// newTxn begins a transaction. For testing purposes, this comes with a ID
// pre-initialized, but with the Writing flag set to false.
func newTxn(clock *hlc.Clock, baseKey proto.Key) *proto.Transaction {
	f, l, fun := caller.Lookup(1)
	name := fmt.Sprintf("%s:%d %s", f, l, fun)
	txn := proto.NewTransaction("test", baseKey, 1, proto.SERIALIZABLE, clock.Now(), clock.MaxOffset().Nanoseconds())
	txn.Name = name
	return txn
}
示例#2
0
// maybeBeginTxn begins a new transaction if a txn has been specified
// in the request but has a nil ID. The new transaction is initialized
// using the name and isolation in the otherwise uninitialized txn.
// The Priority, if non-zero is used as a minimum.
func (tc *TxnCoordSender) maybeBeginTxn(header *proto.RequestHeader) {
	if header.Txn != nil {
		if len(header.Txn.ID) == 0 {
			newTxn := proto.NewTransaction(header.Txn.Name, keys.KeyAddress(header.Key), header.GetUserPriority(),
				header.Txn.Isolation, tc.clock.Now(), tc.clock.MaxOffset().Nanoseconds())
			// Use existing priority as a minimum. This is used on transaction
			// aborts to ratchet priority when creating successor transaction.
			if newTxn.Priority < header.Txn.Priority {
				newTxn.Priority = header.Txn.Priority
			}
			header.Txn = newTxn
		}
	}
}
示例#3
0
// maybeBeginTxn begins a new transaction if a txn has been specified
// in the request but has a nil ID. The new transaction is initialized
// using the name and isolation in the otherwise uninitialized txn.
// The Priority, if non-zero is used as a minimum.
func (tc *TxnCoordSender) maybeBeginTxn(ba *proto.BatchRequest) {
	if ba.Txn == nil {
		return
	}
	if len(ba.Requests) == 0 {
		panic("empty batch with txn")
	}
	if len(ba.Txn.ID) == 0 {
		// TODO(tschottdorf): should really choose the first txn write here.
		firstKey := ba.Requests[0].GetInner().Header().Key
		newTxn := proto.NewTransaction(ba.Txn.Name, keys.KeyAddress(firstKey), ba.GetUserPriority(),
			ba.Txn.Isolation, tc.clock.Now(), tc.clock.MaxOffset().Nanoseconds())
		// Use existing priority as a minimum. This is used on transaction
		// aborts to ratchet priority when creating successor transaction.
		if newTxn.Priority < ba.Txn.Priority {
			newTxn.Priority = ba.Txn.Priority
		}
		ba.Txn = newTxn
	}
}
// TestRangeLookupWithOpenTransaction verifies that range lookups are
// done in such a way (e.g. using inconsistent reads) that they
// proceed in the event that a write intent is extant at the meta
// index record being read.
func TestRangeLookupWithOpenTransaction(t *testing.T) {
	defer leaktest.AfterTest(t)
	s := server.StartTestServer(t)
	defer s.Stop()
	db := createTestClient(t, s.ServingAddr())

	// Create an intent on the meta1 record by writing directly to the
	// engine.
	key := keys.MakeKey(keys.Meta1Prefix, proto.KeyMax)
	now := s.Clock().Now()
	txn := proto.NewTransaction("txn", proto.Key("foobar"), 0, proto.SERIALIZABLE, now, 0)
	if err := engine.MVCCPutProto(s.Ctx.Engines[0], nil, key, now, txn, &proto.RangeDescriptor{}); err != nil {
		t.Fatal(err)
	}

	// Now, with an intent pending, attempt (asynchronously) to read
	// from an arbitrary key. This will cause the distributed sender to
	// do a range lookup, which will encounter the intent. We're
	// verifying here that the range lookup doesn't fail with a write
	// intent error. If it did, it would go into a deadloop attempting
	// to push the transaction, which in turn requires another range
	// lookup, etc, ad nauseam.
	success := make(chan struct{})
	go func() {
		if _, err := db.Get("a"); err != nil {
			t.Fatal(err)
		}
		close(success)
	}()

	select {
	case <-success:
		// Hurrah!
	case <-time.After(5 * time.Second):
		t.Errorf("get request did not succeed in face of range metadata intent")
	}
}
// newTxn begins a transaction.
func newTxn(clock *hlc.Clock, baseKey proto.Key) *proto.Transaction {
	return proto.NewTransaction("test", baseKey, 1, proto.SERIALIZABLE, clock.Now(), clock.MaxOffset().Nanoseconds())
}