Exemple #1
0
func (b *executorBuilder) columnToPBExpr(client kv.Client, column *expression.Column, tbl *model.TableInfo) *tipb.Expr {
	if !client.SupportRequestType(kv.ReqTypeSelect, int64(tipb.ExprType_ColumnRef)) {
		return nil
	}
	switch column.GetType().Tp {
	case mysql.TypeBit, mysql.TypeSet, mysql.TypeEnum, mysql.TypeDecimal, mysql.TypeGeometry,
		mysql.TypeDate, mysql.TypeNewDate, mysql.TypeDatetime, mysql.TypeTimestamp, mysql.TypeYear:
		return nil
	}

	id := int64(-1)
	for _, col := range tbl.Columns {
		if tbl.Name == column.TblName && col.Name == column.ColName {
			id = col.ID
			break
		}
	}
	// Zero Column ID is not a column from table, can not support for now.
	if id == 0 {
		return nil
	}
	// TODO:If the column ID isn't in fields, it means the column is from an outer table,
	// its value is available to use.
	if id == -1 {
		return nil
	}

	return &tipb.Expr{
		Tp:  tipb.ExprType_ColumnRef.Enum(),
		Val: codec.EncodeInt(nil, id)}
}
Exemple #2
0
func findColumnIndexByGroup(groups []LogicalPlan, col *expression.Column) int {
	for i, plan := range groups {
		idx := plan.GetSchema().GetIndex(col)
		if idx != -1 {
			return i
		}
	}
	log.Errorf("Unknown columns %s, from id %s, position %d", col.ToString(), col.FromID, col.Position)
	return -1
}
Exemple #3
0
func (e *havingAndOrderbyResolver) addProjectionExpr(v *ast.ColumnNameExpr, projCol *expression.Column) {
	// Avoid to append same column repeatly.
	for i, expr := range e.proj.Exprs {
		if expr == projCol {
			e.mapper[v] = e.proj.schema[i]
			return
		}
	}
	e.proj.Exprs = append(e.proj.Exprs, projCol)
	schemaCols, _ := projCol.DeepCopy().(*expression.Column)
	e.mapper[v] = schemaCols
	e.proj.schema = append(e.proj.schema, schemaCols)
}
Exemple #4
0
func (pc pbConverter) columnToPBExpr(column *expression.Column) *tipb.Expr {
	if !pc.client.SupportRequestType(kv.ReqTypeSelect, int64(tipb.ExprType_ColumnRef)) {
		return nil
	}
	switch column.GetType().Tp {
	case mysql.TypeBit, mysql.TypeSet, mysql.TypeEnum, mysql.TypeGeometry, mysql.TypeDecimal:
		return nil
	}

	id := column.ID
	// Zero Column ID is not a column from table, can not support for now.
	if id == 0 || id == -1 {
		return nil
	}

	return &tipb.Expr{
		Tp:  tipb.ExprType_ColumnRef,
		Val: codec.EncodeInt(nil, id)}
}
func shallowCopyColumn(colDest, colSrc *expression.Column) *expression.Column {
	colDest.Correlated = colSrc.Correlated
	colDest.FromID = colSrc.FromID
	colDest.Position = colSrc.Position
	colDest.ID = colSrc.ID
	colDest.IsAggOrSubq = colSrc.IsAggOrSubq
	colDest.RetType = colSrc.RetType

	return colDest
}
// propagateConstant propagate constant values of equality predicates and inequality predicates in a condition.
func propagateConstant(conditions []expression.Expression) []expression.Expression {
	if len(conditions) == 0 {
		return conditions
	}
	// Propagate constants in equality predicates.
	// e.g. for condition: "a = b and b = c and c = a and a = 1";
	// we propagate constant as the following step:
	// first: "1 = b and b = c and c = 1 and a = 1";
	// next:  "1 = b and 1 = c and c = 1 and a = 1";
	// next:  "1 = b and 1 = c and 1 = 1 and a = 1";
	// next:  "1 = b and 1 = c and a = 1";

	// e.g for condition: "a = b and b = c and b = 2 and a = 1";
	// we propagate constant as the following step:
	// first: "a = 2 and 2 = c and b = 2 and a = 1";
	// next:  "a = 2 and 2 = c and b = 2 and 2 = 1";
	// next:  "0"
	isSource := make([]bool, len(conditions))
	type transitiveEqualityPredicate map[string]*expression.Constant // transitive equality predicates between one column and one constant
	for {
		equalities := make(transitiveEqualityPredicate, 0)
		for i, getOneEquality := 0, false; i < len(conditions) && !getOneEquality; i++ {
			if isSource[i] {
				continue
			}
			expr, ok := conditions[i].(*expression.ScalarFunction)
			if !ok {
				continue
			}
			// process the included OR conditions recursively to do the same for CNF item.
			switch expr.FuncName.L {
			case ast.OrOr:
				expressions := expression.SplitDNFItems(conditions[i])
				newExpression := make([]expression.Expression, 0)
				for _, v := range expressions {
					newExpression = append(newExpression, propagateConstant([]expression.Expression{v})...)
				}
				conditions[i] = expression.ComposeDNFCondition(newExpression)
				isSource[i] = true
			case ast.AndAnd:
				newExpression := propagateConstant(expression.SplitCNFItems(conditions[i]))
				conditions[i] = expression.ComposeCNFCondition(newExpression)
				isSource[i] = true
			case ast.EQ:
				var (
					col *expression.Column
					val *expression.Constant
				)
				leftConst, leftIsConst := expr.Args[0].(*expression.Constant)
				rightConst, rightIsConst := expr.Args[1].(*expression.Constant)
				leftCol, leftIsCol := expr.Args[0].(*expression.Column)
				rightCol, rightIsCol := expr.Args[1].(*expression.Column)
				if rightIsConst && leftIsCol {
					col = leftCol
					val = rightConst
				} else if leftIsConst && rightIsCol {
					col = rightCol
					val = leftConst
				} else {
					continue
				}
				equalities[string(col.HashCode())] = val
				isSource[i] = true
				getOneEquality = true
			}
		}
		if len(equalities) == 0 {
			break
		}
		for i := 0; i < len(conditions); i++ {
			if isSource[i] {
				continue
			}
			if len(equalities) != 0 {
				conditions[i] = constantSubstitute(equalities, conditions[i])
			}
		}
	}
	// Propagate transitive inequality predicates.
	// e.g for conditions "a = b and c = d and a = c and g = h and b > 0 and e != 0 and g like 'abc'",
	//     we propagate constant as the following step:
	// 1. build multiple equality predicates(mep):
	//    =(a, b, c, d), =(g, h).
	// 2. extract inequality predicates between one constant and one column,
	//    and rewrite them using the root column of a multiple equality predicate:
	//    b > 0, e != 0, g like 'abc' ==> a > 0, g like 'abc'.
	//    ATTENTION: here column 'e' doesn't belong to any mep, so we skip "e != 0".
	// 3. propagate constants in these inequality predicates, and we finally get:
	//    "a = b and c = d and a = c and e = f and g = h and e != 0 and a > 0 and b > 0 and c > 0 and d > 0 and g like 'abc' and h like 'abc' ".
	multipleEqualities := make(map[*expression.Column]*expression.Column, 0)
	for _, cond := range conditions { // build multiple equality predicates.
		expr, ok := cond.(*expression.ScalarFunction)
		if ok && expr.FuncName.L == ast.EQ {
			left, ok1 := expr.Args[0].(*expression.Column)
			right, ok2 := expr.Args[1].(*expression.Column)
			if ok1 && ok2 {
				UnionColumns(left, right, multipleEqualities)
			}
		}
	}
	if len(multipleEqualities) == 0 {
		return conditions
	}
	inequalityFuncs := map[string]string{
		ast.LT:   ast.LT,
		ast.GT:   ast.GT,
		ast.LE:   ast.LE,
		ast.GE:   ast.GE,
		ast.NE:   ast.NE,
		ast.Like: ast.Like,
	}
	type inequalityFactor struct {
		FuncName string
		Factor   []*expression.Constant
	}
	type transitiveInEqualityPredicate map[string][]inequalityFactor // transitive inequality predicates between one column and one constant.
	inequalities := make(transitiveInEqualityPredicate, 0)
	for i := 0; i < len(conditions); i++ { // extract inequality predicates.
		var (
			column   *expression.Column
			equalCol *expression.Column // the root column corresponding to a column in a multiple equality predicate.
			val      *expression.Constant
			funcName string
		)
		expr, ok := conditions[i].(*expression.ScalarFunction)
		if !ok {
			continue
		}
		funcName, ok = inequalityFuncs[expr.FuncName.L]
		if !ok {
			continue
		}
		leftConst, leftIsConst := expr.Args[0].(*expression.Constant)
		rightConst, rightIsConst := expr.Args[1].(*expression.Constant)
		leftCol, leftIsCol := expr.Args[0].(*expression.Column)
		rightCol, rightIsCol := expr.Args[1].(*expression.Column)
		if rightIsConst && leftIsCol {
			column = leftCol
			val = rightConst
		} else if leftIsConst && rightIsCol {
			column = rightCol
			val = leftConst
		} else {
			continue
		}
		equalCol, ok = multipleEqualities[column]
		if !ok { // no need to propagate inequality predicates whose column is only equal to itself.
			continue
		}
		colHashCode := string(equalCol.HashCode())
		if funcName == ast.Like { // func 'LIKE' need 3 input arguments, so here we handle it alone.
			inequalities[colHashCode] = append(inequalities[colHashCode], inequalityFactor{FuncName: ast.Like, Factor: []*expression.Constant{val, expr.Args[2].(*expression.Constant)}})
		} else {
			inequalities[colHashCode] = append(inequalities[colHashCode], inequalityFactor{FuncName: funcName, Factor: []*expression.Constant{val}})
		}
		conditions = append(conditions[:i], conditions[i+1:]...)
		i--
	}
	if len(inequalities) == 0 {
		return conditions
	}
	for k, v := range multipleEqualities { // propagate constants in inequality predicates.
		for _, x := range inequalities[string(v.HashCode())] {
			funcName, factors := x.FuncName, x.Factor
			if funcName == ast.Like {
				for i := 0; i < len(factors); i += 2 {
					newFunc, _ := expression.NewFunction(funcName, types.NewFieldType(mysql.TypeTiny), k, factors[i], factors[i+1])
					conditions = append(conditions, newFunc)
				}
			} else {
				for i := 0; i < len(factors); i++ {
					newFunc, _ := expression.NewFunction(funcName, types.NewFieldType(mysql.TypeTiny), k, factors[i])
					conditions = append(conditions, newFunc)
					i++
				}
			}
		}
	}
	return conditions
}
Exemple #7
0
func (e *havingAndOrderbyResolver) addProjectionExpr(v *ast.ColumnNameExpr, projCol *expression.Column) {
	e.proj.Exprs = append(e.proj.Exprs, projCol)
	schemaCols, _ := projCol.DeepCopy().(*expression.Column)
	e.mapper[v] = schemaCols
	e.proj.schema = append(e.proj.schema, schemaCols)
}