Пример #1
0
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
	cnt := hi - lo
	if cnt == 0 {
		return p
	}
	if cnt < int64(4*gc.Widthptr) {
		for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
			p = appendpp(p, ppc64.AMOVD, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGSP, gc.Ctxt.FixedFrameSize()+frame+lo+i)
		}
	} else if cnt <= int64(128*gc.Widthptr) {
		p = appendpp(p, ppc64.AADD, obj.TYPE_CONST, 0, gc.Ctxt.FixedFrameSize()+frame+lo-8, obj.TYPE_REG, ppc64.REGRT1, 0)
		p.Reg = ppc64.REGSP
		p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
		f := gc.Sysfunc("duffzero")
		gc.Naddr(&p.To, f)
		gc.Afunclit(&p.To, f)
		p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
	} else {
		p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, gc.Ctxt.FixedFrameSize()+frame+lo-8, obj.TYPE_REG, ppc64.REGTMP, 0)
		p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT1, 0)
		p.Reg = ppc64.REGSP
		p = appendpp(p, ppc64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, ppc64.REGTMP, 0)
		p = appendpp(p, ppc64.AADD, obj.TYPE_REG, ppc64.REGTMP, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
		p.Reg = ppc64.REGRT1
		p = appendpp(p, ppc64.AMOVDU, obj.TYPE_REG, ppc64.REGZERO, 0, obj.TYPE_MEM, ppc64.REGRT1, int64(gc.Widthptr))
		p1 := p
		p = appendpp(p, ppc64.ACMP, obj.TYPE_REG, ppc64.REGRT1, 0, obj.TYPE_REG, ppc64.REGRT2, 0)
		p = appendpp(p, ppc64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
		gc.Patch(p, p1)
	}

	return p
}
Пример #2
0
func Prog(as int) *obj.Prog {
	var p *obj.Prog

	if as == obj.ADATA || as == obj.AGLOBL {
		if ddumped != 0 {
			Fatalf("already dumped data")
		}
		if dpc == nil {
			dpc = Ctxt.NewProg()
			dfirst = dpc
		}

		p = dpc
		dpc = Ctxt.NewProg()
		p.Link = dpc
	} else {
		p = Pc
		Pc = Ctxt.NewProg()
		Clearp(Pc)
		p.Link = Pc
	}

	if lineno == 0 {
		if Debug['K'] != 0 {
			Warn("prog: line 0")
		}
	}

	p.As = int16(as)
	p.Lineno = lineno
	return p
}
Пример #3
0
// Called after regopt and peep have run.
// Expand CHECKNIL pseudo-op into actual nil pointer check.
func expandchecks(firstp *obj.Prog) {
	var p1 *obj.Prog
	var p2 *obj.Prog

	for p := firstp; p != nil; p = p.Link {
		if p.As != obj.ACHECKNIL {
			continue
		}
		if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers
			gc.Warnl(int(p.Lineno), "generated nil check")
		}

		// check is
		//	CMP arg, $0
		//	JNE 2(PC) (likely)
		//	MOV AX, 0
		p1 = gc.Ctxt.NewProg()

		p2 = gc.Ctxt.NewProg()
		gc.Clearp(p1)
		gc.Clearp(p2)
		p1.Link = p2
		p2.Link = p.Link
		p.Link = p1
		p1.Lineno = p.Lineno
		p2.Lineno = p.Lineno
		p1.Pc = 9999
		p2.Pc = 9999
		p.As = int16(cmpptr)
		p.To.Type = obj.TYPE_CONST
		p.To.Offset = 0
		p1.As = x86.AJNE
		p1.From.Type = obj.TYPE_CONST
		p1.From.Offset = 1 // likely
		p1.To.Type = obj.TYPE_BRANCH
		p1.To.Val = p2.Link

		// crash by write to memory address 0.
		// if possible, since we know arg is 0, use 0(arg),
		// which will be shorter to encode than plain 0.
		p2.As = x86.AMOVL

		p2.From.Type = obj.TYPE_REG
		p2.From.Reg = x86.REG_AX
		if regtyp(&p.From) {
			p2.To.Type = obj.TYPE_MEM
			p2.To.Reg = p.From.Reg
		} else {
			p2.To.Type = obj.TYPE_MEM
			p2.To.Reg = x86.REG_NONE
		}

		p2.To.Offset = 0
	}
}
Пример #4
0
/*
 * insert n into reg slot of p
 */
func raddr(n *gc.Node, p *obj.Prog) {
	var a obj.Addr
	gc.Naddr(&a, n)
	if a.Type != obj.TYPE_REG {
		if n != nil {
			gc.Fatalf("bad in raddr: %v", gc.Oconv(int(n.Op), 0))
		} else {
			gc.Fatalf("bad in raddr: <null>")
		}
		p.Reg = 0
	} else {
		p.Reg = a.Reg
	}
}
Пример #5
0
/*
 * generate high multiply
 *  res = (nl * nr) >> wordsize
 */
func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) {
	if nl.Ullman < nr.Ullman {
		nl, nr = nr, nl
	}

	t := nl.Type
	w := int(t.Width * 8)
	var n1 gc.Node
	gc.Regalloc(&n1, t, res)
	gc.Cgen(nl, &n1)
	var n2 gc.Node
	gc.Regalloc(&n2, t, nil)
	gc.Cgen(nr, &n2)
	switch gc.Simtype[t.Etype] {
	case gc.TINT8,
		gc.TINT16:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1)

	case gc.TUINT8,
		gc.TUINT16:
		gins(optoas(gc.OMUL, t), &n2, &n1)
		gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1)

		// perform a long multiplication.
	case gc.TINT32,
		gc.TUINT32:
		var p *obj.Prog
		if gc.Issigned[t.Etype] {
			p = gins(arm.AMULL, &n2, nil)
		} else {
			p = gins(arm.AMULLU, &n2, nil)
		}

		// n2 * n1 -> (n1 n2)
		p.Reg = n1.Reg

		p.To.Type = obj.TYPE_REGREG
		p.To.Reg = n1.Reg
		p.To.Offset = int64(n2.Reg)

	default:
		gc.Fatalf("cgen_hmul %v", t)
	}

	gc.Cgen(&n1, res)
	gc.Regfree(&n1)
	gc.Regfree(&n2)
}
Пример #6
0
// ARMConditionCodes handles the special condition code situation for the ARM.
// It returns a boolean to indicate success; failure means cond was unrecognized.
func ARMConditionCodes(prog *obj.Prog, cond string) bool {
	if cond == "" {
		return true
	}
	bits, ok := ParseARMCondition(cond)
	if !ok {
		return false
	}
	/* hack to make B.NE etc. work: turn it into the corresponding conditional */
	if prog.As == arm.AB {
		prog.As = int16(bcode[(bits^arm.C_SCOND_XOR)&0xf])
		bits = (bits &^ 0xf) | arm.C_SCOND_NONE
	}
	prog.Scond = bits
	return true
}
Пример #7
0
func rewriteToPcrel(ctxt *obj.Link, p *obj.Prog) {
	// RegTo2 is set on the instructions we insert here so they don't get
	// processed twice.
	if p.RegTo2 != 0 {
		return
	}
	if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP {
		return
	}
	// Any Prog (aside from the above special cases) with an Addr with Name ==
	// NAME_EXTERN, NAME_STATIC or NAME_GOTREF has a CALL __x86.get_pc_thunk.cx
	// inserted before it.
	isName := func(a *obj.Addr) bool {
		if a.Sym == nil || (a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR) || a.Reg != 0 {
			return false
		}
		if a.Sym.Type == obj.STLSBSS {
			return false
		}
		return a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_STATIC || a.Name == obj.NAME_GOTREF
	}

	if isName(&p.From) && p.From.Type == obj.TYPE_ADDR {
		// Handle things like "MOVL $sym, (SP)" or "PUSHL $sym" by rewriting
		// to "MOVL $sym, CX; MOVL CX, (SP)" or "MOVL $sym, CX; PUSHL CX"
		// respectively.
		if p.To.Type != obj.TYPE_REG {
			q := obj.Appendp(ctxt, p)
			q.As = p.As
			q.From.Type = obj.TYPE_REG
			q.From.Reg = REG_CX
			q.To = p.To
			p.As = AMOVL
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REG_CX
			p.To.Sym = nil
			p.To.Name = obj.NAME_NONE
		}
	}

	if !isName(&p.From) && !isName(&p.To) && (p.From3 == nil || !isName(p.From3)) {
		return
	}
	q := obj.Appendp(ctxt, p)
	q.RegTo2 = 1
	r := obj.Appendp(ctxt, q)
	r.RegTo2 = 1
	q.As = obj.ACALL
	q.To.Sym = obj.Linklookup(ctxt, "__x86.get_pc_thunk.cx", 0)
	q.To.Type = obj.TYPE_MEM
	q.To.Name = obj.NAME_EXTERN
	q.To.Sym.Local = true
	r.As = p.As
	r.Scond = p.Scond
	r.From = p.From
	r.From3 = p.From3
	r.Reg = p.Reg
	r.To = p.To
	obj.Nopout(p)
}
Пример #8
0
func (p *Parser) branch(jmp, target *obj.Prog) {
	jmp.To = obj.Addr{
		Type:  obj.TYPE_BRANCH,
		Index: 0,
	}
	jmp.To.Val = target
}
Пример #9
0
// copysub1 replaces v with s in p1->reg if f!=0 or indicates if it could if f==0.
// Returns 1 on failure to substitute (it always succeeds on mips).
func copysub1(p1 *obj.Prog, v *obj.Addr, s *obj.Addr, f int) int {
	if f != 0 {
		if copyau1(p1, v) {
			p1.Reg = s.Reg
		}
	}
	return 0
}
Пример #10
0
func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
	if oprange[AOR&obj.AMask].start == nil {
		buildop(ctxt)
	}

	a1 := int(p.Optab)
	if a1 != 0 {
		return &optab[a1-1:][0]
	}
	a1 = int(p.From.Class)
	if a1 == 0 {
		a1 = aclass(ctxt, &p.From) + 1
		p.From.Class = int8(a1)
	}

	a1--
	a3 := int(p.To.Class)
	if a3 == 0 {
		a3 = aclass(ctxt, &p.To) + 1
		p.To.Class = int8(a3)
	}

	a3--
	a2 := C_NONE
	if p.Reg != 0 {
		a2 = C_REG
	}

	//print("oplook %P %d %d %d\n", p, a1, a2, a3);
	r0 := p.As & obj.AMask

	o := oprange[r0].start
	if o == nil {
		o = oprange[r0].stop /* just generate an error */
	}
	e := oprange[r0].stop
	c1 := xcmp[a1][:]
	c3 := xcmp[a3][:]
	for ; -cap(o) < -cap(e); o = o[1:] {
		if int(o[0].a2) == a2 {
			if c1[o[0].a1] != 0 {
				if c3[o[0].a3] != 0 {
					p.Optab = uint16((-cap(o) + cap(optab)) + 1)
					return &o[0]
				}
			}
		}
	}

	ctxt.Diag("illegal combination %v %v %v %v", obj.Aconv(int(p.As)), DRconv(a1), DRconv(a2), DRconv(a3))
	prasm(p)
	if o == nil {
		o = optab
	}
	return &o[0]
}
Пример #11
0
// ARM64Suffix handles the special suffix for the ARM64.
// It returns a boolean to indicate success; failure means
// cond was unrecognized.
func ARM64Suffix(prog *obj.Prog, cond string) bool {
	if cond == "" {
		return true
	}
	bits, ok := ParseARM64Suffix(cond)
	if !ok {
		return false
	}
	prog.Scond = bits
	return true
}
Пример #12
0
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
	cnt := hi - lo
	if cnt == 0 {
		return p
	}
	if cnt < int64(4*gc.Widthptr) {
		for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
			p = appendpp(p, mips.AMOVV, obj.TYPE_REG, mips.REGZERO, 0, obj.TYPE_MEM, mips.REGSP, 8+frame+lo+i)
		}
		// TODO(dfc): https://golang.org/issue/12108
		// If DUFFZERO is used inside a tail call (see genwrapper) it will
		// overwrite the link register.
	} else if false && cnt <= int64(128*gc.Widthptr) {
		p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, mips.REGRT1, 0)
		p.Reg = mips.REGSP
		p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
		f := gc.Sysfunc("duffzero")
		gc.Naddr(&p.To, f)
		gc.Afunclit(&p.To, f)
		p.To.Offset = 8 * (128 - cnt/int64(gc.Widthptr))
	} else {
		//	ADDV	$(8+frame+lo-8), SP, r1
		//	ADDV	$cnt, r1, r2
		// loop:
		//	MOVV	R0, (Widthptr)r1
		//	ADDV	$Widthptr, r1
		//	BNE		r1, r2, loop
		p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, mips.REGRT1, 0)
		p.Reg = mips.REGSP
		p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, mips.REGRT2, 0)
		p.Reg = mips.REGRT1
		p = appendpp(p, mips.AMOVV, obj.TYPE_REG, mips.REGZERO, 0, obj.TYPE_MEM, mips.REGRT1, int64(gc.Widthptr))
		p1 := p
		p = appendpp(p, mips.AADDV, obj.TYPE_CONST, 0, int64(gc.Widthptr), obj.TYPE_REG, mips.REGRT1, 0)
		p = appendpp(p, mips.ABNE, obj.TYPE_REG, mips.REGRT1, 0, obj.TYPE_BRANCH, 0, 0)
		p.Reg = mips.REGRT2
		gc.Patch(p, p1)
	}

	return p
}
Пример #13
0
// Called after regopt and peep have run.
// Expand CHECKNIL pseudo-op into actual nil pointer check.
func expandchecks(firstp *obj.Prog) {
	var p1 *obj.Prog

	for p := (*obj.Prog)(firstp); p != nil; p = p.Link {
		if gc.Debug_checknil != 0 && gc.Ctxt.Debugvlog != 0 {
			fmt.Printf("expandchecks: %v\n", p)
		}
		if p.As != obj.ACHECKNIL {
			continue
		}
		if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers
			gc.Warnl(int(p.Lineno), "generated nil check")
		}
		if p.From.Type != obj.TYPE_REG {
			gc.Fatalf("invalid nil check %v\n", p)
		}

		// check is
		//	CBNZ arg, 2(PC)
		//	MOVD ZR, 0(arg)
		p1 = gc.Ctxt.NewProg()
		gc.Clearp(p1)
		p1.Link = p.Link
		p.Link = p1
		p1.Lineno = p.Lineno
		p1.Pc = 9999

		p.As = arm64.ACBNZ
		p.To.Type = obj.TYPE_BRANCH
		p.To.Val = p1.Link

		// crash by write to memory address 0.
		p1.As = arm64.AMOVD
		p1.From.Type = obj.TYPE_REG
		p1.From.Reg = arm64.REGZERO
		p1.To.Type = obj.TYPE_MEM
		p1.To.Reg = p.From.Reg
		p1.To.Offset = 0
	}
}
Пример #14
0
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64, r0 *uint32) *obj.Prog {
	cnt := hi - lo
	if cnt == 0 {
		return p
	}
	if *r0 == 0 {
		p = appendpp(p, arm.AMOVW, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, arm.REG_R0, 0)
		*r0 = 1
	}

	if cnt < int64(4*gc.Widthptr) {
		for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
			p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REGSP, int32(4+frame+lo+i))
		}
	} else if !gc.Nacl && (cnt <= int64(128*gc.Widthptr)) {
		p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0)
		p.Reg = arm.REGSP
		p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
		f := gc.Sysfunc("duffzero")
		gc.Naddr(&p.To, f)
		gc.Afunclit(&p.To, f)
		p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
	} else {
		p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(4+frame+lo), obj.TYPE_REG, arm.REG_R1, 0)
		p.Reg = arm.REGSP
		p = appendpp(p, arm.AADD, obj.TYPE_CONST, 0, int32(cnt), obj.TYPE_REG, arm.REG_R2, 0)
		p.Reg = arm.REG_R1
		p = appendpp(p, arm.AMOVW, obj.TYPE_REG, arm.REG_R0, 0, obj.TYPE_MEM, arm.REG_R1, 4)
		p1 := p
		p.Scond |= arm.C_PBIT
		p = appendpp(p, arm.ACMP, obj.TYPE_REG, arm.REG_R1, 0, obj.TYPE_NONE, 0, 0)
		p.Reg = arm.REG_R2
		p = appendpp(p, arm.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
		gc.Patch(p, p1)
	}

	return p
}
Пример #15
0
func zerorange(p *obj.Prog, frame int64, lo int64, hi int64) *obj.Prog {
	cnt := hi - lo
	if cnt == 0 {
		return p
	}
	if cnt < int64(4*gc.Widthptr) {
		for i := int64(0); i < cnt; i += int64(gc.Widthptr) {
			p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGZERO, 0, obj.TYPE_MEM, arm64.REGSP, 8+frame+lo+i)
		}
	} else if cnt <= int64(128*gc.Widthptr) && !darwin { // darwin ld64 cannot handle BR26 reloc with non-zero addend
		p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGSP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
		p = appendpp(p, arm64.AADD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, arm64.REGRT1, 0)
		p.Reg = arm64.REGRT1
		p = appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_MEM, 0, 0)
		f := gc.Sysfunc("duffzero")
		gc.Naddr(&p.To, f)
		gc.Afunclit(&p.To, f)
		p.To.Offset = 4 * (128 - cnt/int64(gc.Widthptr))
	} else {
		p = appendpp(p, arm64.AMOVD, obj.TYPE_CONST, 0, 8+frame+lo-8, obj.TYPE_REG, arm64.REGTMP, 0)
		p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGSP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
		p = appendpp(p, arm64.AADD, obj.TYPE_REG, arm64.REGTMP, 0, obj.TYPE_REG, arm64.REGRT1, 0)
		p.Reg = arm64.REGRT1
		p = appendpp(p, arm64.AMOVD, obj.TYPE_CONST, 0, cnt, obj.TYPE_REG, arm64.REGTMP, 0)
		p = appendpp(p, arm64.AADD, obj.TYPE_REG, arm64.REGTMP, 0, obj.TYPE_REG, arm64.REGRT2, 0)
		p.Reg = arm64.REGRT1
		p = appendpp(p, arm64.AMOVD, obj.TYPE_REG, arm64.REGZERO, 0, obj.TYPE_MEM, arm64.REGRT1, int64(gc.Widthptr))
		p.Scond = arm64.C_XPRE
		p1 := p
		p = appendpp(p, arm64.ACMP, obj.TYPE_REG, arm64.REGRT1, 0, obj.TYPE_NONE, 0, 0)
		p.Reg = arm64.REGRT2
		p = appendpp(p, arm64.ABNE, obj.TYPE_NONE, 0, 0, obj.TYPE_BRANCH, 0, 0)
		gc.Patch(p, p1)
	}

	return p
}
Пример #16
0
/*
 * The idea is to remove redundant constants.
 *	$c1->v1
 *	($c1->v2 s/$c1/v1)*
 *	set v1  return
 * The v1->v2 should be eliminated by copy propagation.
 */
func constprop(c1 *obj.Addr, v1 *obj.Addr, r *gc.Flow) {
	if gc.Debug['P'] != 0 {
		fmt.Printf("constprop %v->%v\n", gc.Ctxt.Dconv(c1), gc.Ctxt.Dconv(v1))
	}
	var p *obj.Prog
	for ; r != nil; r = r.S1 {
		p = r.Prog
		if gc.Debug['P'] != 0 {
			fmt.Printf("%v", p)
		}
		if gc.Uniqp(r) == nil {
			if gc.Debug['P'] != 0 {
				fmt.Printf("; merge; return\n")
			}
			return
		}

		if p.As == arm.AMOVW && copyas(&p.From, c1) {
			if gc.Debug['P'] != 0 {
				fmt.Printf("; sub%v/%v", gc.Ctxt.Dconv(&p.From), gc.Ctxt.Dconv(v1))
			}
			p.From = *v1
		} else if copyu(p, v1, nil) > 1 {
			if gc.Debug['P'] != 0 {
				fmt.Printf("; %vset; return\n", gc.Ctxt.Dconv(v1))
			}
			return
		}

		if gc.Debug['P'] != 0 {
			fmt.Printf("\n")
		}
		if r.S2 != nil {
			constprop(c1, v1, r.S2)
		}
	}
}
Пример #17
0
func appendpp(p *obj.Prog, as int, ftype int, freg int, foffset int64, ttype int, treg int, toffset int64) *obj.Prog {
	q := gc.Ctxt.NewProg()
	gc.Clearp(q)
	q.As = int16(as)
	q.Lineno = p.Lineno
	q.From.Type = int16(ftype)
	q.From.Reg = int16(freg)
	q.From.Offset = foffset
	q.To.Type = int16(ttype)
	q.To.Reg = int16(treg)
	q.To.Offset = toffset
	q.Link = p.Link
	p.Link = q
	return q
}
Пример #18
0
func addnop(ctxt *obj.Link, p *obj.Prog) {
	q := ctxt.NewProg()
	// we want to use the canonical NOP (SLL $0,R0,R0) here,
	// however, as the assembler will always replace $0
	// as R0, we have to resort to manually encode the SLL
	// instruction as WORD $0.
	q.As = AWORD
	q.Lineno = p.Lineno
	q.From.Type = obj.TYPE_CONST
	q.From.Name = obj.NAME_NONE
	q.From.Offset = 0

	q.Link = p.Link
	p.Link = q
}
Пример #19
0
// append adds the Prog to the end of the program-thus-far.
// If doLabel is set, it also defines the labels collect for this Prog.
func (p *Parser) append(prog *obj.Prog, cond string, doLabel bool) {
	if cond != "" {
		switch p.arch.Thechar {
		case '5':
			if !arch.ARMConditionCodes(prog, cond) {
				p.errorf("unrecognized condition code .%q", cond)
				return
			}

		case '7':
			if !arch.ARM64Suffix(prog, cond) {
				p.errorf("unrecognized suffix .%q", cond)
				return
			}

		default:
			p.errorf("unrecognized suffix .%q", cond)
			return
		}
	}
	if p.firstProg == nil {
		p.firstProg = prog
	} else {
		p.lastProg.Link = prog
	}
	p.lastProg = prog
	if doLabel {
		p.pc++
		for _, label := range p.pendingLabels {
			if p.labels[label] != nil {
				p.errorf("label %q multiply defined", label)
				return
			}
			p.labels[label] = prog
		}
		p.pendingLabels = p.pendingLabels[0:0]
	}
	prog.Pc = int64(p.pc)
	if *flags.Debug {
		fmt.Println(p.histLineNum, prog)
	}
	if testOut != nil {
		fmt.Fprintln(testOut, prog)
	}
}
Пример #20
0
// Called after regopt and peep have run.
// Expand CHECKNIL pseudo-op into actual nil pointer check.
func expandchecks(firstp *obj.Prog) {
	var reg int
	var p1 *obj.Prog

	for p := firstp; p != nil; p = p.Link {
		if p.As != obj.ACHECKNIL {
			continue
		}
		if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers
			gc.Warnl(int(p.Lineno), "generated nil check")
		}
		if p.From.Type != obj.TYPE_REG {
			gc.Fatalf("invalid nil check %v", p)
		}
		reg = int(p.From.Reg)

		// check is
		//	CMP arg, $0
		//	MOV.EQ arg, 0(arg)
		p1 = gc.Ctxt.NewProg()

		gc.Clearp(p1)
		p1.Link = p.Link
		p.Link = p1
		p1.Lineno = p.Lineno
		p1.Pc = 9999
		p1.As = arm.AMOVW
		p1.From.Type = obj.TYPE_REG
		p1.From.Reg = int16(reg)
		p1.To.Type = obj.TYPE_MEM
		p1.To.Reg = int16(reg)
		p1.To.Offset = 0
		p1.Scond = arm.C_SCOND_EQ
		p.As = arm.ACMP
		p.From.Type = obj.TYPE_CONST
		p.From.Reg = 0
		p.From.Offset = 0
		p.Reg = int16(reg)
	}
}
Пример #21
0
func progedit(ctxt *obj.Link, p *obj.Prog) {
	p.From.Class = 0
	p.To.Class = 0

	// Rewrite B/BL to symbol as TYPE_BRANCH.
	switch p.As {
	case AB,
		ABL,
		obj.ADUFFZERO,
		obj.ADUFFCOPY:
		if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil {
			p.To.Type = obj.TYPE_BRANCH
		}
	}

	// Replace TLS register fetches on older ARM procesors.
	switch p.As {
	// Treat MRC 15, 0, <reg>, C13, C0, 3 specially.
	case AMRC:
		if p.To.Offset&0xffff0fff == 0xee1d0f70 {
			// Because the instruction might be rewriten to a BL which returns in R0
			// the register must be zero.
			if p.To.Offset&0xf000 != 0 {
				ctxt.Diag("%v: TLS MRC instruction must write to R0 as it might get translated into a BL instruction", p.Line())
			}

			if ctxt.Goarm < 7 {
				// Replace it with BL runtime.read_tls_fallback(SB) for ARM CPUs that lack the tls extension.
				if progedit_tlsfallback == nil {
					progedit_tlsfallback = obj.Linklookup(ctxt, "runtime.read_tls_fallback", 0)
				}

				// MOVW	LR, R11
				p.As = AMOVW

				p.From.Type = obj.TYPE_REG
				p.From.Reg = REGLINK
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REGTMP

				// BL	runtime.read_tls_fallback(SB)
				p = obj.Appendp(ctxt, p)

				p.As = ABL
				p.To.Type = obj.TYPE_BRANCH
				p.To.Sym = progedit_tlsfallback
				p.To.Offset = 0

				// MOVW	R11, LR
				p = obj.Appendp(ctxt, p)

				p.As = AMOVW
				p.From.Type = obj.TYPE_REG
				p.From.Reg = REGTMP
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REGLINK
				break
			}
		}

		// Otherwise, MRC/MCR instructions need no further treatment.
		p.As = AWORD
	}

	// Rewrite float constants to values stored in memory.
	switch p.As {
	case AMOVF:
		if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) {
			f32 := float32(p.From.Val.(float64))
			i32 := math.Float32bits(f32)
			literal := fmt.Sprintf("$f32.%08x", i32)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}

	case AMOVD:
		if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) {
			i64 := math.Float64bits(p.From.Val.(float64))
			literal := fmt.Sprintf("$f64.%016x", i64)
			s := obj.Linklookup(ctxt, literal, 0)
			p.From.Type = obj.TYPE_MEM
			p.From.Sym = s
			p.From.Name = obj.NAME_EXTERN
			p.From.Offset = 0
		}
	}

	if ctxt.Flag_dynlink {
		rewriteToUseGot(ctxt, p)
	}
}
Пример #22
0
func preprocess(ctxt *obj.Link, cursym *obj.LSym) {
	autosize := int32(0)

	ctxt.Cursym = cursym

	if cursym.Text == nil || cursym.Text.Link == nil {
		return
	}

	softfloat(ctxt, cursym)

	p := cursym.Text
	autoffset := int32(p.To.Offset)
	if autoffset < 0 {
		autoffset = 0
	}
	cursym.Locals = autoffset
	cursym.Args = p.To.Val.(int32)

	/*
	 * find leaf subroutines
	 * strip NOPs
	 * expand RET
	 * expand BECOME pseudo
	 */
	var q1 *obj.Prog
	var q *obj.Prog
	for p := cursym.Text; p != nil; p = p.Link {
		switch p.As {
		case obj.ATEXT:
			p.Mark |= LEAF

		case obj.ARET:
			break

		case ADIV, ADIVU, AMOD, AMODU:
			q = p
			if ctxt.Sym_div == nil {
				initdiv(ctxt)
			}
			cursym.Text.Mark &^= LEAF
			continue

		case obj.ANOP:
			q1 = p.Link
			q.Link = q1 /* q is non-nop */
			if q1 != nil {
				q1.Mark |= p.Mark
			}
			continue

		case ABL,
			ABX,
			obj.ADUFFZERO,
			obj.ADUFFCOPY:
			cursym.Text.Mark &^= LEAF
			fallthrough

		case AB,
			ABEQ,
			ABNE,
			ABCS,
			ABHS,
			ABCC,
			ABLO,
			ABMI,
			ABPL,
			ABVS,
			ABVC,
			ABHI,
			ABLS,
			ABGE,
			ABLT,
			ABGT,
			ABLE:
			q1 = p.Pcond
			if q1 != nil {
				for q1.As == obj.ANOP {
					q1 = q1.Link
					p.Pcond = q1
				}
			}
		}

		q = p
	}

	var o int
	var p1 *obj.Prog
	var p2 *obj.Prog
	var q2 *obj.Prog
	for p := cursym.Text; p != nil; p = p.Link {
		o = int(p.As)
		switch o {
		case obj.ATEXT:
			autosize = int32(p.To.Offset + 4)
			if autosize <= 4 {
				if cursym.Text.Mark&LEAF != 0 {
					p.To.Offset = -4
					autosize = 0
				}
			}

			if autosize == 0 && cursym.Text.Mark&LEAF == 0 {
				if ctxt.Debugvlog != 0 {
					fmt.Fprintf(ctxt.Bso, "save suppressed in: %s\n", cursym.Name)
					ctxt.Bso.Flush()
				}

				cursym.Text.Mark |= LEAF
			}

			if cursym.Text.Mark&LEAF != 0 {
				cursym.Leaf = 1
				if autosize == 0 {
					break
				}
			}

			if p.From3.Offset&obj.NOSPLIT == 0 {
				p = stacksplit(ctxt, p, autosize) // emit split check
			}

			// MOVW.W		R14,$-autosize(SP)
			p = obj.Appendp(ctxt, p)

			p.As = AMOVW
			p.Scond |= C_WBIT
			p.From.Type = obj.TYPE_REG
			p.From.Reg = REGLINK
			p.To.Type = obj.TYPE_MEM
			p.To.Offset = int64(-autosize)
			p.To.Reg = REGSP
			p.Spadj = autosize

			if cursym.Text.From3.Offset&obj.WRAPPER != 0 {
				// if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame
				//
				//	MOVW g_panic(g), R1
				//	CMP $0, R1
				//	B.EQ end
				//	MOVW panic_argp(R1), R2
				//	ADD $(autosize+4), R13, R3
				//	CMP R2, R3
				//	B.NE end
				//	ADD $4, R13, R4
				//	MOVW R4, panic_argp(R1)
				// end:
				//	NOP
				//
				// The NOP is needed to give the jumps somewhere to land.
				// It is a liblink NOP, not an ARM NOP: it encodes to 0 instruction bytes.

				p = obj.Appendp(ctxt, p)

				p.As = AMOVW
				p.From.Type = obj.TYPE_MEM
				p.From.Reg = REGG
				p.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REG_R1

				p = obj.Appendp(ctxt, p)
				p.As = ACMP
				p.From.Type = obj.TYPE_CONST
				p.From.Offset = 0
				p.Reg = REG_R1

				p = obj.Appendp(ctxt, p)
				p.As = ABEQ
				p.To.Type = obj.TYPE_BRANCH
				p1 = p

				p = obj.Appendp(ctxt, p)
				p.As = AMOVW
				p.From.Type = obj.TYPE_MEM
				p.From.Reg = REG_R1
				p.From.Offset = 0 // Panic.argp
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REG_R2

				p = obj.Appendp(ctxt, p)
				p.As = AADD
				p.From.Type = obj.TYPE_CONST
				p.From.Offset = int64(autosize) + 4
				p.Reg = REG_R13
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REG_R3

				p = obj.Appendp(ctxt, p)
				p.As = ACMP
				p.From.Type = obj.TYPE_REG
				p.From.Reg = REG_R2
				p.Reg = REG_R3

				p = obj.Appendp(ctxt, p)
				p.As = ABNE
				p.To.Type = obj.TYPE_BRANCH
				p2 = p

				p = obj.Appendp(ctxt, p)
				p.As = AADD
				p.From.Type = obj.TYPE_CONST
				p.From.Offset = 4
				p.Reg = REG_R13
				p.To.Type = obj.TYPE_REG
				p.To.Reg = REG_R4

				p = obj.Appendp(ctxt, p)
				p.As = AMOVW
				p.From.Type = obj.TYPE_REG
				p.From.Reg = REG_R4
				p.To.Type = obj.TYPE_MEM
				p.To.Reg = REG_R1
				p.To.Offset = 0 // Panic.argp

				p = obj.Appendp(ctxt, p)

				p.As = obj.ANOP
				p1.Pcond = p
				p2.Pcond = p
			}

		case obj.ARET:
			obj.Nocache(p)
			if cursym.Text.Mark&LEAF != 0 {
				if autosize == 0 {
					p.As = AB
					p.From = obj.Addr{}
					if p.To.Sym != nil { // retjmp
						p.To.Type = obj.TYPE_BRANCH
					} else {
						p.To.Type = obj.TYPE_MEM
						p.To.Offset = 0
						p.To.Reg = REGLINK
					}

					break
				}
			}

			p.As = AMOVW
			p.Scond |= C_PBIT
			p.From.Type = obj.TYPE_MEM
			p.From.Offset = int64(autosize)
			p.From.Reg = REGSP
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REGPC

			// If there are instructions following
			// this ARET, they come from a branch
			// with the same stackframe, so no spadj.
			if p.To.Sym != nil { // retjmp
				p.To.Reg = REGLINK
				q2 = obj.Appendp(ctxt, p)
				q2.As = AB
				q2.To.Type = obj.TYPE_BRANCH
				q2.To.Sym = p.To.Sym
				p.To.Sym = nil
				p = q2
			}

		case AADD:
			if p.From.Type == obj.TYPE_CONST && p.From.Reg == 0 && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP {
				p.Spadj = int32(-p.From.Offset)
			}

		case ASUB:
			if p.From.Type == obj.TYPE_CONST && p.From.Reg == 0 && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP {
				p.Spadj = int32(p.From.Offset)
			}

		case ADIV, ADIVU, AMOD, AMODU:
			if cursym.Text.From3.Offset&obj.NOSPLIT != 0 {
				ctxt.Diag("cannot divide in NOSPLIT function")
			}
			if ctxt.Debugdivmod != 0 {
				break
			}
			if p.From.Type != obj.TYPE_REG {
				break
			}
			if p.To.Type != obj.TYPE_REG {
				break
			}

			// Make copy because we overwrite p below.
			q1 := *p
			if q1.Reg == REGTMP || q1.Reg == 0 && q1.To.Reg == REGTMP {
				ctxt.Diag("div already using REGTMP: %v", p)
			}

			/* MOV m(g),REGTMP */
			p.As = AMOVW
			p.Lineno = q1.Lineno
			p.From.Type = obj.TYPE_MEM
			p.From.Reg = REGG
			p.From.Offset = 6 * 4 // offset of g.m
			p.Reg = 0
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REGTMP

			/* MOV a,m_divmod(REGTMP) */
			p = obj.Appendp(ctxt, p)
			p.As = AMOVW
			p.Lineno = q1.Lineno
			p.From.Type = obj.TYPE_REG
			p.From.Reg = q1.From.Reg
			p.To.Type = obj.TYPE_MEM
			p.To.Reg = REGTMP
			p.To.Offset = 8 * 4 // offset of m.divmod

			/* MOV b,REGTMP */
			p = obj.Appendp(ctxt, p)
			p.As = AMOVW
			p.Lineno = q1.Lineno
			p.From.Type = obj.TYPE_REG
			p.From.Reg = q1.Reg
			if q1.Reg == 0 {
				p.From.Reg = q1.To.Reg
			}
			p.To.Type = obj.TYPE_REG
			p.To.Reg = REGTMP
			p.To.Offset = 0

			/* CALL appropriate */
			p = obj.Appendp(ctxt, p)
			p.As = ABL
			p.Lineno = q1.Lineno
			p.To.Type = obj.TYPE_BRANCH
			switch o {
			case ADIV:
				p.To.Sym = ctxt.Sym_div

			case ADIVU:
				p.To.Sym = ctxt.Sym_divu

			case AMOD:
				p.To.Sym = ctxt.Sym_mod

			case AMODU:
				p.To.Sym = ctxt.Sym_modu
			}

			/* MOV REGTMP, b */
			p = obj.Appendp(ctxt, p)
			p.As = AMOVW
			p.Lineno = q1.Lineno
			p.From.Type = obj.TYPE_REG
			p.From.Reg = REGTMP
			p.From.Offset = 0
			p.To.Type = obj.TYPE_REG
			p.To.Reg = q1.To.Reg

		case AMOVW:
			if (p.Scond&C_WBIT != 0) && p.To.Type == obj.TYPE_MEM && p.To.Reg == REGSP {
				p.Spadj = int32(-p.To.Offset)
			}
			if (p.Scond&C_PBIT != 0) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REGSP && p.To.Reg != REGPC {
				p.Spadj = int32(-p.From.Offset)
			}
			if p.From.Type == obj.TYPE_ADDR && p.From.Reg == REGSP && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP {
				p.Spadj = int32(-p.From.Offset)
			}
		}
	}
}
Пример #23
0
// Rewrite p, if necessary, to access global data via the global offset table.
func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) {
	if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO {
		//     ADUFFxxx $offset
		// becomes
		//     MOVW runtime.duffxxx@GOT, R9
		//     ADD $offset, R9
		//     CALL (R9)
		var sym *obj.LSym
		if p.As == obj.ADUFFZERO {
			sym = obj.Linklookup(ctxt, "runtime.duffzero", 0)
		} else {
			sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0)
		}
		offset := p.To.Offset
		p.As = AMOVW
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		p.From.Sym = sym
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R9
		p.To.Name = obj.NAME_NONE
		p.To.Offset = 0
		p.To.Sym = nil
		p1 := obj.Appendp(ctxt, p)
		p1.As = AADD
		p1.From.Type = obj.TYPE_CONST
		p1.From.Offset = offset
		p1.To.Type = obj.TYPE_REG
		p1.To.Reg = REG_R9
		p2 := obj.Appendp(ctxt, p1)
		p2.As = obj.ACALL
		p2.To.Type = obj.TYPE_MEM
		p2.To.Reg = REG_R9
		return
	}

	// We only care about global data: NAME_EXTERN means a global
	// symbol in the Go sense, and p.Sym.Local is true for a few
	// internally defined symbols.
	if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		// MOVW $sym, Rx becomes MOVW sym@GOT, Rx
		// MOVW $sym+<off>, Rx becomes MOVW sym@GOT, Rx; ADD <off>, Rx
		if p.As != AMOVW {
			ctxt.Diag("do not know how to handle TYPE_ADDR in %v with -dynlink", p)
		}
		if p.To.Type != obj.TYPE_REG {
			ctxt.Diag("do not know how to handle LEAQ-type insn to non-register in %v with -dynlink", p)
		}
		p.From.Type = obj.TYPE_MEM
		p.From.Name = obj.NAME_GOTREF
		if p.From.Offset != 0 {
			q := obj.Appendp(ctxt, p)
			q.As = AADD
			q.From.Type = obj.TYPE_CONST
			q.From.Offset = p.From.Offset
			q.To = p.To
			p.From.Offset = 0
		}
	}
	if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	var source *obj.Addr
	// MOVx sym, Ry becomes MOVW sym@GOT, R9; MOVx (R9), Ry
	// MOVx Ry, sym becomes MOVW sym@GOT, R9; MOVx Ry, (R9)
	// An addition may be inserted between the two MOVs if there is an offset.
	if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local {
		if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
			ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p)
		}
		source = &p.From
	} else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local {
		source = &p.To
	} else {
		return
	}
	if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP {
		return
	}
	if source.Sym.Type == obj.STLSBSS {
		return
	}
	if source.Type != obj.TYPE_MEM {
		ctxt.Diag("don't know how to handle %v with -dynlink", p)
	}
	p1 := obj.Appendp(ctxt, p)
	p2 := obj.Appendp(ctxt, p1)

	p1.As = AMOVW
	p1.From.Type = obj.TYPE_MEM
	p1.From.Sym = source.Sym
	p1.From.Name = obj.NAME_GOTREF
	p1.To.Type = obj.TYPE_REG
	p1.To.Reg = REG_R9

	p2.As = p.As
	p2.From = p.From
	p2.To = p.To
	if p.From.Name == obj.NAME_EXTERN {
		p2.From.Reg = REG_R9
		p2.From.Name = obj.NAME_NONE
		p2.From.Sym = nil
	} else if p.To.Name == obj.NAME_EXTERN {
		p2.To.Reg = REG_R9
		p2.To.Name = obj.NAME_NONE
		p2.To.Sym = nil
	} else {
		return
	}
	obj.Nopout(p)
}
Пример #24
0
// If s==nil, copyu returns the set/use of v in p; otherwise, it
// modifies p to replace reads of v with reads of s and returns 0 for
// success or non-zero for failure.
//
// If s==nil, copy returns one of the following values:
// 	1 if v only used
//	2 if v is set and used in one address (read-alter-rewrite;
// 	  can't substitute)
//	3 if v is only set
//	4 if v is set in one address and used in another (so addresses
// 	  can be rewritten independently)
//	0 otherwise (not touched)
func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int {
	if p.From3Type() != obj.TYPE_NONE {
		// never generates a from3
		fmt.Printf("copyu: from3 (%v) not implemented\n", gc.Ctxt.Dconv(p.From3))
	}

	switch p.As {
	default:
		fmt.Printf("copyu: can't find %v\n", obj.Aconv(int(p.As)))
		return 2

	case obj.ANOP, /* read p->from, write p->to */
		mips.AMOVV,
		mips.AMOVF,
		mips.AMOVD,
		mips.AMOVH,
		mips.AMOVHU,
		mips.AMOVB,
		mips.AMOVBU,
		mips.AMOVW,
		mips.AMOVWU,
		mips.AMOVFD,
		mips.AMOVDF,
		mips.AMOVDW,
		mips.AMOVWD,
		mips.AMOVFW,
		mips.AMOVWF,
		mips.AMOVDV,
		mips.AMOVVD,
		mips.AMOVFV,
		mips.AMOVVF,
		mips.ATRUNCFV,
		mips.ATRUNCDV,
		mips.ATRUNCFW,
		mips.ATRUNCDW:
		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}

			// Update only indirect uses of v in p->to
			if !copyas(&p.To, v) {
				if copysub(&p.To, v, s, 1) != 0 {
					return 1
				}
			}
			return 0
		}

		if copyas(&p.To, v) {
			// Fix up implicit from
			if p.From.Type == obj.TYPE_NONE {
				p.From = p.To
			}
			if copyau(&p.From, v) {
				return 4
			}
			return 3
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau(&p.To, v) {
			// p->to only indirectly uses v
			return 1
		}

		return 0

	case mips.ASGT, /* read p->from, read p->reg, write p->to */
		mips.ASGTU,

		mips.AADD,
		mips.AADDU,
		mips.ASUB,
		mips.ASUBU,
		mips.ASLL,
		mips.ASRL,
		mips.ASRA,
		mips.AOR,
		mips.ANOR,
		mips.AAND,
		mips.AXOR,

		mips.AADDV,
		mips.AADDVU,
		mips.ASUBV,
		mips.ASUBVU,
		mips.ASLLV,
		mips.ASRLV,
		mips.ASRAV,

		mips.AADDF,
		mips.AADDD,
		mips.ASUBF,
		mips.ASUBD,
		mips.AMULF,
		mips.AMULD,
		mips.ADIVF,
		mips.ADIVD:
		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}
			if copysub1(p, v, s, 1) != 0 {
				return 1
			}

			// Update only indirect uses of v in p->to
			if !copyas(&p.To, v) {
				if copysub(&p.To, v, s, 1) != 0 {
					return 1
				}
			}
			return 0
		}

		if copyas(&p.To, v) {
			if p.Reg == 0 {
				// Fix up implicit reg (e.g., ADD
				// R3,R4 -> ADD R3,R4,R4) so we can
				// update reg and to separately.
				p.Reg = p.To.Reg
			}

			if copyau(&p.From, v) {
				return 4
			}
			if copyau1(p, v) {
				return 4
			}
			return 3
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau1(p, v) {
			return 1
		}
		if copyau(&p.To, v) {
			return 1
		}
		return 0

	case obj.ACHECKNIL, /* read p->from */
		mips.ABEQ, /* read p->from, read p->reg */
		mips.ABNE,
		mips.ABGTZ,
		mips.ABGEZ,
		mips.ABLTZ,
		mips.ABLEZ,

		mips.ACMPEQD,
		mips.ACMPEQF,
		mips.ACMPGED,
		mips.ACMPGEF,
		mips.ACMPGTD,
		mips.ACMPGTF,
		mips.ABFPF,
		mips.ABFPT,

		mips.AMUL,
		mips.AMULU,
		mips.ADIV,
		mips.ADIVU,
		mips.AMULV,
		mips.AMULVU,
		mips.ADIVV,
		mips.ADIVVU:
		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}
			return copysub1(p, v, s, 1)
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau1(p, v) {
			return 1
		}
		return 0

	case mips.AJMP: /* read p->to */
		if s != nil {
			if copysub(&p.To, v, s, 1) != 0 {
				return 1
			}
			return 0
		}

		if copyau(&p.To, v) {
			return 1
		}
		return 0

	case mips.ARET: /* funny */
		if s != nil {
			return 0
		}

		// All registers die at this point, so claim
		// everything is set (and not used).
		return 3

	case mips.AJAL: /* funny */
		if v.Type == obj.TYPE_REG {
			// TODO(rsc): REG_R0 and REG_F0 used to be
			// (when register numbers started at 0) exregoffset and exfregoffset,
			// which are unset entirely.
			// It's strange that this handles R0 and F0 differently from the other
			// registers. Possible failure to optimize?
			if mips.REG_R0 < v.Reg && v.Reg <= mips.REG_R31 {
				return 2
			}
			if v.Reg == mips.REGARG {
				return 2
			}
			if mips.REG_F0 < v.Reg && v.Reg <= mips.REG_F31 {
				return 2
			}
		}

		if p.From.Type == obj.TYPE_REG && v.Type == obj.TYPE_REG && p.From.Reg == v.Reg {
			return 2
		}

		if s != nil {
			if copysub(&p.To, v, s, 1) != 0 {
				return 1
			}
			return 0
		}

		if copyau(&p.To, v) {
			return 4
		}
		return 3

	// R0 is zero, used by DUFFZERO, cannot be substituted.
	// R1 is ptr to memory, used and set, cannot be substituted.
	case obj.ADUFFZERO:
		if v.Type == obj.TYPE_REG {
			if v.Reg == 0 {
				return 1
			}
			if v.Reg == 1 {
				return 2
			}
		}

		return 0

	// R1, R2 are ptr to src, dst, used and set, cannot be substituted.
	// R3 is scratch, set by DUFFCOPY, cannot be substituted.
	case obj.ADUFFCOPY:
		if v.Type == obj.TYPE_REG {
			if v.Reg == 1 || v.Reg == 2 {
				return 2
			}
			if v.Reg == 3 {
				return 3
			}
		}

		return 0

	case obj.ATEXT: /* funny */
		if v.Type == obj.TYPE_REG {
			if v.Reg == mips.REGARG {
				return 3
			}
		}
		return 0

	case obj.APCDATA,
		obj.AFUNCDATA,
		obj.AVARDEF,
		obj.AVARKILL,
		obj.AVARLIVE,
		obj.AUSEFIELD:
		return 0
	}
}
Пример #25
0
/*
 * ASLL x,y,w
 * .. (not use w, not set x y w)
 * AXXX w,a,b (a != w)
 * .. (not use w)
 * (set w)
 * ----------- changed to
 * ..
 * AXXX (x<<y),a,b
 * ..
 */
func shiftprop(r *gc.Flow) bool {
	p := (*obj.Prog)(r.Prog)
	if p.To.Type != obj.TYPE_REG {
		if gc.Debug['P'] != 0 {
			fmt.Printf("\tBOTCH: result not reg; FAILURE\n")
		}
		return false
	}

	n := int(int(p.To.Reg))
	a := obj.Addr(obj.Addr{})
	if p.Reg != 0 && p.Reg != p.To.Reg {
		a.Type = obj.TYPE_REG
		a.Reg = p.Reg
	}

	if gc.Debug['P'] != 0 {
		fmt.Printf("shiftprop\n%v", p)
	}
	r1 := (*gc.Flow)(r)
	var p1 *obj.Prog
	for {
		/* find first use of shift result; abort if shift operands or result are changed */
		r1 = gc.Uniqs(r1)

		if r1 == nil {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tbranch; FAILURE\n")
			}
			return false
		}

		if gc.Uniqp(r1) == nil {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tmerge; FAILURE\n")
			}
			return false
		}

		p1 = r1.Prog
		if gc.Debug['P'] != 0 {
			fmt.Printf("\n%v", p1)
		}
		switch copyu(p1, &p.To, nil) {
		case 0: /* not used or set */
			if (p.From.Type == obj.TYPE_REG && copyu(p1, &p.From, nil) > 1) || (a.Type == obj.TYPE_REG && copyu(p1, &a, nil) > 1) {
				if gc.Debug['P'] != 0 {
					fmt.Printf("\targs modified; FAILURE\n")
				}
				return false
			}

			continue
		case 3: /* set, not used */
			{
				if gc.Debug['P'] != 0 {
					fmt.Printf("\tBOTCH: noref; FAILURE\n")
				}
				return false
			}
		}

		break
	}

	/* check whether substitution can be done */
	switch p1.As {
	default:
		if gc.Debug['P'] != 0 {
			fmt.Printf("\tnon-dpi; FAILURE\n")
		}
		return false

	case arm.AAND,
		arm.AEOR,
		arm.AADD,
		arm.AADC,
		arm.AORR,
		arm.ASUB,
		arm.ASBC,
		arm.ARSB,
		arm.ARSC:
		if int(p1.Reg) == n || (p1.Reg == 0 && p1.To.Type == obj.TYPE_REG && int(p1.To.Reg) == n) {
			if p1.From.Type != obj.TYPE_REG {
				if gc.Debug['P'] != 0 {
					fmt.Printf("\tcan't swap; FAILURE\n")
				}
				return false
			}

			p1.Reg = p1.From.Reg
			p1.From.Reg = int16(n)
			switch p1.As {
			case arm.ASUB:
				p1.As = arm.ARSB

			case arm.ARSB:
				p1.As = arm.ASUB

			case arm.ASBC:
				p1.As = arm.ARSC

			case arm.ARSC:
				p1.As = arm.ASBC
			}

			if gc.Debug['P'] != 0 {
				fmt.Printf("\t=>%v", p1)
			}
		}
		fallthrough

	case arm.ABIC,
		arm.ATST,
		arm.ACMP,
		arm.ACMN:
		if int(p1.Reg) == n {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tcan't swap; FAILURE\n")
			}
			return false
		}

		if p1.Reg == 0 && int(p1.To.Reg) == n {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tshift result used twice; FAILURE\n")
			}
			return false
		}

		//	case AMVN:
		if p1.From.Type == obj.TYPE_SHIFT {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tshift result used in shift; FAILURE\n")
			}
			return false
		}

		if p1.From.Type != obj.TYPE_REG || int(p1.From.Reg) != n {
			if gc.Debug['P'] != 0 {
				fmt.Printf("\tBOTCH: where is it used?; FAILURE\n")
			}
			return false
		}
	}

	/* check whether shift result is used subsequently */
	p2 := (*obj.Prog)(p1)

	if int(p1.To.Reg) != n {
		var p1 *obj.Prog
		for {
			r1 = gc.Uniqs(r1)
			if r1 == nil {
				if gc.Debug['P'] != 0 {
					fmt.Printf("\tinconclusive; FAILURE\n")
				}
				return false
			}

			p1 = r1.Prog
			if gc.Debug['P'] != 0 {
				fmt.Printf("\n%v", p1)
			}
			switch copyu(p1, &p.To, nil) {
			case 0: /* not used or set */
				continue

			case 3: /* set, not used */
				break

			default: /* used */
				if gc.Debug['P'] != 0 {
					fmt.Printf("\treused; FAILURE\n")
				}
				return false
			}

			break
		}
	}

	/* make the substitution */
	p2.From.Reg = 0

	o := int(int(p.Reg))
	if o == 0 {
		o = int(p.To.Reg)
	}
	o &= 15

	switch p.From.Type {
	case obj.TYPE_CONST:
		o |= int((p.From.Offset & 0x1f) << 7)

	case obj.TYPE_REG:
		o |= 1<<4 | (int(p.From.Reg)&15)<<8
	}

	switch p.As {
	case arm.ASLL:
		o |= 0 << 5

	case arm.ASRL:
		o |= 1 << 5

	case arm.ASRA:
		o |= 2 << 5
	}

	p2.From = obj.Addr{}
	p2.From.Type = obj.TYPE_SHIFT
	p2.From.Offset = int64(o)
	if gc.Debug['P'] != 0 {
		fmt.Printf("\t=>%v\tSUCCEED\n", p2)
	}
	return true
}
Пример #26
0
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog {
	// MOVW			g_stackguard(g), R1
	p = obj.Appendp(ctxt, p)

	p.As = AMOVW
	p.From.Type = obj.TYPE_MEM
	p.From.Reg = REGG
	p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0
	if ctxt.Cursym.Cfunc != 0 {
		p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1
	}
	p.To.Type = obj.TYPE_REG
	p.To.Reg = REG_R1

	if framesize <= obj.StackSmall {
		// small stack: SP < stackguard
		//	CMP	stackguard, SP
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REGSP
	} else if framesize <= obj.StackBig {
		// large stack: SP-framesize < stackguard-StackSmall
		//	MOVW $-framesize(SP), R2
		//	CMP stackguard, R2
		p = obj.Appendp(ctxt, p)

		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Reg = REGSP
		p.From.Offset = int64(-framesize)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.Reg = REG_R2
	} else {
		// Such a large stack we need to protect against wraparound
		// if SP is close to zero.
		//	SP-stackguard+StackGuard < framesize + (StackGuard-StackSmall)
		// The +StackGuard on both sides is required to keep the left side positive:
		// SP is allowed to be slightly below stackguard. See stack.h.
		//	CMP $StackPreempt, R1
		//	MOVW.NE $StackGuard(SP), R2
		//	SUB.NE R1, R2
		//	MOVW.NE $(framesize+(StackGuard-StackSmall)), R3
		//	CMP.NE R3, R2
		p = obj.Appendp(ctxt, p)

		p.As = ACMP
		p.From.Type = obj.TYPE_CONST
		p.From.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1)))
		p.Reg = REG_R1

		p = obj.Appendp(ctxt, p)
		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Reg = REGSP
		p.From.Offset = obj.StackGuard
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = ASUB
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R1
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R2
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = AMOVW
		p.From.Type = obj.TYPE_ADDR
		p.From.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall)
		p.To.Type = obj.TYPE_REG
		p.To.Reg = REG_R3
		p.Scond = C_SCOND_NE

		p = obj.Appendp(ctxt, p)
		p.As = ACMP
		p.From.Type = obj.TYPE_REG
		p.From.Reg = REG_R3
		p.Reg = REG_R2
		p.Scond = C_SCOND_NE
	}

	// BLS call-to-morestack
	bls := obj.Appendp(ctxt, p)
	bls.As = ABLS
	bls.To.Type = obj.TYPE_BRANCH

	var last *obj.Prog
	for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link {
	}

	spfix := obj.Appendp(ctxt, last)
	spfix.As = obj.ANOP
	spfix.Spadj = -framesize

	// MOVW	LR, R3
	movw := obj.Appendp(ctxt, spfix)
	movw.As = AMOVW
	movw.From.Type = obj.TYPE_REG
	movw.From.Reg = REGLINK
	movw.To.Type = obj.TYPE_REG
	movw.To.Reg = REG_R3

	bls.Pcond = movw

	// BL runtime.morestack
	call := obj.Appendp(ctxt, movw)
	call.As = obj.ACALL
	call.To.Type = obj.TYPE_BRANCH
	morestack := "runtime.morestack"
	switch {
	case ctxt.Cursym.Cfunc != 0:
		morestack = "runtime.morestackc"
	case ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0:
		morestack = "runtime.morestack_noctxt"
	}
	call.To.Sym = obj.Linklookup(ctxt, morestack, 0)

	// B start
	b := obj.Appendp(ctxt, call)
	b.As = obj.AJMP
	b.To.Type = obj.TYPE_BRANCH
	b.Pcond = ctxt.Cursym.Text.Link
	b.Spadj = +framesize

	return bls
}
Пример #27
0
// UNUSED
func peep(firstp *obj.Prog) {
	g := (*gc.Graph)(gc.Flowstart(firstp, nil))
	if g == nil {
		return
	}
	gactive = 0

	var r *gc.Flow
	var p *obj.Prog
	var t int
loop1:
	if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
		gc.Dumpit("loop1", g.Start, 0)
	}

	t = 0
	for r = g.Start; r != nil; r = r.Link {
		p = r.Prog
		switch p.As {
		/*
		 * elide shift into TYPE_SHIFT operand of subsequent instruction
		 */
		//			if(shiftprop(r)) {
		//				excise(r);
		//				t++;
		//				break;
		//			}
		case arm.ASLL,
			arm.ASRL,
			arm.ASRA:
			break

		case arm.AMOVB,
			arm.AMOVH,
			arm.AMOVW,
			arm.AMOVF,
			arm.AMOVD:
			if regtyp(&p.From) {
				if p.From.Type == p.To.Type && isfloatreg(&p.From) == isfloatreg(&p.To) {
					if p.Scond == arm.C_SCOND_NONE {
						if copyprop(g, r) {
							excise(r)
							t++
							break
						}

						if subprop(r) && copyprop(g, r) {
							excise(r)
							t++
							break
						}
					}
				}
			}

		case arm.AMOVHS,
			arm.AMOVHU,
			arm.AMOVBS,
			arm.AMOVBU:
			if p.From.Type == obj.TYPE_REG {
				if shortprop(r) {
					t++
				}
			}
		}
	}

	/*
		if(p->scond == C_SCOND_NONE)
		if(regtyp(&p->to))
		if(isdconst(&p->from)) {
			constprop(&p->from, &p->to, r->s1);
		}
		break;
	*/
	if t != 0 {
		goto loop1
	}

	for r := (*gc.Flow)(g.Start); r != nil; r = r.Link {
		p = r.Prog
		switch p.As {
		/*
		 * EOR -1,x,y => MVN x,y
		 */
		case arm.AEOR:
			if isdconst(&p.From) && p.From.Offset == -1 {
				p.As = arm.AMVN
				p.From.Type = obj.TYPE_REG
				if p.Reg != 0 {
					p.From.Reg = p.Reg
				} else {
					p.From.Reg = p.To.Reg
				}
				p.Reg = 0
			}
		}
	}

	for r := (*gc.Flow)(g.Start); r != nil; r = r.Link {
		p = r.Prog
		switch p.As {
		case arm.AMOVW,
			arm.AMOVB,
			arm.AMOVBS,
			arm.AMOVBU:
			if p.From.Type == obj.TYPE_MEM && p.From.Offset == 0 {
				xtramodes(g, r, &p.From)
			} else if p.To.Type == obj.TYPE_MEM && p.To.Offset == 0 {
				xtramodes(g, r, &p.To)
			} else {
				continue
			}
		}
	}

	//		case ACMP:
	//			/*
	//			 * elide CMP $0,x if calculation of x can set condition codes
	//			 */
	//			if(isdconst(&p->from) || p->from.offset != 0)
	//				continue;
	//			r2 = r->s1;
	//			if(r2 == nil)
	//				continue;
	//			t = r2->prog->as;
	//			switch(t) {
	//			default:
	//				continue;
	//			case ABEQ:
	//			case ABNE:
	//			case ABMI:
	//			case ABPL:
	//				break;
	//			case ABGE:
	//				t = ABPL;
	//				break;
	//			case ABLT:
	//				t = ABMI;
	//				break;
	//			case ABHI:
	//				t = ABNE;
	//				break;
	//			case ABLS:
	//				t = ABEQ;
	//				break;
	//			}
	//			r1 = r;
	//			do
	//				r1 = uniqp(r1);
	//			while (r1 != nil && r1->prog->as == ANOP);
	//			if(r1 == nil)
	//				continue;
	//			p1 = r1->prog;
	//			if(p1->to.type != TYPE_REG)
	//				continue;
	//			if(p1->to.reg != p->reg)
	//			if(!(p1->as == AMOVW && p1->from.type == TYPE_REG && p1->from.reg == p->reg))
	//				continue;
	//
	//			switch(p1->as) {
	//			default:
	//				continue;
	//			case AMOVW:
	//				if(p1->from.type != TYPE_REG)
	//					continue;
	//			case AAND:
	//			case AEOR:
	//			case AORR:
	//			case ABIC:
	//			case AMVN:
	//			case ASUB:
	//			case ARSB:
	//			case AADD:
	//			case AADC:
	//			case ASBC:
	//			case ARSC:
	//				break;
	//			}
	//			p1->scond |= C_SBIT;
	//			r2->prog->as = t;
	//			excise(r);
	//			continue;

	//	predicate(g);

	gc.Flowend(g)
}
Пример #28
0
/*
 * return
 * 1 if v only used (and substitute),
 * 2 if read-alter-rewrite
 * 3 if set
 * 4 if set and used
 * 0 otherwise (not touched)
 */
func copyu(p *obj.Prog, v *obj.Addr, s *obj.Addr) int {
	switch p.As {
	default:
		fmt.Printf("copyu: can't find %v\n", obj.Aconv(int(p.As)))
		return 2

	case arm.AMOVM:
		if v.Type != obj.TYPE_REG {
			return 0
		}
		if p.From.Type == obj.TYPE_CONST { /* read reglist, read/rar */
			if s != nil {
				if p.From.Offset&(1<<uint(v.Reg)) != 0 {
					return 1
				}
				if copysub(&p.To, v, s, 1) != 0 {
					return 1
				}
				return 0
			}

			if copyau(&p.To, v) {
				if p.Scond&arm.C_WBIT != 0 {
					return 2
				}
				return 1
			}

			if p.From.Offset&(1<<uint(v.Reg)) != 0 {
				return 1 /* read/rar, write reglist */
			}
		} else {
			if s != nil {
				if p.To.Offset&(1<<uint(v.Reg)) != 0 {
					return 1
				}
				if copysub(&p.From, v, s, 1) != 0 {
					return 1
				}
				return 0
			}

			if copyau(&p.From, v) {
				if p.Scond&arm.C_WBIT != 0 {
					return 2
				}
				if p.To.Offset&(1<<uint(v.Reg)) != 0 {
					return 4
				}
				return 1
			}

			if p.To.Offset&(1<<uint(v.Reg)) != 0 {
				return 3
			}
		}

		return 0

	case obj.ANOP, /* read,, write */
		arm.ASQRTD,
		arm.AMOVW,
		arm.AMOVF,
		arm.AMOVD,
		arm.AMOVH,
		arm.AMOVHS,
		arm.AMOVHU,
		arm.AMOVB,
		arm.AMOVBS,
		arm.AMOVBU,
		arm.AMOVFW,
		arm.AMOVWF,
		arm.AMOVDW,
		arm.AMOVWD,
		arm.AMOVFD,
		arm.AMOVDF:
		if p.Scond&(arm.C_WBIT|arm.C_PBIT) != 0 {
			if v.Type == obj.TYPE_REG {
				if p.From.Type == obj.TYPE_MEM || p.From.Type == obj.TYPE_SHIFT {
					if p.From.Reg == v.Reg {
						return 2
					}
				} else {
					if p.To.Reg == v.Reg {
						return 2
					}
				}
			}
		}

		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}
			if !copyas(&p.To, v) {
				if copysub(&p.To, v, s, 1) != 0 {
					return 1
				}
			}
			return 0
		}

		if copyas(&p.To, v) {
			if p.Scond != arm.C_SCOND_NONE {
				return 2
			}
			if copyau(&p.From, v) {
				return 4
			}
			return 3
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau(&p.To, v) {
			return 1
		}
		return 0

	case arm.AMULLU, /* read, read, write, write */
		arm.AMULL,
		arm.AMULA,
		arm.AMVN:
		return 2

	case arm.AADD, /* read, read, write */
		arm.AADC,
		arm.ASUB,
		arm.ASBC,
		arm.ARSB,
		arm.ASLL,
		arm.ASRL,
		arm.ASRA,
		arm.AORR,
		arm.AAND,
		arm.AEOR,
		arm.AMUL,
		arm.AMULU,
		arm.ADIV,
		arm.ADIVU,
		arm.AMOD,
		arm.AMODU,
		arm.AADDF,
		arm.AADDD,
		arm.ASUBF,
		arm.ASUBD,
		arm.AMULF,
		arm.AMULD,
		arm.ADIVF,
		arm.ADIVD,
		obj.ACHECKNIL,
		/* read */
		arm.ACMPF, /* read, read, */
		arm.ACMPD,
		arm.ACMP,
		arm.ACMN,
		arm.ATST:
		/* read,, */
		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}
			if copysub1(p, v, s, 1) != 0 {
				return 1
			}
			if !copyas(&p.To, v) {
				if copysub(&p.To, v, s, 1) != 0 {
					return 1
				}
			}
			return 0
		}

		if copyas(&p.To, v) {
			if p.Scond != arm.C_SCOND_NONE {
				return 2
			}
			if p.Reg == 0 {
				p.Reg = p.To.Reg
			}
			if copyau(&p.From, v) {
				return 4
			}
			if copyau1(p, v) {
				return 4
			}
			return 3
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau1(p, v) {
			return 1
		}
		if copyau(&p.To, v) {
			return 1
		}
		return 0

	case arm.ABEQ, /* read, read */
		arm.ABNE,
		arm.ABCS,
		arm.ABHS,
		arm.ABCC,
		arm.ABLO,
		arm.ABMI,
		arm.ABPL,
		arm.ABVS,
		arm.ABVC,
		arm.ABHI,
		arm.ABLS,
		arm.ABGE,
		arm.ABLT,
		arm.ABGT,
		arm.ABLE:
		if s != nil {
			if copysub(&p.From, v, s, 1) != 0 {
				return 1
			}
			return copysub1(p, v, s, 1)
		}

		if copyau(&p.From, v) {
			return 1
		}
		if copyau1(p, v) {
			return 1
		}
		return 0

	case arm.AB: /* funny */
		if s != nil {
			if copysub(&p.To, v, s, 1) != 0 {
				return 1
			}
			return 0
		}

		if copyau(&p.To, v) {
			return 1
		}
		return 0

	case obj.ARET: /* funny */
		if s != nil {
			return 1
		}
		return 3

	case arm.ABL: /* funny */
		if v.Type == obj.TYPE_REG {
			// TODO(rsc): REG_R0 and REG_F0 used to be
			// (when register numbers started at 0) exregoffset and exfregoffset,
			// which are unset entirely.
			// It's strange that this handles R0 and F0 differently from the other
			// registers. Possible failure to optimize?
			if arm.REG_R0 < v.Reg && v.Reg <= arm.REGEXT {
				return 2
			}
			if v.Reg == arm.REGARG {
				return 2
			}
			if arm.REG_F0 < v.Reg && v.Reg <= arm.FREGEXT {
				return 2
			}
		}

		if p.From.Type == obj.TYPE_REG && v.Type == obj.TYPE_REG && p.From.Reg == v.Reg {
			return 2
		}

		if s != nil {
			if copysub(&p.To, v, s, 1) != 0 {
				return 1
			}
			return 0
		}

		if copyau(&p.To, v) {
			return 4
		}
		return 3

		// R0 is zero, used by DUFFZERO, cannot be substituted.
	// R1 is ptr to memory, used and set, cannot be substituted.
	case obj.ADUFFZERO:
		if v.Type == obj.TYPE_REG {
			if v.Reg == arm.REG_R0 {
				return 1
			}
			if v.Reg == arm.REG_R0+1 {
				return 2
			}
		}

		return 0

		// R0 is scratch, set by DUFFCOPY, cannot be substituted.
	// R1, R2 areptr to src, dst, used and set, cannot be substituted.
	case obj.ADUFFCOPY:
		if v.Type == obj.TYPE_REG {
			if v.Reg == arm.REG_R0 {
				return 3
			}
			if v.Reg == arm.REG_R0+1 || v.Reg == arm.REG_R0+2 {
				return 2
			}
		}

		return 0

	case obj.ATEXT: /* funny */
		if v.Type == obj.TYPE_REG {
			if v.Reg == arm.REGARG {
				return 3
			}
		}
		return 0

	case obj.APCDATA,
		obj.AFUNCDATA,
		obj.AVARDEF,
		obj.AVARKILL,
		obj.AVARLIVE,
		obj.AUSEFIELD:
		return 0
	}
}
Пример #29
0
func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) {
	var q *obj.Prog
	var r *obj.Prog
	var a int
	var i int

loop:
	if p == nil {
		return
	}
	a = int(p.As)
	if a == AB {
		q = p.Pcond
		if q != nil && q.As != obj.ATEXT {
			p.Mark |= FOLL
			p = q
			if p.Mark&FOLL == 0 {
				goto loop
			}
		}
	}

	if p.Mark&FOLL != 0 {
		i = 0
		q = p
		for ; i < 4; i, q = i+1, q.Link {
			if q == *last || q == nil {
				break
			}
			a = int(q.As)
			if a == obj.ANOP {
				i--
				continue
			}

			if a == AB || (a == obj.ARET && q.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF {
				goto copy
			}
			if q.Pcond == nil || (q.Pcond.Mark&FOLL != 0) {
				continue
			}
			if a != ABEQ && a != ABNE {
				continue
			}

		copy:
			for {
				r = ctxt.NewProg()
				*r = *p
				if r.Mark&FOLL == 0 {
					fmt.Printf("can't happen 1\n")
				}
				r.Mark |= FOLL
				if p != q {
					p = p.Link
					(*last).Link = r
					*last = r
					continue
				}

				(*last).Link = r
				*last = r
				if a == AB || (a == obj.ARET && q.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF {
					return
				}
				r.As = ABNE
				if a == ABNE {
					r.As = ABEQ
				}
				r.Pcond = p.Link
				r.Link = p.Pcond
				if r.Link.Mark&FOLL == 0 {
					xfol(ctxt, r.Link, last)
				}
				if r.Pcond.Mark&FOLL == 0 {
					fmt.Printf("can't happen 2\n")
				}
				return
			}
		}

		a = AB
		q = ctxt.NewProg()
		q.As = int16(a)
		q.Lineno = p.Lineno
		q.To.Type = obj.TYPE_BRANCH
		q.To.Offset = p.Pc
		q.Pcond = p
		p = q
	}

	p.Mark |= FOLL
	(*last).Link = p
	*last = p
	if a == AB || (a == obj.ARET && p.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF {
		return
	}

	if p.Pcond != nil {
		if a != ABL && a != ABX && p.Link != nil {
			q = obj.Brchain(ctxt, p.Link)
			if a != obj.ATEXT {
				if q != nil && (q.Mark&FOLL != 0) {
					p.As = int16(relinv(a))
					p.Link = p.Pcond
					p.Pcond = q
				}
			}

			xfol(ctxt, p.Link, last)
			q = obj.Brchain(ctxt, p.Pcond)
			if q == nil {
				q = p.Pcond
			}
			if q.Mark&FOLL != 0 {
				p.Pcond = q
				return
			}

			p = q
			goto loop
		}
	}

	p = p.Link
	goto loop
}
Пример #30
0
func peep(firstp *obj.Prog) {
	g := (*gc.Graph)(gc.Flowstart(firstp, nil))
	if g == nil {
		return
	}
	gactive = 0

	var p *obj.Prog
	var r *gc.Flow
	var t int
loop1:
	if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 {
		gc.Dumpit("loop1", g.Start, 0)
	}

	t = 0
	for r = g.Start; r != nil; r = r.Link {
		p = r.Prog

		// TODO(minux) Handle smaller moves. arm and amd64
		// distinguish between moves that *must* sign/zero
		// extend and moves that don't care so they
		// can eliminate moves that don't care without
		// breaking moves that do care. This might let us
		// simplify or remove the next peep loop, too.
		if p.As == arm64.AMOVD || p.As == arm64.AFMOVD {
			if regtyp(&p.To) {
				// Try to eliminate reg->reg moves
				if regtyp(&p.From) {
					if p.From.Type == p.To.Type {
						if copyprop(r) {
							excise(r)
							t++
						} else if subprop(r) && copyprop(r) {
							excise(r)
							t++
						}
					}
				}
			}
		}
	}

	if t != 0 {
		goto loop1
	}

	/*
	 * look for MOVB x,R; MOVB R,R (for small MOVs not handled above)
	 */
	var p1 *obj.Prog
	var r1 *gc.Flow
	for r := (*gc.Flow)(g.Start); r != nil; r = r.Link {
		p = r.Prog
		switch p.As {
		default:
			continue

		case arm64.AMOVH,
			arm64.AMOVHU,
			arm64.AMOVB,
			arm64.AMOVBU,
			arm64.AMOVW,
			arm64.AMOVWU:
			if p.To.Type != obj.TYPE_REG {
				continue
			}
		}

		r1 = r.Link
		if r1 == nil {
			continue
		}
		p1 = r1.Prog
		if p1.As != p.As {
			continue
		}
		if p1.From.Type != obj.TYPE_REG || p1.From.Reg != p.To.Reg {
			continue
		}
		if p1.To.Type != obj.TYPE_REG || p1.To.Reg != p.To.Reg {
			continue
		}
		excise(r1)
	}

	if gc.Debug['D'] > 1 {
		goto ret /* allow following code improvement to be suppressed */
	}

	// MOVD $c, R'; ADD R', R (R' unused) -> ADD $c, R
	for r := (*gc.Flow)(g.Start); r != nil; r = r.Link {
		p = r.Prog
		switch p.As {
		default:
			continue

		case arm64.AMOVD:
			if p.To.Type != obj.TYPE_REG {
				continue
			}
			if p.From.Type != obj.TYPE_CONST {
				continue
			}
			if p.From.Offset < 0 || 4096 <= p.From.Offset {
				continue
			}
		}
		r1 = r.Link
		if r1 == nil {
			continue
		}
		p1 = r1.Prog
		if p1.As != arm64.AADD && p1.As != arm64.ASUB { // TODO(aram): also logical after we have bimm.
			continue
		}
		if p1.From.Type != obj.TYPE_REG || p1.From.Reg != p.To.Reg {
			continue
		}
		if p1.To.Type != obj.TYPE_REG {
			continue
		}
		if gc.Debug['P'] != 0 {
			fmt.Printf("encoding $%d directly into %v in:\n%v\n%v\n", p.From.Offset, obj.Aconv(int(p1.As)), p, p1)
		}
		p1.From.Type = obj.TYPE_CONST
		p1.From = p.From
		excise(r)
	}

	/* TODO(minux):
	 * look for OP x,y,R; CMP R, $0 -> OP.S x,y,R
	 * when OP can set condition codes correctly
	 */

ret:
	gc.Flowend(g)
}