc.Funcdata = r.funcdata[:n:n]
		pc.Funcdataoff = r.funcdataoff[:n:n]
		if !isdup {
			r.funcdata = r.funcdata[n:]
			r.funcdataoff = r.funcdataoff[n:]
		}
		for i := 0; i < n; i++ {
			pc.Funcdata[i] = r.readSymIndex()
		}
		for i := 0; i < n; i++ {
			pc.Funcdataoff[i] = r.readInt64()
		}
		n = r.readInt()
		pc.File = r.file[:n:n]
		if !isdup {
			r.file = r.file[n:]
		}
		for i := 0; i < n; i++ {
			pc.File[i] = r.readSymIndex()
		}

		if !dupok {
			if s.Attr.OnList() {
				log.Fatalf("symbol %s listed multiple times", s.Name)
			}
			s.Attr |= AttrOnList
			r.lib.textp = append(r.lib.textp, s)
		} else {
			// there may ba a dup in another package
			// put into a temp list and add to text later
			if !isdup {
				r.lib.dupTextSyms = append(r.lib.dupTextSyms, s)
			} else {
				r.lib.dupTextSyms = append(r.lib.dupTextSyms, dup)
			}
		}
	}
	if s.Type == obj.SDWARFINFO {
		r.patchDWARFName(s)
	}
}
Exemple #2
0
func ldmacho(ctxt *Link, f *bio.Reader, pkg string, length int64, pn string) {
	var err error
	var j int
	var is64 bool
	var secaddr uint64
	var hdr [7 * 4]uint8
	var cmdp []byte
	var dat []byte
	var ncmd uint32
	var cmdsz uint32
	var ty uint32
	var sz uint32
	var off uint32
	var m *ldMachoObj
	var e binary.ByteOrder
	var sect *ldMachoSect
	var rel *ldMachoRel
	var rpi int
	var s *Symbol
	var s1 *Symbol
	var outer *Symbol
	var c *ldMachoCmd
	var symtab *ldMachoSymtab
	var dsymtab *ldMachoDysymtab
	var sym *ldMachoSym
	var r []Reloc
	var rp *Reloc
	var name string

	localSymVersion := ctxt.Syms.IncVersion()
	base := f.Offset()
	if _, err := io.ReadFull(f, hdr[:]); err != nil {
		goto bad
	}

	if binary.BigEndian.Uint32(hdr[:])&^1 == 0xFEEDFACE {
		e = binary.BigEndian
	} else if binary.LittleEndian.Uint32(hdr[:])&^1 == 0xFEEDFACE {
		e = binary.LittleEndian
	} else {
		err = fmt.Errorf("bad magic - not mach-o file")
		goto bad
	}

	is64 = e.Uint32(hdr[:]) == 0xFEEDFACF
	ncmd = e.Uint32(hdr[4*4:])
	cmdsz = e.Uint32(hdr[5*4:])
	if ncmd > 0x10000 || cmdsz >= 0x01000000 {
		err = fmt.Errorf("implausible mach-o header ncmd=%d cmdsz=%d", ncmd, cmdsz)
		goto bad
	}

	if is64 {
		f.Seek(4, 1) // skip reserved word in header
	}

	m = new(ldMachoObj)

	m.f = f
	m.e = e
	m.cputype = uint(e.Uint32(hdr[1*4:]))
	m.subcputype = uint(e.Uint32(hdr[2*4:]))
	m.filetype = e.Uint32(hdr[3*4:])
	m.ncmd = uint(ncmd)
	m.flags = e.Uint32(hdr[6*4:])
	m.is64 = is64
	m.base = base
	m.length = length
	m.name = pn

	switch SysArch.Family {
	default:
		Errorf(nil, "%s: mach-o %s unimplemented", pn, SysArch.Name)
		return

	case sys.AMD64:
		if e != binary.LittleEndian || m.cputype != LdMachoCpuAmd64 {
			Errorf(nil, "%s: mach-o object but not amd64", pn)
			return
		}

	case sys.I386:
		if e != binary.LittleEndian || m.cputype != LdMachoCpu386 {
			Errorf(nil, "%s: mach-o object but not 386", pn)
			return
		}
	}

	m.cmd = make([]ldMachoCmd, ncmd)
	off = uint32(len(hdr))
	cmdp = make([]byte, cmdsz)
	if _, err2 := io.ReadFull(f, cmdp); err2 != nil {
		err = fmt.Errorf("reading cmds: %v", err)
		goto bad
	}

	// read and parse load commands
	c = nil

	symtab = nil
	dsymtab = nil

	for i := 0; uint32(i) < ncmd; i++ {
		ty = e.Uint32(cmdp)
		sz = e.Uint32(cmdp[4:])
		m.cmd[i].off = off
		unpackcmd(cmdp, m, &m.cmd[i], uint(ty), uint(sz))
		cmdp = cmdp[sz:]
		off += sz
		if ty == LdMachoCmdSymtab {
			if symtab != nil {
				err = fmt.Errorf("multiple symbol tables")
				goto bad
			}

			symtab = &m.cmd[i].sym
			macholoadsym(m, symtab)
		}

		if ty == LdMachoCmdDysymtab {
			dsymtab = &m.cmd[i].dsym
			macholoaddsym(m, dsymtab)
		}

		if (is64 && ty == LdMachoCmdSegment64) || (!is64 && ty == LdMachoCmdSegment) {
			if c != nil {
				err = fmt.Errorf("multiple load commands")
				goto bad
			}

			c = &m.cmd[i]
		}
	}

	// load text and data segments into memory.
	// they are not as small as the load commands, but we'll need
	// the memory anyway for the symbol images, so we might
	// as well use one large chunk.
	if c == nil {
		err = fmt.Errorf("no load command")
		goto bad
	}

	if symtab == nil {
		// our work is done here - no symbols means nothing can refer to this file
		return
	}

	if int64(c.seg.fileoff+c.seg.filesz) >= length {
		err = fmt.Errorf("load segment out of range")
		goto bad
	}

	dat = make([]byte, c.seg.filesz)
	if f.Seek(m.base+int64(c.seg.fileoff), 0) < 0 {
		err = fmt.Errorf("cannot load object data: %v", err)
		goto bad
	}
	if _, err2 := io.ReadFull(f, dat); err2 != nil {
		err = fmt.Errorf("cannot load object data: %v", err)
		goto bad
	}

	for i := 0; uint32(i) < c.seg.nsect; i++ {
		sect = &c.seg.sect[i]
		if sect.segname != "__TEXT" && sect.segname != "__DATA" {
			continue
		}
		if sect.name == "__eh_frame" {
			continue
		}
		name = fmt.Sprintf("%s(%s/%s)", pkg, sect.segname, sect.name)
		s = ctxt.Syms.Lookup(name, localSymVersion)
		if s.Type != 0 {
			err = fmt.Errorf("duplicate %s/%s", sect.segname, sect.name)
			goto bad
		}

		if sect.flags&0xff == 1 { // S_ZEROFILL
			s.P = make([]byte, sect.size)
		} else {
			s.P = dat[sect.addr-c.seg.vmaddr:][:sect.size]
		}
		s.Size = int64(len(s.P))

		if sect.segname == "__TEXT" {
			if sect.name == "__text" {
				s.Type = obj.STEXT
			} else {
				s.Type = obj.SRODATA
			}
		} else {
			if sect.name == "__bss" {
				s.Type = obj.SNOPTRBSS
				s.P = s.P[:0]
			} else {
				s.Type = obj.SNOPTRDATA
			}
		}

		sect.sym = s
	}

	// enter sub-symbols into symbol table.
	// have to guess sizes from next symbol.
	for i := 0; uint32(i) < symtab.nsym; i++ {
		sym = &symtab.sym[i]
		if sym.type_&N_STAB != 0 {
			continue
		}

		// TODO: check sym->type against outer->type.
		name = sym.name

		if name[0] == '_' && name[1] != '\x00' {
			name = name[1:]
		}
		v := 0
		if sym.type_&N_EXT == 0 {
			v = localSymVersion
		}
		s = ctxt.Syms.Lookup(name, v)
		if sym.type_&N_EXT == 0 {
			s.Attr |= AttrDuplicateOK
		}
		sym.sym = s
		if sym.sectnum == 0 { // undefined
			continue
		}
		if uint32(sym.sectnum) > c.seg.nsect {
			err = fmt.Errorf("reference to invalid section %d", sym.sectnum)
			goto bad
		}

		sect = &c.seg.sect[sym.sectnum-1]
		outer = sect.sym
		if outer == nil {
			err = fmt.Errorf("reference to invalid section %s/%s", sect.segname, sect.name)
			continue
		}

		if s.Outer != nil {
			if s.Attr.DuplicateOK() {
				continue
			}
			Exitf("%s: duplicate symbol reference: %s in both %s and %s", pn, s.Name, s.Outer.Name, sect.sym.Name)
		}

		s.Type = outer.Type | obj.SSUB
		s.Sub = outer.Sub
		outer.Sub = s
		s.Outer = outer
		s.Value = int64(sym.value - sect.addr)
		if !s.Attr.CgoExportDynamic() {
			s.Dynimplib = "" // satisfy dynimport
		}
		if outer.Type == obj.STEXT {
			if s.Attr.External() && !s.Attr.DuplicateOK() {
				Errorf(s, "%s: duplicate symbol definition", pn)
			}
			s.Attr |= AttrExternal
		}

		sym.sym = s
	}

	// Sort outer lists by address, adding to textp.
	// This keeps textp in increasing address order.
	for i := 0; uint32(i) < c.seg.nsect; i++ {
		sect = &c.seg.sect[i]
		s = sect.sym
		if s == nil {
			continue
		}
		if s.Sub != nil {
			s.Sub = listsort(s.Sub)

			// assign sizes, now that we know symbols in sorted order.
			for s1 = s.Sub; s1 != nil; s1 = s1.Sub {
				if s1.Sub != nil {
					s1.Size = s1.Sub.Value - s1.Value
				} else {
					s1.Size = s.Value + s.Size - s1.Value
				}
			}
		}

		if s.Type == obj.STEXT {
			if s.Attr.OnList() {
				log.Fatalf("symbol %s listed multiple times", s.Name)
			}
			s.Attr |= AttrOnList
			ctxt.Textp = append(ctxt.Textp, s)
			for s1 = s.Sub; s1 != nil; s1 = s1.Sub {
				if s1.Attr.OnList() {
					log.Fatalf("symbol %s listed multiple times", s1.Name)
				}
				s1.Attr |= AttrOnList
				ctxt.Textp = append(ctxt.Textp, s1)
			}
		}
	}

	// load relocations
	for i := 0; uint32(i) < c.seg.nsect; i++ {
		sect = &c.seg.sect[i]
		s = sect.sym
		if s == nil {
			continue
		}
		macholoadrel(m, sect)
		if sect.rel == nil {
			continue
		}
		r = make([]Reloc, sect.nreloc)
		rpi = 0
	Reloc:
		for j = 0; uint32(j) < sect.nreloc; j++ {
			rp = &r[rpi]
			rel = &sect.rel[j]
			if rel.scattered != 0 {
				if SysArch.Family != sys.I386 {
					// mach-o only uses scattered relocation on 32-bit platforms
					Errorf(s, "unexpected scattered relocation")
					continue
				}

				// on 386, rewrite scattered 4/1 relocation and some
				// scattered 2/1 relocation into the pseudo-pc-relative
				// reference that it is.
				// assume that the second in the pair is in this section
				// and use that as the pc-relative base.
				if uint32(j+1) >= sect.nreloc {
					err = fmt.Errorf("unsupported scattered relocation %d", int(rel.type_))
					goto bad
				}

				if sect.rel[j+1].scattered == 0 || sect.rel[j+1].type_ != 1 || (rel.type_ != 4 && rel.type_ != 2) || uint64(sect.rel[j+1].value) < sect.addr || uint64(sect.rel[j+1].value) >= sect.addr+sect.size {
					err = fmt.Errorf("unsupported scattered relocation %d/%d", int(rel.type_), int(sect.rel[j+1].type_))
					goto bad
				}

				rp.Siz = rel.length
				rp.Off = int32(rel.addr)

				// NOTE(rsc): I haven't worked out why (really when)
				// we should ignore the addend on a
				// scattered relocation, but it seems that the
				// common case is we ignore it.
				// It's likely that this is not strictly correct
				// and that the math should look something
				// like the non-scattered case below.
				rp.Add = 0

				// want to make it pc-relative aka relative to rp->off+4
				// but the scatter asks for relative to off = sect->rel[j+1].value - sect->addr.
				// adjust rp->add accordingly.
				rp.Type = obj.R_PCREL

				rp.Add += int64(uint64(int64(rp.Off)+4) - (uint64(sect.rel[j+1].value) - sect.addr))

				// now consider the desired symbol.
				// find the section where it lives.
				var ks *ldMachoSect
				for k := 0; uint32(k) < c.seg.nsect; k++ {
					ks = &c.seg.sect[k]
					if ks.addr <= uint64(rel.value) && uint64(rel.value) < ks.addr+ks.size {
						if ks.sym != nil {
							rp.Sym = ks.sym
							rp.Add += int64(uint64(rel.value) - ks.addr)
						} else if ks.segname == "__IMPORT" && ks.name == "__pointers" {
							// handle reference to __IMPORT/__pointers.
							// how much worse can this get?
							// why are we supporting 386 on the mac anyway?
							rp.Type = 512 + MACHO_FAKE_GOTPCREL

							// figure out which pointer this is a reference to.
							k = int(uint64(ks.res1) + (uint64(rel.value)-ks.addr)/4)

							// load indirect table for __pointers
							// fetch symbol number
							if dsymtab == nil || k < 0 || uint32(k) >= dsymtab.nindirectsyms || dsymtab.indir == nil {
								err = fmt.Errorf("invalid scattered relocation: indirect symbol reference out of range")
								goto bad
							}

							k = int(dsymtab.indir[k])
							if k < 0 || uint32(k) >= symtab.nsym {
								err = fmt.Errorf("invalid scattered relocation: symbol reference out of range")
								goto bad
							}

							rp.Sym = symtab.sym[k].sym
						} else {
							err = fmt.Errorf("unsupported scattered relocation: reference to %s/%s", ks.segname, ks.name)
							goto bad
						}

						rpi++

						// skip #1 of 2 rel; continue skips #2 of 2.
						j++

						continue Reloc
					}
				}

				err = fmt.Errorf("unsupported scattered relocation: invalid address %#x", rel.addr)
				goto bad

			}

			rp.Siz = rel.length
			rp.Type = 512 + (obj.RelocType(rel.type_) << 1) + obj.RelocType(rel.pcrel)
			rp.Off = int32(rel.addr)

			// Handle X86_64_RELOC_SIGNED referencing a section (rel->extrn == 0).
			if SysArch.Family == sys.AMD64 && rel.extrn == 0 && rel.type_ == 1 {
				// Calculate the addend as the offset into the section.
				//
				// The rip-relative offset stored in the object file is encoded
				// as follows:
				//
				//    movsd	0x00000360(%rip),%xmm0
				//
				// To get the absolute address of the value this rip-relative address is pointing
				// to, we must add the address of the next instruction to it. This is done by
				// taking the address of the relocation and adding 4 to it (since the rip-relative
				// offset can at most be 32 bits long).  To calculate the offset into the section the
				// relocation is referencing, we subtract the vaddr of the start of the referenced
				// section found in the original object file.
				//
				// [For future reference, see Darwin's /usr/include/mach-o/x86_64/reloc.h]
				secaddr = c.seg.sect[rel.symnum-1].addr

				rp.Add = int64(uint64(int64(int32(e.Uint32(s.P[rp.Off:])))+int64(rp.Off)+4) - secaddr)
			} else {
				rp.Add = int64(int32(e.Uint32(s.P[rp.Off:])))
			}

			// For i386 Mach-O PC-relative, the addend is written such that
			// it *is* the PC being subtracted. Use that to make
			// it match our version of PC-relative.
			if rel.pcrel != 0 && SysArch.Family == sys.I386 {
				rp.Add += int64(rp.Off) + int64(rp.Siz)
			}
			if rel.extrn == 0 {
				if rel.symnum < 1 || rel.symnum > c.seg.nsect {
					err = fmt.Errorf("invalid relocation: section reference out of range %d vs %d", rel.symnum, c.seg.nsect)
					goto bad
				}

				rp.Sym = c.seg.sect[rel.symnum-1].sym
				if rp.Sym == nil {
					err = fmt.Errorf("invalid relocation: %s", c.seg.sect[rel.symnum-1].name)
					goto bad
				}

				// References to symbols in other sections
				// include that information in the addend.
				// We only care about the delta from the
				// section base.
				if SysArch.Family == sys.I386 {
					rp.Add -= int64(c.seg.sect[rel.symnum-1].addr)
				}
			} else {
				if rel.symnum >= symtab.nsym {
					err = fmt.Errorf("invalid relocation: symbol reference out of range")
					goto bad
				}

				rp.Sym = symtab.sym[rel.symnum].sym
			}

			rpi++
		}

		sort.Sort(rbyoff(r[:rpi]))
		s.R = r
		s.R = s.R[:rpi]
	}

	return

bad:
	Errorf(nil, "%s: malformed mach-o file: %v", pn, err)
}
Exemple #3
0
func ldelf(ctxt *Link, f *bio.Reader, pkg string, length int64, pn string) {
	if ctxt.Debugvlog != 0 {
		ctxt.Logf("%5.2f ldelf %s\n", obj.Cputime(), pn)
	}

	localSymVersion := ctxt.Syms.IncVersion()
	base := f.Offset()

	var add uint64
	var e binary.ByteOrder
	var elfobj *ElfObj
	var err error
	var flag int
	var hdr *ElfHdrBytes
	var hdrbuf [64]uint8
	var info uint64
	var is64 int
	var j int
	var n int
	var name string
	var p []byte
	var r []Reloc
	var rela int
	var rp *Reloc
	var rsect *ElfSect
	var s *Symbol
	var sect *ElfSect
	var sym ElfSym
	var symbols []*Symbol
	if _, err := io.ReadFull(f, hdrbuf[:]); err != nil {
		goto bad
	}
	hdr = new(ElfHdrBytes)
	binary.Read(bytes.NewReader(hdrbuf[:]), binary.BigEndian, hdr) // only byte arrays; byte order doesn't matter
	if string(hdr.Ident[:4]) != "\x7FELF" {
		goto bad
	}
	switch hdr.Ident[5] {
	case ElfDataLsb:
		e = binary.LittleEndian

	case ElfDataMsb:
		e = binary.BigEndian

	default:
		goto bad
	}

	// read header
	elfobj = new(ElfObj)

	elfobj.e = e
	elfobj.f = f
	elfobj.base = base
	elfobj.length = length
	elfobj.name = pn

	is64 = 0
	if hdr.Ident[4] == ElfClass64 {
		is64 = 1
		hdr := new(ElfHdrBytes64)
		binary.Read(bytes.NewReader(hdrbuf[:]), binary.BigEndian, hdr) // only byte arrays; byte order doesn't matter
		elfobj.type_ = uint32(e.Uint16(hdr.Type[:]))
		elfobj.machine = uint32(e.Uint16(hdr.Machine[:]))
		elfobj.version = e.Uint32(hdr.Version[:])
		elfobj.phoff = e.Uint64(hdr.Phoff[:])
		elfobj.shoff = e.Uint64(hdr.Shoff[:])
		elfobj.flags = e.Uint32(hdr.Flags[:])
		elfobj.ehsize = uint32(e.Uint16(hdr.Ehsize[:]))
		elfobj.phentsize = uint32(e.Uint16(hdr.Phentsize[:]))
		elfobj.phnum = uint32(e.Uint16(hdr.Phnum[:]))
		elfobj.shentsize = uint32(e.Uint16(hdr.Shentsize[:]))
		elfobj.shnum = uint32(e.Uint16(hdr.Shnum[:]))
		elfobj.shstrndx = uint32(e.Uint16(hdr.Shstrndx[:]))
	} else {
		elfobj.type_ = uint32(e.Uint16(hdr.Type[:]))
		elfobj.machine = uint32(e.Uint16(hdr.Machine[:]))
		elfobj.version = e.Uint32(hdr.Version[:])
		elfobj.entry = uint64(e.Uint32(hdr.Entry[:]))
		elfobj.phoff = uint64(e.Uint32(hdr.Phoff[:]))
		elfobj.shoff = uint64(e.Uint32(hdr.Shoff[:]))
		elfobj.flags = e.Uint32(hdr.Flags[:])
		elfobj.ehsize = uint32(e.Uint16(hdr.Ehsize[:]))
		elfobj.phentsize = uint32(e.Uint16(hdr.Phentsize[:]))
		elfobj.phnum = uint32(e.Uint16(hdr.Phnum[:]))
		elfobj.shentsize = uint32(e.Uint16(hdr.Shentsize[:]))
		elfobj.shnum = uint32(e.Uint16(hdr.Shnum[:]))
		elfobj.shstrndx = uint32(e.Uint16(hdr.Shstrndx[:]))
	}

	elfobj.is64 = is64

	if uint32(hdr.Ident[6]) != elfobj.version {
		goto bad
	}

	if e.Uint16(hdr.Type[:]) != ElfTypeRelocatable {
		Errorf(nil, "%s: elf but not elf relocatable object", pn)
		return
	}

	switch SysArch.Family {
	default:
		Errorf(nil, "%s: elf %s unimplemented", pn, SysArch.Name)
		return

	case sys.MIPS64:
		if elfobj.machine != ElfMachMips || hdr.Ident[4] != ElfClass64 {
			Errorf(nil, "%s: elf object but not mips64", pn)
			return
		}

	case sys.ARM:
		if e != binary.LittleEndian || elfobj.machine != ElfMachArm || hdr.Ident[4] != ElfClass32 {
			Errorf(nil, "%s: elf object but not arm", pn)
			return
		}

	case sys.AMD64:
		if e != binary.LittleEndian || elfobj.machine != ElfMachAmd64 || hdr.Ident[4] != ElfClass64 {
			Errorf(nil, "%s: elf object but not amd64", pn)
			return
		}

	case sys.ARM64:
		if e != binary.LittleEndian || elfobj.machine != ElfMachArm64 || hdr.Ident[4] != ElfClass64 {
			Errorf(nil, "%s: elf object but not arm64", pn)
			return
		}

	case sys.I386:
		if e != binary.LittleEndian || elfobj.machine != ElfMach386 || hdr.Ident[4] != ElfClass32 {
			Errorf(nil, "%s: elf object but not 386", pn)
			return
		}

	case sys.PPC64:
		if elfobj.machine != ElfMachPower64 || hdr.Ident[4] != ElfClass64 {
			Errorf(nil, "%s: elf object but not ppc64", pn)
			return
		}

	case sys.S390X:
		if elfobj.machine != ElfMachS390 || hdr.Ident[4] != ElfClass64 {
			Errorf(nil, "%s: elf object but not s390x", pn)
			return
		}
	}

	// load section list into memory.
	elfobj.sect = make([]ElfSect, elfobj.shnum)

	elfobj.nsect = uint(elfobj.shnum)
	for i := 0; uint(i) < elfobj.nsect; i++ {
		if f.Seek(int64(uint64(base)+elfobj.shoff+uint64(int64(i)*int64(elfobj.shentsize))), 0) < 0 {
			goto bad
		}
		sect = &elfobj.sect[i]
		if is64 != 0 {
			var b ElfSectBytes64

			if err = binary.Read(f, e, &b); err != nil {
				goto bad
			}

			sect.nameoff = e.Uint32(b.Name[:])
			sect.type_ = e.Uint32(b.Type[:])
			sect.flags = e.Uint64(b.Flags[:])
			sect.addr = e.Uint64(b.Addr[:])
			sect.off = e.Uint64(b.Off[:])
			sect.size = e.Uint64(b.Size[:])
			sect.link = e.Uint32(b.Link[:])
			sect.info = e.Uint32(b.Info[:])
			sect.align = e.Uint64(b.Align[:])
			sect.entsize = e.Uint64(b.Entsize[:])
		} else {
			var b ElfSectBytes

			if err = binary.Read(f, e, &b); err != nil {
				goto bad
			}

			sect.nameoff = e.Uint32(b.Name[:])
			sect.type_ = e.Uint32(b.Type[:])
			sect.flags = uint64(e.Uint32(b.Flags[:]))
			sect.addr = uint64(e.Uint32(b.Addr[:]))
			sect.off = uint64(e.Uint32(b.Off[:]))
			sect.size = uint64(e.Uint32(b.Size[:]))
			sect.link = e.Uint32(b.Link[:])
			sect.info = e.Uint32(b.Info[:])
			sect.align = uint64(e.Uint32(b.Align[:]))
			sect.entsize = uint64(e.Uint32(b.Entsize[:]))
		}
	}

	// read section string table and translate names
	if elfobj.shstrndx >= uint32(elfobj.nsect) {
		err = fmt.Errorf("shstrndx out of range %d >= %d", elfobj.shstrndx, elfobj.nsect)
		goto bad
	}

	sect = &elfobj.sect[elfobj.shstrndx]
	if err = elfmap(elfobj, sect); err != nil {
		goto bad
	}
	for i := 0; uint(i) < elfobj.nsect; i++ {
		if elfobj.sect[i].nameoff != 0 {
			elfobj.sect[i].name = cstring(sect.base[elfobj.sect[i].nameoff:])
		}
	}

	// load string table for symbols into memory.
	elfobj.symtab = section(elfobj, ".symtab")

	if elfobj.symtab == nil {
		// our work is done here - no symbols means nothing can refer to this file
		return
	}

	if elfobj.symtab.link <= 0 || elfobj.symtab.link >= uint32(elfobj.nsect) {
		Errorf(nil, "%s: elf object has symbol table with invalid string table link", pn)
		return
	}

	elfobj.symstr = &elfobj.sect[elfobj.symtab.link]
	if is64 != 0 {
		elfobj.nsymtab = int(elfobj.symtab.size / ELF64SYMSIZE)
	} else {
		elfobj.nsymtab = int(elfobj.symtab.size / ELF32SYMSIZE)
	}

	if err = elfmap(elfobj, elfobj.symtab); err != nil {
		goto bad
	}
	if err = elfmap(elfobj, elfobj.symstr); err != nil {
		goto bad
	}

	// load text and data segments into memory.
	// they are not as small as the section lists, but we'll need
	// the memory anyway for the symbol images, so we might
	// as well use one large chunk.

	// create symbols for elfmapped sections
	for i := 0; uint(i) < elfobj.nsect; i++ {
		sect = &elfobj.sect[i]
		if sect.type_ == SHT_ARM_ATTRIBUTES && sect.name == ".ARM.attributes" {
			if err = elfmap(elfobj, sect); err != nil {
				goto bad
			}
			parseArmAttributes(ctxt, e, sect.base[:sect.size])
		}
		if (sect.type_ != ElfSectProgbits && sect.type_ != ElfSectNobits) || sect.flags&ElfSectFlagAlloc == 0 {
			continue
		}
		if sect.type_ != ElfSectNobits {
			if err = elfmap(elfobj, sect); err != nil {
				goto bad
			}
		}

		name = fmt.Sprintf("%s(%s)", pkg, sect.name)
		s = ctxt.Syms.Lookup(name, localSymVersion)

		switch int(sect.flags) & (ElfSectFlagAlloc | ElfSectFlagWrite | ElfSectFlagExec) {
		default:
			err = fmt.Errorf("unexpected flags for ELF section %s", sect.name)
			goto bad

		case ElfSectFlagAlloc:
			s.Type = obj.SRODATA

		case ElfSectFlagAlloc + ElfSectFlagWrite:
			if sect.type_ == ElfSectNobits {
				s.Type = obj.SNOPTRBSS
			} else {
				s.Type = obj.SNOPTRDATA
			}

		case ElfSectFlagAlloc + ElfSectFlagExec:
			s.Type = obj.STEXT
		}

		if sect.name == ".got" || sect.name == ".toc" {
			s.Type = obj.SELFGOT
		}
		if sect.type_ == ElfSectProgbits {
			s.P = sect.base
			s.P = s.P[:sect.size]
		}

		s.Size = int64(sect.size)
		s.Align = int32(sect.align)
		sect.sym = s
	}

	// enter sub-symbols into symbol table.
	// symbol 0 is the null symbol.
	symbols = make([]*Symbol, elfobj.nsymtab)

	for i := 1; i < elfobj.nsymtab; i++ {
		if err = readelfsym(ctxt, elfobj, i, &sym, 1, localSymVersion); err != nil {
			goto bad
		}
		symbols[i] = sym.sym
		if sym.type_ != ElfSymTypeFunc && sym.type_ != ElfSymTypeObject && sym.type_ != ElfSymTypeNone {
			continue
		}
		if sym.shndx == ElfSymShnCommon {
			s = sym.sym
			if uint64(s.Size) < sym.size {
				s.Size = int64(sym.size)
			}
			if s.Type == 0 || s.Type == obj.SXREF {
				s.Type = obj.SNOPTRBSS
			}
			continue
		}

		if uint(sym.shndx) >= elfobj.nsect || sym.shndx == 0 {
			continue
		}

		// even when we pass needSym == 1 to readelfsym, it might still return nil to skip some unwanted symbols
		if sym.sym == nil {
			continue
		}
		sect = &elfobj.sect[sym.shndx]
		if sect.sym == nil {
			if strings.HasPrefix(sym.name, ".Linfo_string") { // clang does this
				continue
			}

			if sym.name == "" && sym.type_ == 0 && sect.name == ".debug_str" {
				// This reportedly happens with clang 3.7 on ARM.
				// See issue 13139.
				continue
			}

			if strings.HasPrefix(sym.name, ".LASF") { // gcc on s390x does this
				continue
			}
			Errorf(sym.sym, "%s: sym#%d: ignoring symbol in section %d (type %d)", pn, i, sym.shndx, sym.type_)
			continue
		}

		s = sym.sym
		if s.Outer != nil {
			if s.Attr.DuplicateOK() {
				continue
			}
			Exitf("%s: duplicate symbol reference: %s in both %s and %s", pn, s.Name, s.Outer.Name, sect.sym.Name)
		}

		s.Sub = sect.sym.Sub
		sect.sym.Sub = s
		s.Type = sect.sym.Type | s.Type&^obj.SMASK | obj.SSUB
		if !s.Attr.CgoExportDynamic() {
			s.Dynimplib = "" // satisfy dynimport
		}
		s.Value = int64(sym.value)
		s.Size = int64(sym.size)
		s.Outer = sect.sym
		if sect.sym.Type == obj.STEXT {
			if s.Attr.External() && !s.Attr.DuplicateOK() {
				Errorf(s, "%s: duplicate symbol definition", pn)
			}
			s.Attr |= AttrExternal
		}

		if elfobj.machine == ElfMachPower64 {
			flag = int(sym.other) >> 5
			if 2 <= flag && flag <= 6 {
				s.Localentry = 1 << uint(flag-2)
			} else if flag == 7 {
				Errorf(s, "%s: invalid sym.other 0x%x", pn, sym.other)
			}
		}
	}

	// Sort outer lists by address, adding to textp.
	// This keeps textp in increasing address order.
	for i := 0; uint(i) < elfobj.nsect; i++ {
		s = elfobj.sect[i].sym
		if s == nil {
			continue
		}
		if s.Sub != nil {
			s.Sub = listsort(s.Sub)
		}
		if s.Type == obj.STEXT {
			if s.Attr.OnList() {
				log.Fatalf("symbol %s listed multiple times", s.Name)
			}
			s.Attr |= AttrOnList
			ctxt.Textp = append(ctxt.Textp, s)
			for s = s.Sub; s != nil; s = s.Sub {
				if s.Attr.OnList() {
					log.Fatalf("symbol %s listed multiple times", s.Name)
				}
				s.Attr |= AttrOnList
				ctxt.Textp = append(ctxt.Textp, s)
			}
		}
	}

	// load relocations
	for i := 0; uint(i) < elfobj.nsect; i++ {
		rsect = &elfobj.sect[i]
		if rsect.type_ != ElfSectRela && rsect.type_ != ElfSectRel {
			continue
		}
		if rsect.info >= uint32(elfobj.nsect) || elfobj.sect[rsect.info].base == nil {
			continue
		}
		sect = &elfobj.sect[rsect.info]
		if err = elfmap(elfobj, rsect); err != nil {
			goto bad
		}
		rela = 0
		if rsect.type_ == ElfSectRela {
			rela = 1
		}
		n = int(rsect.size / uint64(4+4*is64) / uint64(2+rela))
		r = make([]Reloc, n)
		p = rsect.base
		for j = 0; j < n; j++ {
			add = 0
			rp = &r[j]
			if is64 != 0 {
				// 64-bit rel/rela
				rp.Off = int32(e.Uint64(p))

				p = p[8:]
				info = e.Uint64(p)
				p = p[8:]
				if rela != 0 {
					add = e.Uint64(p)
					p = p[8:]
				}
			} else {
				// 32-bit rel/rela
				rp.Off = int32(e.Uint32(p))

				p = p[4:]
				info = uint64(e.Uint32(p))
				info = info>>8<<32 | info&0xff // convert to 64-bit info
				p = p[4:]
				if rela != 0 {
					add = uint64(e.Uint32(p))
					p = p[4:]
				}
			}

			if info&0xffffffff == 0 { // skip R_*_NONE relocation
				j--
				n--
				continue
			}

			if info>>32 == 0 { // absolute relocation, don't bother reading the null symbol
				rp.Sym = nil
			} else {
				if err = readelfsym(ctxt, elfobj, int(info>>32), &sym, 0, 0); err != nil {
					goto bad
				}
				sym.sym = symbols[info>>32]
				if sym.sym == nil {
					err = fmt.Errorf("%s#%d: reloc of invalid sym #%d %s shndx=%d type=%d", sect.sym.Name, j, int(info>>32), sym.name, sym.shndx, sym.type_)
					goto bad
				}

				rp.Sym = sym.sym
			}

			rp.Type = 256 + obj.RelocType(info)
			rp.Siz = relSize(ctxt, pn, uint32(info))
			if rela != 0 {
				rp.Add = int64(add)
			} else {
				// load addend from image
				if rp.Siz == 4 {
					rp.Add = int64(e.Uint32(sect.base[rp.Off:]))
				} else if rp.Siz == 8 {
					rp.Add = int64(e.Uint64(sect.base[rp.Off:]))
				} else {
					Errorf(nil, "invalid rela size %d", rp.Siz)
				}
			}

			if rp.Siz == 2 {
				rp.Add = int64(int16(rp.Add))
			}
			if rp.Siz == 4 {
				rp.Add = int64(int32(rp.Add))
			}
		}

		//print("rel %s %d %d %s %#llx\n", sect->sym->name, rp->type, rp->siz, rp->sym->name, rp->add);
		sort.Sort(rbyoff(r[:n]))
		// just in case

		s = sect.sym
		s.R = r
		s.R = s.R[:n]
	}

	return

bad:
	Errorf(nil, "%s: malformed elf file: %v", pn, err)
}
Exemple #4
0
// parseObject parses a single Go object file.
// The prefix is the bytes already read from the file,
// typically in order to detect that this is an object file.
// The object file consists of a textual header ending in "\n!\n"
// and then the part we want to parse begins.
// The format of that part is defined in a comment at the top
// of src/liblink/objfile.c.
func (r *objReader) parseObject(prefix []byte) error {
	r.p.MaxVersion++
	h := make([]byte, 0, 256)
	h = append(h, prefix...)
	var c1, c2, c3 byte
	for {
		c1, c2, c3 = c2, c3, r.readByte()
		h = append(h, c3)
		// The new export format can contain 0 bytes.
		// Don't consider them errors, only look for r.err != nil.
		if r.err != nil {
			return errCorruptObject
		}
		if c1 == '\n' && c2 == '!' && c3 == '\n' {
			break
		}
	}

	hs := strings.Fields(string(h))
	if len(hs) >= 4 {
		r.p.Arch = hs[3]
	}
	// TODO: extract OS + build ID if/when we need it

	r.readFull(r.tmp[:8])
	if !bytes.Equal(r.tmp[:8], []byte("\x00\x00go17ld")) {
		return r.error(errCorruptObject)
	}

	b := r.readByte()
	if b != 1 {
		return r.error(errCorruptObject)
	}

	// Direct package dependencies.
	for {
		s := r.readString()
		if s == "" {
			break
		}
		r.p.Imports = append(r.p.Imports, s)
	}

	r.p.SymRefs = []SymID{{"", 0}}
	for {
		if b := r.readByte(); b != 0xfe {
			if b != 0xff {
				return r.error(errCorruptObject)
			}
			break
		}

		r.readRef()
	}

	dataLength := r.readInt()
	r.readInt() // n relocations - ignore
	r.readInt() // n pcdata - ignore
	r.readInt() // n autom - ignore
	r.readInt() // n funcdata - ignore
	r.readInt() // n files - ignore

	r.dataOffset = r.offset
	r.skip(int64(dataLength))

	// Symbols.
	for {
		if b := r.readByte(); b != 0xfe {
			if b != 0xff {
				return r.error(errCorruptObject)
			}
			break
		}

		typ := r.readInt()
		s := &Sym{SymID: r.readSymID()}
		r.p.Syms = append(r.p.Syms, s)
		s.Kind = SymKind(typ)
		flags := r.readInt()
		s.DupOK = flags&1 != 0
		s.Size = r.readInt()
		s.Type = r.readSymID()
		s.Data = r.readData()
		s.Reloc = make([]Reloc, r.readInt())
		for i := range s.Reloc {
			rel := &s.Reloc[i]
			rel.Offset = r.readInt()
			rel.Size = r.readInt()
			rel.Type = obj.RelocType(r.readInt())
			rel.Add = r.readInt()
			rel.Sym = r.readSymID()
		}

		if s.Kind == STEXT {
			f := new(Func)
			s.Func = f
			f.Args = r.readInt()
			f.Frame = r.readInt()
			flags := r.readInt()
			f.Leaf = flags&1 != 0
			f.NoSplit = r.readInt() != 0
			f.Var = make([]Var, r.readInt())
			for i := range f.Var {
				v := &f.Var[i]
				v.Name = r.readSymID().Name
				v.Offset = r.readInt()
				v.Kind = r.readInt()
				v.Type = r.readSymID()
			}

			f.PCSP = r.readData()
			f.PCFile = r.readData()
			f.PCLine = r.readData()
			f.PCData = make([]Data, r.readInt())
			for i := range f.PCData {
				f.PCData[i] = r.readData()
			}
			f.FuncData = make([]FuncData, r.readInt())
			for i := range f.FuncData {
				f.FuncData[i].Sym = r.readSymID()
			}
			for i := range f.FuncData {
				f.FuncData[i].Offset = int64(r.readInt()) // TODO
			}
			f.File = make([]string, r.readInt())
			for i := range f.File {
				f.File[i] = r.readSymID().Name
			}
		}
	}

	r.readFull(r.tmp[:7])
	if !bytes.Equal(r.tmp[:7], []byte("\xffgo17ld")) {
		return r.error(errCorruptObject)
	}

	return nil
}