示例#1
0
// addKeyRange adds the specified key range to the range group,
// taking care not to add this range if existing entries already
// completely cover the range.
func addKeyRange(keys interval.RangeGroup, start, end roachpb.Key) {
	// This gives us a memory-efficient end key if end is empty.
	// The most common case for keys in the intents interval map
	// is for single keys. However, the range group requires
	// a non-empty interval, so we create two key slices which
	// share the same underlying byte array.
	if len(end) == 0 {
		end = start.Next()
		start = end[:len(start)]
	}
	keyR := interval.Range{
		Start: interval.Comparable(start),
		End:   interval.Comparable(end),
	}
	keys.Add(keyR)
}
示例#2
0
// collectIntentSpans collects the spans of the intents to be resolved for the
// transaction. It does not create copies, so the caller must not alter the
// returned data. Usually called with txnMeta.keys.
func collectIntentSpans(keys interval.RangeGroup) []roachpb.Span {
	intents := make([]roachpb.Span, 0, keys.Len())
	if err := keys.ForEach(func(r interval.Range) error {
		sp := roachpb.Span{
			Key: roachpb.Key(r.Start),
		}
		if endKey := roachpb.Key(r.End); !sp.Key.IsPrev(endKey) {
			sp.EndKey = endKey
		}
		intents = append(intents, sp)
		return nil
	}); err != nil {
		panic(err)
	}
	return intents
}
示例#3
0
// updateState updates the transaction state in both the success and
// error cases, applying those updates to the corresponding txnMeta
// object when adequate. It also updates certain errors with the
// updated transaction for use by client restarts.
func (tc *TxnCoordSender) updateState(
	startNS int64, ctx context.Context, ba roachpb.BatchRequest,
	br *roachpb.BatchResponse, pErr *roachpb.Error) *roachpb.Error {
	newTxn := &roachpb.Transaction{}
	newTxn.Update(ba.Txn)
	if pErr == nil {
		newTxn.Update(br.Txn)
	} else {
		newTxn.Update(pErr.GetTxn())
	}

	switch t := pErr.GetDetail().(type) {
	case *roachpb.TransactionStatusError:
		// Likely already committed or more obscure errors such as epoch or
		// timestamp regressions; consider txn dead.
		defer tc.cleanupTxn(ctx, *pErr.GetTxn())
	case *roachpb.OpRequiresTxnError:
		panic("OpRequiresTxnError must not happen at this level")
	case *roachpb.ReadWithinUncertaintyIntervalError:
		// If the reader encountered a newer write within the uncertainty
		// interval, we advance the txn's timestamp just past the last observed
		// timestamp from the node.
		restartTS, ok := newTxn.GetObservedTimestamp(pErr.OriginNode)
		if !ok {
			pErr = roachpb.NewError(util.Errorf("no observed timestamp for node %d found on uncertainty restart", pErr.OriginNode))
		} else {
			newTxn.Timestamp.Forward(restartTS)
			newTxn.Restart(ba.UserPriority, newTxn.Priority, newTxn.Timestamp)
		}
	case *roachpb.TransactionAbortedError:
		// Increase timestamp if applicable.
		newTxn.Timestamp.Forward(pErr.GetTxn().Timestamp)
		newTxn.Priority = pErr.GetTxn().Priority
		// Clean up the freshly aborted transaction in defer(), avoiding a
		// race with the state update below.
		defer tc.cleanupTxn(ctx, *newTxn)
	case *roachpb.TransactionPushError:
		// Increase timestamp if applicable, ensuring that we're
		// just ahead of the pushee.
		newTxn.Timestamp.Forward(t.PusheeTxn.Timestamp)
		newTxn.Restart(ba.UserPriority, t.PusheeTxn.Priority-1, newTxn.Timestamp)
	case *roachpb.TransactionRetryError:
		// Increase timestamp so on restart, we're ahead of any timestamp
		// cache entries or newer versions which caused the restart.
		newTxn.Restart(ba.UserPriority, pErr.GetTxn().Priority, newTxn.Timestamp)
	case *roachpb.WriteTooOldError:
		newTxn.Restart(ba.UserPriority, newTxn.Priority, t.ActualTimestamp)
	case nil:
		// Nothing to do here, avoid the default case.
	default:
		if pErr.GetTxn() != nil {
			if pErr.CanRetry() {
				panic("Retryable internal error must not happen at this level")
			} else {
				// Do not clean up the transaction here since the client might still
				// want to continue the transaction. For example, a client might
				// continue its transaction after receiving ConditionFailedError, which
				// can come from a unique index violation.
			}
		}
	}

	if pErr != nil && pErr.GetTxn() != nil {
		// Avoid changing existing errors because sometimes they escape into
		// goroutines and then there are races. Fairly sure there isn't one
		// here, but better safe than sorry.
		pErrShallow := *pErr
		pErrShallow.SetTxn(newTxn)
		pErr = &pErrShallow
	}

	if newTxn.ID == nil {
		return pErr
	}
	txnID := *newTxn.ID
	tc.Lock()
	defer tc.Unlock()
	txnMeta := tc.txns[txnID]
	// For successful transactional requests, keep the written intents and
	// the updated transaction record to be sent along with the reply.
	// The transaction metadata is created with the first writing operation.
	// A tricky edge case is that of a transaction which "fails" on the
	// first writing request, but actually manages to write some intents
	// (for example, due to being multi-range). In this case, there will
	// be an error, but the transaction will be marked as Writing and the
	// coordinator must track the state, for the client's retry will be
	// performed with a Writing transaction which the coordinator rejects
	// unless it is tracking it (on top of it making sense to track it;
	// after all, it **has** laid down intents and only the coordinator
	// can augment a potential EndTransaction call). See #3303.
	var intentGroup interval.RangeGroup
	if txnMeta != nil {
		intentGroup = txnMeta.keys
	} else if pErr == nil || newTxn.Writing {
		intentGroup = interval.NewRangeTree()
	}
	if intentGroup != nil {
		// Adding the intents even on error reduces the likelihood of dangling
		// intents blocking concurrent writers for extended periods of time.
		// See #3346.
		ba.IntentSpanIterate(func(key, endKey roachpb.Key) {
			addKeyRange(intentGroup, key, endKey)
		})

		if txnMeta == nil && intentGroup.Len() > 0 {
			if !newTxn.Writing {
				panic("txn with intents marked as non-writing")
			}
			// If the transaction is already over, there's no point in
			// launching a one-off coordinator which will shut down right
			// away. If we ended up here with an error, we'll always start
			// the coordinator - the transaction has laid down intents, so
			// we expect it to be committed/aborted at some point in the
			// future.
			if _, isEnding := ba.GetArg(roachpb.EndTransaction); pErr != nil || !isEnding {
				log.Trace(ctx, "coordinator spawns")
				txnMeta = &txnMetadata{
					txn:              *newTxn,
					keys:             intentGroup,
					firstUpdateNanos: startNS,
					lastUpdateNanos:  tc.clock.PhysicalNow(),
					timeoutDuration:  tc.clientTimeout,
					txnEnd:           make(chan struct{}),
				}
				tc.txns[txnID] = txnMeta

				if !tc.stopper.RunAsyncTask(func() {
					tc.heartbeatLoop(ctx, txnID)
				}) {
					// The system is already draining and we can't start the
					// heartbeat. We refuse new transactions for now because
					// they're likely not going to have all intents committed.
					// In principle, we can relax this as needed though.
					tc.unregisterTxnLocked(txnID)
					return roachpb.NewError(&roachpb.NodeUnavailableError{})
				}
			} else {
				// If this was a successful one phase commit, update stats
				// directly as they won't otherwise be updated on heartbeat
				// loop shutdown.
				etArgs, ok := br.Responses[len(br.Responses)-1].GetInner().(*roachpb.EndTransactionResponse)
				tc.updateStats(tc.clock.PhysicalNow()-startNS, 0, newTxn.Status, ok && etArgs.OnePhaseCommit)
			}
		}
	}

	// Update our record of this transaction, even on error.
	if txnMeta != nil {
		txnMeta.txn = *newTxn
		if !txnMeta.txn.Writing {
			panic("tracking a non-writing txn")
		}
		txnMeta.setLastUpdate(tc.clock.PhysicalNow())
	}
	if pErr == nil {
		// For successful transactional requests, always send the updated txn
		// record back.
		br.Txn = newTxn
	}
	return pErr
}