Exemplo n.º 1
0
/* calcDiff returns a bool given two block headers.  This bool is
true if the correct dificulty adjustment is seen in the "next" header.
Only feed it headers n-2016 and n-1, otherwise it will calculate a difficulty
when no adjustment should take place, and return false.
Note that the epoch is actually 2015 blocks long, which is confusing. */
func calcDiffAdjust(start, end wire.BlockHeader, p *chaincfg.Params) uint32 {
	duration := end.Timestamp.UnixNano() - start.Timestamp.UnixNano()
	if duration < minRetargetTimespan {
		log.Printf("whoa there, block %s off-scale high 4X diff adjustment!",
			end.BlockSha().String())
		duration = minRetargetTimespan
	} else if duration > maxRetargetTimespan {
		log.Printf("Uh-oh! block %s off-scale low 0.25X diff adjustment!\n",
			end.BlockSha().String())
		duration = maxRetargetTimespan
	}

	// calculation of new 32-byte difficulty target
	// first turn the previous target into a big int
	prevTarget := blockchain.CompactToBig(start.Bits)
	// new target is old * duration...
	newTarget := new(big.Int).Mul(prevTarget, big.NewInt(duration))
	// divided by 2 weeks
	newTarget.Div(newTarget, big.NewInt(int64(targetTimespan)))

	// clip again if above minimum target (too easy)
	if newTarget.Cmp(p.PowLimit) > 0 {
		newTarget.Set(p.PowLimit)
	}

	// calculate and return 4-byte 'bits' difficulty from 32-byte target
	return blockchain.BigToCompact(newTarget)
}
Exemplo n.º 2
0
// This example demonstrates how to convert the compact "bits" in a block header
// which represent the target difficulty to a big integer and display it using
// the typical hex notation.
func ExampleCompactToBig() {
	// Convert the bits from block 300000 in the main block chain.
	bits := uint32(419465580)
	targetDifficulty := blockchain.CompactToBig(bits)

	// Display it in hex.
	fmt.Printf("%064x\n", targetDifficulty.Bytes())

	// Output:
	// 0000000000000000896c00000000000000000000000000000000000000000000
}
Exemplo n.º 3
0
func TestCompactToBig(t *testing.T) {
	tests := []struct {
		in  uint32
		out int64
	}{
		{10000000, 0},
	}

	for x, test := range tests {
		n := blockchain.CompactToBig(test.in)
		want := big.NewInt(test.out)
		if n.Cmp(want) != 0 {
			t.Errorf("TestCompactToBig test #%d failed: got %d want %d\n",
				x, n.Int64(), want.Int64())
			return
		}
	}
}
Exemplo n.º 4
0
/* checkProofOfWork verifies the header hashes into something
lower than specified by the 4-byte bits field. */
func checkProofOfWork(header wire.BlockHeader, p *chaincfg.Params) bool {
	target := blockchain.CompactToBig(header.Bits)

	// The target must more than 0.  Why can you even encode negative...
	if target.Sign() <= 0 {
		log.Printf("block target %064x is neagtive(??)\n", target.Bytes())
		return false
	}
	// The target must be less than the maximum allowed (difficulty 1)
	if target.Cmp(p.PowLimit) > 0 {
		log.Printf("block target %064x is "+
			"higher than max of %064x", target, p.PowLimit.Bytes())
		return false
	}
	// The header hash must be less than the claimed target in the header.
	blockHash := header.BlockSha()
	hashNum := blockchain.ShaHashToBig(&blockHash)
	if hashNum.Cmp(target) > 0 {
		log.Printf("block hash %064x is higher than "+
			"required target of %064x", hashNum, target)
		return false
	}
	return true
}
Exemplo n.º 5
0
// NewBlockTemplate returns a new block template that is ready to be solved
// using the transactions from the passed transaction source pool and a coinbase
// that either pays to the passed address if it is not nil, or a coinbase that
// is redeemable by anyone if the passed address is nil.  The nil address
// functionality is useful since there are cases such as the getblocktemplate
// RPC where external mining software is responsible for creating their own
// coinbase which will replace the one generated for the block template.  Thus
// the need to have configured address can be avoided.
//
// The transactions selected and included are prioritized according to several
// factors.  First, each transaction has a priority calculated based on its
// value, age of inputs, and size.  Transactions which consist of larger
// amounts, older inputs, and small sizes have the highest priority.  Second, a
// fee per kilobyte is calculated for each transaction.  Transactions with a
// higher fee per kilobyte are preferred.  Finally, the block generation related
// policy settings are all taken into account.
//
// Transactions which only spend outputs from other transactions already in the
// block chain are immediately added to a priority queue which either
// prioritizes based on the priority (then fee per kilobyte) or the fee per
// kilobyte (then priority) depending on whether or not the BlockPrioritySize
// policy setting allots space for high-priority transactions.  Transactions
// which spend outputs from other transactions in the source pool are added to a
// dependency map so they can be added to the priority queue once the
// transactions they depend on have been included.
//
// Once the high-priority area (if configured) has been filled with
// transactions, or the priority falls below what is considered high-priority,
// the priority queue is updated to prioritize by fees per kilobyte (then
// priority).
//
// When the fees per kilobyte drop below the TxMinFreeFee policy setting, the
// transaction will be skipped unless the BlockMinSize policy setting is
// nonzero, in which case the block will be filled with the low-fee/free
// transactions until the block size reaches that minimum size.
//
// Any transactions which would cause the block to exceed the BlockMaxSize
// policy setting, exceed the maximum allowed signature operations per block, or
// otherwise cause the block to be invalid are skipped.
//
// Given the above, a block generated by this function is of the following form:
//
//   -----------------------------------  --  --
//  |      Coinbase Transaction         |   |   |
//  |-----------------------------------|   |   |
//  |                                   |   |   | ----- policy.BlockPrioritySize
//  |   High-priority Transactions      |   |   |
//  |                                   |   |   |
//  |-----------------------------------|   | --
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |--- policy.BlockMaxSize
//  |  Transactions prioritized by fee  |   |
//  |  until <= policy.TxMinFreeFee     |   |
//  |                                   |   |
//  |                                   |   |
//  |                                   |   |
//  |-----------------------------------|   |
//  |  Low-fee/Non high-priority (free) |   |
//  |  transactions (while block size   |   |
//  |  <= policy.BlockMinSize)          |   |
//   -----------------------------------  --
func (g *BlkTmplGenerator) NewBlockTemplate(payToAddress btcutil.Address) (*BlockTemplate, error) {
	// Extend the most recently known best block.
	best := g.chain.BestSnapshot()
	prevHash := best.Hash
	nextBlockHeight := best.Height + 1

	// Create a standard coinbase transaction paying to the provided
	// address.  NOTE: The coinbase value will be updated to include the
	// fees from the selected transactions later after they have actually
	// been selected.  It is created here to detect any errors early
	// before potentially doing a lot of work below.  The extra nonce helps
	// ensure the transaction is not a duplicate transaction (paying the
	// same value to the same public key address would otherwise be an
	// identical transaction for block version 1).
	extraNonce := uint64(0)
	coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce)
	if err != nil {
		return nil, err
	}
	// TODO(roasbeef): add witnesss commitment output
	coinbaseTx, err := createCoinbaseTx(g.chainParams, coinbaseScript,
		nextBlockHeight, payToAddress)
	if err != nil {
		return nil, err
	}
	coinbaseSigOpCost := int64(blockchain.CountSigOps(coinbaseTx)) * blockchain.WitnessScaleFactor

	// Get the current source transactions and create a priority queue to
	// hold the transactions which are ready for inclusion into a block
	// along with some priority related and fee metadata.  Reserve the same
	// number of items that are available for the priority queue.  Also,
	// choose the initial sort order for the priority queue based on whether
	// or not there is an area allocated for high-priority transactions.
	sourceTxns := g.txSource.MiningDescs()
	sortedByFee := g.policy.BlockPrioritySize == 0
	priorityQueue := newTxPriorityQueue(len(sourceTxns), sortedByFee)

	// Create a slice to hold the transactions to be included in the
	// generated block with reserved space.  Also create a utxo view to
	// house all of the input transactions so multiple lookups can be
	// avoided.
	blockTxns := make([]*btcutil.Tx, 0, len(sourceTxns))
	blockTxns = append(blockTxns, coinbaseTx)
	blockUtxos := blockchain.NewUtxoViewpoint()

	// dependers is used to track transactions which depend on another
	// transaction in the source pool.  This, in conjunction with the
	// dependsOn map kept with each dependent transaction helps quickly
	// determine which dependent transactions are now eligible for inclusion
	// in the block once each transaction has been included.
	dependers := make(map[chainhash.Hash]map[chainhash.Hash]*txPrioItem)

	// Create slices to hold the fees and number of signature operations
	// for each of the selected transactions and add an entry for the
	// coinbase.  This allows the code below to simply append details about
	// a transaction as it is selected for inclusion in the final block.
	// However, since the total fees aren't known yet, use a dummy value for
	// the coinbase fee which will be updated later.
	txFees := make([]int64, 0, len(sourceTxns))
	txSigOpCosts := make([]int64, 0, len(sourceTxns))
	txFees = append(txFees, -1) // Updated once known
	txSigOpCosts = append(txSigOpCosts, coinbaseSigOpCost)

	log.Debugf("Considering %d transactions for inclusion to new block",
		len(sourceTxns))

mempoolLoop:
	for _, txDesc := range sourceTxns {
		// A block can't have more than one coinbase or contain
		// non-finalized transactions.
		tx := txDesc.Tx
		if blockchain.IsCoinBase(tx) {
			log.Tracef("Skipping coinbase tx %s", tx.Hash())
			continue
		}
		if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight,
			g.timeSource.AdjustedTime()) {

			log.Tracef("Skipping non-finalized tx %s", tx.Hash())
			continue
		}

		// Fetch all of the utxos referenced by the this transaction.
		// NOTE: This intentionally does not fetch inputs from the
		// mempool since a transaction which depends on other
		// transactions in the mempool must come after those
		// dependencies in the final generated block.
		utxos, err := g.chain.FetchUtxoView(tx)
		if err != nil {
			log.Warnf("Unable to fetch utxo view for tx %s: %v",
				tx.Hash(), err)
			continue
		}

		// Setup dependencies for any transactions which reference
		// other transactions in the mempool so they can be properly
		// ordered below.
		prioItem := &txPrioItem{tx: tx}
		for _, txIn := range tx.MsgTx().TxIn {
			originHash := &txIn.PreviousOutPoint.Hash
			originIndex := txIn.PreviousOutPoint.Index
			utxoEntry := utxos.LookupEntry(originHash)
			if utxoEntry == nil || utxoEntry.IsOutputSpent(originIndex) {
				if !g.txSource.HaveTransaction(originHash) {
					log.Tracef("Skipping tx %s because it "+
						"references unspent output %s "+
						"which is not available",
						tx.Hash(), txIn.PreviousOutPoint)
					continue mempoolLoop
				}

				// The transaction is referencing another
				// transaction in the source pool, so setup an
				// ordering dependency.
				deps, exists := dependers[*originHash]
				if !exists {
					deps = make(map[chainhash.Hash]*txPrioItem)
					dependers[*originHash] = deps
				}
				deps[*prioItem.tx.Hash()] = prioItem
				if prioItem.dependsOn == nil {
					prioItem.dependsOn = make(
						map[chainhash.Hash]struct{})
				}
				prioItem.dependsOn[*originHash] = struct{}{}

				// Skip the check below. We already know the
				// referenced transaction is available.
				continue
			}
		}

		// Calculate the final transaction priority using the input
		// value age sum as well as the adjusted transaction size.  The
		// formula is: sum(inputValue * inputAge) / adjustedTxSize
		prioItem.priority = CalcPriority(tx.MsgTx(), utxos,
			nextBlockHeight)

		// Calculate the fee in Satoshi/kB.
		// TODO(roasbeef): cost accounting by weight
		prioItem.feePerKB = txDesc.FeePerKB
		prioItem.fee = txDesc.Fee

		// Add the transaction to the priority queue to mark it ready
		// for inclusion in the block unless it has dependencies.
		if prioItem.dependsOn == nil {
			heap.Push(priorityQueue, prioItem)
		}

		// Merge the referenced outputs from the input transactions to
		// this transaction into the block utxo view.  This allows the
		// code below to avoid a second lookup.
		mergeUtxoView(blockUtxos, utxos)
	}

	log.Tracef("Priority queue len %d, dependers len %d",
		priorityQueue.Len(), len(dependers))

	// The starting block size is the size of the block header plus the max
	// possible transaction count size, plus the size of the coinbase
	// transaction.
	blockWeight := uint32((blockHeaderOverhead * blockchain.WitnessScaleFactor) +
		blockchain.GetTransactionWeight(coinbaseTx))
	blockSigOpCost := coinbaseSigOpCost
	totalFees := int64(0)

	// Query the version bits state to see if segwit has been activated, if
	// so then this means that we'll include any transactions with witness
	// data in the mempool, and also add the witness commitment as an
	// OP_RETURN output in the coinbase transaction.
	segwitState, err := g.chain.ThresholdState(chaincfg.DeploymentSegwit)
	if err != nil {
		return nil, err
	}
	segwitActive := segwitState == blockchain.ThresholdActive

	witnessIncluded := false

	// Choose which transactions make it into the block.
	for priorityQueue.Len() > 0 {
		// Grab the highest priority (or highest fee per kilobyte
		// depending on the sort order) transaction.
		prioItem := heap.Pop(priorityQueue).(*txPrioItem)
		tx := prioItem.tx

		switch {
		// If segregated witness has not been activated yet, then we
		// shouldn't include any witness transactions in the block.
		case tx.MsgTx().HasWitness() && !segwitActive:
			continue

		// Otherwise, Keep track of if we've included a transaction
		// with witness data or not. If so, then we'll need to include
		// the witness commitment as the last output in the coinbase
		// transaction.
		case tx.MsgTx().HasWitness() && segwitActive:
			// If we're about to include a transaction bearing
			// witness data, then we'll also need to include a
			// witness commitment in the coinbase transaction.
			// Therefore, we account for the additional weight
			// within the block.
			if !witnessIncluded {
				// First we account for the additional witness
				// data in the witness nonce of the coinbaes
				// transaction: 32-bytes of zeroes.
				blockWeight += 2 + 32

				// Next we account for the additional flag and
				// marker bytes in the transaction
				// serialization.
				blockWeight += (1 + 1) * blockchain.WitnessScaleFactor

				// Finally we account for the weight of the
				// additional OP_RETURN output: 8-bytes (value)
				// + 1-byte (var-int) + 38-bytes (pkScript),
				// scaling up the weight as it's non-witness
				// data.
				blockWeight += (8 + 1 + 38) * blockchain.WitnessScaleFactor
			}

			witnessIncluded = true
		}

		// Grab any transactions which depend on this one.
		deps := dependers[*tx.Hash()]

		// Enforce maximum block size.  Also check for overflow.
		txWeight := uint32(blockchain.GetTransactionWeight(tx))
		blockPlusTxWeight := uint32(blockWeight + txWeight)
		if blockPlusTxWeight < blockWeight ||
			blockPlusTxWeight >= g.policy.BlockMaxWeight {

			log.Tracef("Skipping tx %s because it would exceed "+
				"the max block weight", tx.Hash())
			logSkippedDeps(tx, deps)
			continue
		}

		// Enforce maximum signature operation cost per block.  Also
		// check for overflow.
		sigOpCost, err := blockchain.GetSigOpCost(tx, false,
			blockUtxos, true, segwitActive)
		if err != nil {
			log.Tracef("Skipping tx %s due to error in "+
				"GetSigOpCost: %v", tx.Hash(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		if blockSigOpCost+int64(sigOpCost) < blockSigOpCost ||
			blockSigOpCost+int64(sigOpCost) > blockchain.MaxBlockSigOpsCost {
			log.Tracef("Skipping tx %s because it would "+
				"exceed the maximum sigops per block", tx.Hash())
			logSkippedDeps(tx, deps)
			continue
		}

		// Skip free transactions once the block is larger than the
		// minimum block size.
		if sortedByFee &&
			prioItem.feePerKB < int64(g.policy.TxMinFreeFee) &&
			blockPlusTxWeight >= g.policy.BlockMinWeight {

			log.Tracef("Skipping tx %s with feePerKB %d "+
				"< TxMinFreeFee %d and block weight %d >= "+
				"minBlockWeight %d", tx.Hash(), prioItem.feePerKB,
				g.policy.TxMinFreeFee, blockPlusTxWeight,
				g.policy.BlockMinWeight)
			logSkippedDeps(tx, deps)
			continue
		}

		// Prioritize by fee per kilobyte once the block is larger than
		// the priority size or there are no more high-priority
		// transactions.
		if !sortedByFee && (blockPlusTxWeight >= g.policy.BlockPrioritySize ||
			prioItem.priority <= MinHighPriority) {

			log.Tracef("Switching to sort by fees per "+
				"kilobyte blockSize %d >= BlockPrioritySize "+
				"%d || priority %.2f <= minHighPriority %.2f",
				blockPlusTxWeight, g.policy.BlockPrioritySize,
				prioItem.priority, MinHighPriority)

			sortedByFee = true
			priorityQueue.SetLessFunc(txPQByFee)

			// Put the transaction back into the priority queue and
			// skip it so it is re-priortized by fees if it won't
			// fit into the high-priority section or the priority
			// is too low.  Otherwise this transaction will be the
			// final one in the high-priority section, so just fall
			// though to the code below so it is added now.
			if blockPlusTxWeight > g.policy.BlockPrioritySize ||
				prioItem.priority < MinHighPriority {

				heap.Push(priorityQueue, prioItem)
				continue
			}
		}

		// Ensure the transaction inputs pass all of the necessary
		// preconditions before allowing it to be added to the block.
		_, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight,
			blockUtxos, g.chainParams)
		if err != nil {
			log.Tracef("Skipping tx %s due to error in "+
				"CheckTransactionInputs: %v", tx.Hash(), err)
			logSkippedDeps(tx, deps)
			continue
		}
		err = blockchain.ValidateTransactionScripts(tx, blockUtxos,
			txscript.StandardVerifyFlags, g.sigCache,
			g.hashCache)
		if err != nil {
			log.Tracef("Skipping tx %s due to error in "+
				"ValidateTransactionScripts: %v", tx.Hash(), err)
			logSkippedDeps(tx, deps)
			continue
		}

		// Spend the transaction inputs in the block utxo view and add
		// an entry for it to ensure any transactions which reference
		// this one have it available as an input and can ensure they
		// aren't double spending.
		spendTransaction(blockUtxos, tx, nextBlockHeight)

		// Add the transaction to the block, increment counters, and
		// save the fees and signature operation counts to the block
		// template.
		blockTxns = append(blockTxns, tx)
		blockWeight += txWeight
		blockSigOpCost += int64(sigOpCost)
		totalFees += prioItem.fee
		txFees = append(txFees, prioItem.fee)
		txSigOpCosts = append(txSigOpCosts, int64(sigOpCost))

		log.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)",
			prioItem.tx.Hash(), prioItem.priority, prioItem.feePerKB)

		// Add transactions which depend on this one (and also do not
		// have any other unsatisified dependencies) to the priority
		// queue.
		for _, item := range deps {
			// Add the transaction to the priority queue if there
			// are no more dependencies after this one.
			delete(item.dependsOn, *tx.Hash())
			if len(item.dependsOn) == 0 {
				heap.Push(priorityQueue, item)
			}
		}
	}

	// Now that the actual transactions have been selected, update the
	// block weight for the real transaction count and coinbase value with
	// the total fees accordingly.
	blockWeight -= wire.MaxVarIntPayload -
		(uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) *
			blockchain.WitnessScaleFactor)
	coinbaseTx.MsgTx().TxOut[0].Value += totalFees
	txFees[0] = -totalFees

	// If segwit is active and we included transactions with witness data,
	// then we'll need to include a commitment to the witness data in an
	// OP_RETURN output within the coinbase transaction.
	if witnessIncluded {
		// The witness of the coinbase transaction MUST be exactly 32-bytes
		// of all zeroes.
		var witnessNonce [blockchain.CoinbaseWitnessDataLen]byte
		coinbaseTx.MsgTx().TxIn[0].Witness = wire.TxWitness{witnessNonce[:]}

		// Next, obtain the merkle root of a tree which consists of the
		// wtxid of all transactions in the block. The coinbase
		// transaction will have a special wtxid of all zeroes.
		witnessMerkleTree := blockchain.BuildMerkleTreeStore(blockTxns,
			true)
		witnessMerkleRoot := witnessMerkleTree[len(witnessMerkleTree)-1]

		// The preimage to the witness commitment is:
		// witnessRoot || coinbaseWitness
		var witnessPreimage [64]byte
		copy(witnessPreimage[:32], witnessMerkleRoot[:])
		copy(witnessPreimage[32:], witnessNonce[:])

		// The witness commitment itself is the double-sha256 of the
		// witness preimage generated above. With the commitment
		// generated, the witness script for the output is: OP_RETURN
		// OP_DATA_36 {0xaa21a9ed || witnessCommitment}. The leading
		// prefix is refered to as the "witness magic bytes".
		witnessCommitment := chainhash.DoubleHashB(witnessPreimage[:])
		witnessScript := append(blockchain.WitnessMagicBytes, witnessCommitment...)

		// Finally, create the OP_RETURN carrying witness commitment
		// output as an additional output within the coinbase.
		commitmentOutput := &wire.TxOut{
			Value:    0,
			PkScript: witnessScript,
		}
		coinbaseTx.MsgTx().TxOut = append(coinbaseTx.MsgTx().TxOut,
			commitmentOutput)
	}

	// Calculate the required difficulty for the block.  The timestamp
	// is potentially adjusted to ensure it comes after the median time of
	// the last several blocks per the chain consensus rules.
	ts := medianAdjustedTime(best, g.timeSource)
	reqDifficulty, err := g.chain.CalcNextRequiredDifficulty(ts)
	if err != nil {
		return nil, err
	}

	// Calculate the next expected block version based on the state of the
	// rule change deployments.
	nextBlockVersion, err := g.chain.CalcNextBlockVersion()
	if err != nil {
		return nil, err
	}

	// Create a new block ready to be solved.
	merkles := blockchain.BuildMerkleTreeStore(blockTxns, false)
	var msgBlock wire.MsgBlock
	msgBlock.Header = wire.BlockHeader{
		Version:    nextBlockVersion,
		PrevBlock:  *prevHash,
		MerkleRoot: *merkles[len(merkles)-1],
		Timestamp:  ts,
		Bits:       reqDifficulty,
	}
	for _, tx := range blockTxns {
		if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil {
			return nil, err
		}
	}

	// Finally, perform a full check on the created block against the chain
	// consensus rules to ensure it properly connects to the current best
	// chain with no issues.
	block := btcutil.NewBlock(&msgBlock)
	block.SetHeight(nextBlockHeight)
	if err := g.chain.CheckConnectBlock(block); err != nil {
		return nil, err
	}

	log.Debugf("Created new block template (%d transactions, %d in "+
		"fees, %d signature operations cost, %d weight, target difficulty "+
		"%064x)", len(msgBlock.Transactions), totalFees, blockSigOpCost,
		blockWeight, blockchain.CompactToBig(msgBlock.Header.Bits))

	return &BlockTemplate{
		Block:           &msgBlock,
		Fees:            txFees,
		SigOpCosts:      txSigOpCosts,
		Height:          nextBlockHeight,
		ValidPayAddress: payToAddress != nil,
	}, nil
}
Exemplo n.º 6
0
// solveBlock attempts to find some combination of a nonce, extra nonce, and
// current timestamp which makes the passed block hash to a value less than the
// target difficulty.  The timestamp is updated periodically and the passed
// block is modified with all tweaks during this process.  This means that
// when the function returns true, the block is ready for submission.
//
// This function will return early with false when conditions that trigger a
// stale block such as a new block showing up or periodically when there are
// new transactions and enough time has elapsed without finding a solution.
func (m *CPUMiner) solveBlock(msgBlock *wire.MsgBlock, blockHeight int32,
	ticker *time.Ticker, quit chan struct{}) bool {

	// Choose a random extra nonce offset for this block template and
	// worker.
	enOffset, err := wire.RandomUint64()
	if err != nil {
		log.Errorf("Unexpected error while generating random "+
			"extra nonce offset: %v", err)
		enOffset = 0
	}

	// Create some convenience variables.
	header := &msgBlock.Header
	targetDifficulty := blockchain.CompactToBig(header.Bits)

	// Initial state.
	lastGenerated := time.Now()
	lastTxUpdate := m.g.TxSource().LastUpdated()
	hashesCompleted := uint64(0)

	// Note that the entire extra nonce range is iterated and the offset is
	// added relying on the fact that overflow will wrap around 0 as
	// provided by the Go spec.
	for extraNonce := uint64(0); extraNonce < maxExtraNonce; extraNonce++ {
		// Update the extra nonce in the block template with the
		// new value by regenerating the coinbase script and
		// setting the merkle root to the new value.
		m.g.UpdateExtraNonce(msgBlock, blockHeight, extraNonce+enOffset)

		// Search through the entire nonce range for a solution while
		// periodically checking for early quit and stale block
		// conditions along with updates to the speed monitor.
		for i := uint32(0); i <= maxNonce; i++ {
			select {
			case <-quit:
				return false

			case <-ticker.C:
				m.updateHashes <- hashesCompleted
				hashesCompleted = 0

				// The current block is stale if the best block
				// has changed.
				best := m.g.BestSnapshot()
				if !header.PrevBlock.IsEqual(best.Hash) {
					return false
				}

				// The current block is stale if the memory pool
				// has been updated since the block template was
				// generated and it has been at least one
				// minute.
				if lastTxUpdate != m.g.TxSource().LastUpdated() &&
					time.Now().After(lastGenerated.Add(time.Minute)) {

					return false
				}

				m.g.UpdateBlockTime(msgBlock)

			default:
				// Non-blocking select to fall through
			}

			// Update the nonce and hash the block header.  Each
			// hash is actually a double sha256 (two hashes), so
			// increment the number of hashes completed for each
			// attempt accordingly.
			header.Nonce = i
			hash := header.BlockHash()
			hashesCompleted += 2

			// The block is solved when the new block hash is less
			// than the target difficulty.  Yay!
			if blockchain.HashToBig(&hash).Cmp(targetDifficulty) <= 0 {
				m.updateHashes <- hashesCompleted
				return true
			}
		}
	}

	return false
}