func (js *jsre) dumpBlock(call otto.FunctionCall) otto.Value { var block *types.Block if len(call.ArgumentList) > 0 { if call.Argument(0).IsNumber() { num, _ := call.Argument(0).ToInteger() block = js.ethereum.ChainManager().GetBlockByNumber(uint64(num)) } else if call.Argument(0).IsString() { hash, _ := call.Argument(0).ToString() block = js.ethereum.ChainManager().GetBlock(common.HexToHash(hash)) } else { fmt.Println("invalid argument for dump. Either hex string or number") } } else { block = js.ethereum.ChainManager().CurrentBlock() } if block == nil { fmt.Println("block not found") return otto.UndefinedValue() } statedb := state.New(block.Root(), js.ethereum.StateDb()) dump := statedb.RawDump() return js.re.ToVal(dump) }
// ContractCall implements ContractCaller.ContractCall, executing the specified // contract with the given input data. func (b *SimulatedBackend) ContractCall(contract common.Address, data []byte, pending bool) ([]byte, error) { // Create a copy of the current state db to screw around with var ( block *types.Block statedb *state.StateDB ) if pending { block, statedb = b.pendingBlock, b.pendingState.Copy() } else { block = b.blockchain.CurrentBlock() statedb, _ = b.blockchain.State() } // Set infinite balance to the a fake caller account from := statedb.GetOrNewStateObject(common.Address{}) from.SetBalance(common.MaxBig) // Assemble the call invocation to measure the gas usage msg := callmsg{ from: from, to: &contract, gasPrice: new(big.Int), gasLimit: common.MaxBig, value: new(big.Int), data: data, } // Execute the call and return vmenv := core.NewEnv(statedb, b.blockchain, msg, block.Header(), nil) gaspool := new(core.GasPool).AddGas(common.MaxBig) out, _, err := core.ApplyMessage(vmenv, msg, gaspool) return out, err }
func (self *Gui) DumpState(hash, path string) { var stateDump []byte if len(hash) == 0 { stateDump = self.eth.ChainManager().State().Dump() } else { var block *types.Block if hash[0] == '#' { i, _ := strconv.Atoi(hash[1:]) block = self.eth.ChainManager().GetBlockByNumber(uint64(i)) } else { block = self.eth.ChainManager().GetBlock(common.HexToHash(hash)) } if block == nil { guilogger.Infof("block err: not found %s\n", hash) return } stateDump = state.New(block.Root(), self.eth.StateDb()).Dump() } file, err := os.OpenFile(path[7:], os.O_CREATE|os.O_RDWR, os.ModePerm) if err != nil { guilogger.Infoln("dump err: ", err) return } defer file.Close() guilogger.Infof("dumped state (%s) to %s\n", hash, path) file.Write(stateDump) }
// SendNewBlock propagates an entire block to a remote peer. func (p *peer) SendNewBlock(block *types.Block, td *big.Int) error { propBlockOutPacketsMeter.Mark(1) propBlockOutTrafficMeter.Mark(block.Size().Int64()) p.knownBlocks.Add(block.Hash()) return p2p.Send(p.rw, NewBlockMsg, []interface{}{block, td}) }
func blockRecovery(ctx *cli.Context) { utils.CheckLegalese(ctx.GlobalString(utils.DataDirFlag.Name)) arg := ctx.Args().First() if len(ctx.Args()) < 1 && len(arg) > 0 { glog.Fatal("recover requires block number or hash") } cfg := utils.MakeEthConfig(ClientIdentifier, nodeNameVersion, ctx) utils.CheckLegalese(cfg.DataDir) blockDb, err := ethdb.NewLDBDatabase(filepath.Join(cfg.DataDir, "blockchain"), cfg.DatabaseCache) if err != nil { glog.Fatalln("could not open db:", err) } var block *types.Block if arg[0] == '#' { block = core.GetBlockByNumber(blockDb, common.String2Big(arg[1:]).Uint64()) } else { block = core.GetBlockByHash(blockDb, common.HexToHash(arg)) } if block == nil { glog.Fatalln("block not found. Recovery failed") } err = core.WriteHead(blockDb, block) if err != nil { glog.Fatalln("block write err", err) } glog.Infof("Recovery succesful. New HEAD %x\n", block.Hash()) }
// GenerateChain creates a chain of n blocks. The first block's // parent will be the provided parent. db is used to store // intermediate states and should contain the parent's state trie. // // The generator function is called with a new block generator for // every block. Any transactions and uncles added to the generator // become part of the block. If gen is nil, the blocks will be empty // and their coinbase will be the zero address. // // Blocks created by GenerateChain do not contain valid proof of work // values. Inserting them into BlockChain requires use of FakePow or // a similar non-validating proof of work implementation. func GenerateChain(parent *types.Block, db ethdb.Database, n int, gen func(int, *BlockGen)) ([]*types.Block, []types.Receipts) { statedb, err := state.New(parent.Root(), db) if err != nil { panic(err) } blocks, receipts := make(types.Blocks, n), make([]types.Receipts, n) genblock := func(i int, h *types.Header) (*types.Block, types.Receipts) { b := &BlockGen{parent: parent, i: i, chain: blocks, header: h, statedb: statedb} if gen != nil { gen(i, b) } AccumulateRewards(statedb, h, b.uncles) root, err := statedb.Commit() if err != nil { panic(fmt.Sprintf("state write error: %v", err)) } h.Root = root return types.NewBlock(h, b.txs, b.uncles, b.receipts), b.receipts } for i := 0; i < n; i++ { header := makeHeader(parent, statedb) block, receipt := genblock(i, header) blocks[i] = block receipts[i] = receipt parent = block } return blocks, receipts }
// Process processes the state changes according to the Ethereum rules by running // the transaction messages using the statedb and applying any rewards to both // the processor (coinbase) and any included uncles. // // Process returns the receipts and logs accumulated during the process and // returns the amount of gas that was used in the process. If any of the // transactions failed to execute due to insufficient gas it will return an error. func (p *StateProcessor) Process(block *types.Block, statedb *state.StateDB, cfg vm.Config) (types.Receipts, vm.Logs, *big.Int, error) { var ( receipts types.Receipts totalUsedGas = big.NewInt(0) err error header = block.Header() allLogs vm.Logs gp = new(GasPool).AddGas(block.GasLimit()) ) // Mutate the the block and state according to any hard-fork specs if p.config.DAOForkSupport && p.config.DAOForkBlock != nil && p.config.DAOForkBlock.Cmp(block.Number()) == 0 { ApplyDAOHardFork(statedb) } // Iterate over and process the individual transactions for i, tx := range block.Transactions() { statedb.StartRecord(tx.Hash(), block.Hash(), i) receipt, logs, _, err := ApplyTransaction(p.config, p.bc, gp, statedb, header, tx, totalUsedGas, cfg) if err != nil { return nil, nil, totalUsedGas, err } receipts = append(receipts, receipt) allLogs = append(allLogs, logs...) } AccumulateRewards(statedb, header, block.Uncles()) return receipts, allLogs, totalUsedGas, err }
func (bc *ChainManager) write(block *types.Block) { enc, _ := rlp.EncodeToBytes((*types.StorageBlock)(block)) key := append(blockHashPre, block.Hash().Bytes()...) bc.blockDb.Put(key, enc) // Push block to cache bc.cache.Push(block) }
// reportBlock reports the given block and error using the canonical block // reporting tool. Reporting the block to the service is handled in a separate // goroutine. func reportBlock(block *types.Block, err error) { if glog.V(logger.Error) { glog.Errorf("Bad block #%v (%s)\n", block.Number(), block.Hash().Hex()) glog.Errorf(" %v", err) } go ReportBlock(block, err) }
func (self *Filter) getLogs(start, end uint64) (logs vm.Logs) { var block *types.Block for i := start; i <= end; i++ { hash := core.GetCanonicalHash(self.db, i) if hash != (common.Hash{}) { block = core.GetBlock(self.db, hash) } else { // block not found return logs } // Use bloom filtering to see if this block is interesting given the // current parameters if self.bloomFilter(block) { // Get the logs of the block var ( receipts = core.GetBlockReceipts(self.db, block.Hash()) unfiltered vm.Logs ) for _, receipt := range receipts { unfiltered = append(unfiltered, receipt.Logs...) } logs = append(logs, self.FilterLogs(unfiltered)...) } } return logs }
func (self *Filter) bloomFilter(block *types.Block) bool { if len(self.addresses) > 0 { var included bool for _, addr := range self.addresses { if types.BloomLookup(block.Bloom(), addr) { included = true break } } if !included { return false } } for _, sub := range self.topics { var included bool for _, topic := range sub { if (topic == common.Hash{}) || types.BloomLookup(block.Bloom(), topic) { included = true break } } if !included { return false } } return true }
func sendBadBlockReport(block *types.Block, err error) { if !EnableBadBlockReporting { return } var ( blockRLP, _ = rlp.EncodeToBytes(block) params = map[string]interface{}{ "block": common.Bytes2Hex(blockRLP), "blockHash": block.Hash().Hex(), "errortype": err.Error(), "client": "go", } ) if !block.ReceivedAt.IsZero() { params["receivedAt"] = block.ReceivedAt.UTC().String() } if p, ok := block.ReceivedFrom.(*peer); ok { params["receivedFrom"] = map[string]interface{}{ "enode": fmt.Sprintf("enode://%[email protected]%v", p.ID(), p.RemoteAddr()), "name": p.Name(), "protocolVersion": p.version, } } jsonStr, _ := json.Marshal(map[string]interface{}{"method": "eth_badBlock", "id": "1", "jsonrpc": "2.0", "params": []interface{}{params}}) client := http.Client{Timeout: 8 * time.Second} resp, err := client.Post(badBlocksURL, "application/json", bytes.NewReader(jsonStr)) if err != nil { glog.V(logger.Debug).Infoln(err) return } glog.V(logger.Debug).Infof("Bad Block Report posted (%d)", resp.StatusCode) resp.Body.Close() }
// makeChain creates a chain of n blocks starting at and including parent. // the returned hash chain is ordered head->parent. In addition, every 3rd block // contains a transaction and every 5th an uncle to allow testing correct block // reassembly. func makeChain(n int, seed byte, parent *types.Block) ([]common.Hash, map[common.Hash]*types.Block) { blocks, _ := core.GenerateChain(nil, parent, testdb, n, func(i int, block *core.BlockGen) { block.SetCoinbase(common.Address{seed}) // If the block number is multiple of 3, send a bonus transaction to the miner if parent == genesis && i%3 == 0 { tx, err := types.NewTransaction(block.TxNonce(testAddress), common.Address{seed}, big.NewInt(1000), params.TxGas, nil, nil).SignECDSA(testKey) if err != nil { panic(err) } block.AddTx(tx) } // If the block number is a multiple of 5, add a bonus uncle to the block if i%5 == 0 { block.AddUncle(&types.Header{ParentHash: block.PrevBlock(i - 1).Hash(), Number: big.NewInt(int64(i - 1))}) } }) hashes := make([]common.Hash, n+1) hashes[len(hashes)-1] = parent.Hash() blockm := make(map[common.Hash]*types.Block, n+1) blockm[parent.Hash()] = parent for i, b := range blocks { hashes[len(hashes)-i-2] = b.Hash() blockm[b.Hash()] = b } return hashes, blockm }
func (gui *Gui) processBlock(block *types.Block, initial bool) { name := block.Coinbase().Hex() b := xeth.NewBlock(block) b.Name = name gui.getObjectByName("chainView").Call("addBlock", b, initial) }
// enqueue schedules a new future import operation, if the block to be imported // has not yet been seen. func (f *Fetcher) enqueue(peer string, block *types.Block) { hash := block.Hash() // Ensure the peer isn't DOSing us count := f.queues[peer] + 1 if count > blockLimit { glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], exceeded allowance (%d)", peer, block.NumberU64(), hash.Bytes()[:4], blockLimit) return } // Discard any past or too distant blocks if dist := int64(block.NumberU64()) - int64(f.chainHeight()); dist < -maxUncleDist || dist > maxQueueDist { glog.V(logger.Debug).Infof("Peer %s: discarded block #%d [%x], distance %d", peer, block.NumberU64(), hash.Bytes()[:4], dist) return } // Schedule the block for future importing if _, ok := f.queued[hash]; !ok { op := &inject{ origin: peer, block: block, } f.queues[peer] = count f.queued[hash] = op f.queue.Push(op, -float32(block.NumberU64())) if glog.V(logger.Debug) { glog.Infof("Peer %s: queued block #%d [%x], total %v", peer, block.NumberU64(), hash.Bytes()[:4], f.queue.Size()) } } }
// makeCurrent creates a new environment for the current cycle. func (self *worker) makeCurrent(parent *types.Block, header *types.Header) { state := state.New(parent.Root(), self.eth.ChainDb()) work := &Work{ state: state, ancestors: set.New(), family: set.New(), uncles: set.New(), header: header, coinbase: state.GetOrNewStateObject(self.coinbase), createdAt: time.Now(), } // when 08 is processed ancestors contain 07 (quick block) for _, ancestor := range self.chain.GetBlocksFromHash(parent.Hash(), 7) { for _, uncle := range ancestor.Uncles() { work.family.Add(uncle.Hash()) } work.family.Add(ancestor.Hash()) work.ancestors.Add(ancestor.Hash()) } accounts, _ := self.eth.AccountManager().Accounts() // Keep track of transactions which return errors so they can be removed work.remove = set.New() work.tcount = 0 work.ignoredTransactors = set.New() work.lowGasTransactors = set.New() work.ownedAccounts = accountAddressesSet(accounts) if self.current != nil { work.localMinedBlocks = self.current.localMinedBlocks } self.current = work }
// GetLogs returns the logs of the given block. This method is using a two step approach // where it tries to get it from the (updated) method which gets them from the receipts or // the depricated way by re-processing the block. func (sm *BlockProcessor) GetLogs(block *types.Block) (logs state.Logs, err error) { receipts := GetBlockReceipts(sm.chainDb, block.Hash()) // coalesce logs for _, receipt := range receipts { logs = append(logs, receipt.Logs()...) } return logs, nil }
func (self *ChainManager) GetUnclesInChain(block *types.Block, length int) (uncles []*types.Header) { for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = self.GetBlock(block.ParentHash()) } return }
// GetUnclesInChain retrieves all the uncles from a given block backwards until // a specific distance is reached. func (self *BlockChain) GetUnclesInChain(block *types.Block, length int) []*types.Header { uncles := []*types.Header{} for i := 0; block != nil && i < length; i++ { uncles = append(uncles, block.Uncles()...) block = self.GetBlock(block.ParentHash()) } return uncles }
// CalcTD computes the total difficulty of block. func CalcTD(block, parent *types.Block) *big.Int { if parent == nil { return block.Difficulty() } d := block.Difficulty() d.Add(d, parent.Td) return d }
// WriteCanonNumber writes the canonical hash for the given block func WriteCanonNumber(db common.Database, block *types.Block) error { key := append(blockNumPre, block.Number().Bytes()...) err := db.Put(key, block.Hash().Bytes()) if err != nil { return err } return nil }
func CalculateTD(block, parent *types.Block) *big.Int { if parent == nil { return block.Difficulty() } td := new(big.Int).Add(parent.Td, block.Header().Difficulty) return td }
func CalcGasLimit(parent *types.Block) *big.Int { // ((1024-1) * parent.gasLimit + (gasUsed * 6 / 5)) / 1024 previous := new(big.Int).Mul(big.NewInt(1024-1), parent.GasLimit()) current := new(big.Rat).Mul(new(big.Rat).SetInt(parent.GasUsed()), big.NewRat(6, 5)) curInt := new(big.Int).Div(current.Num(), current.Denom()) result := new(big.Int).Add(previous, curInt) result.Div(result, big.NewInt(1024)) return common.BigMax(params.GenesisGasLimit, result) }
func (bc *ChainManager) write(block *types.Block) { enc, _ := rlp.EncodeToBytes((*types.StorageBlock)(block)) key := append(blockHashPre, block.Hash().Bytes()...) err := bc.blockDb.Put(key, enc) if err != nil { glog.Fatal("db write fail:", err) } // Push block to cache bc.cache.Push(block) }
// WriteHead force writes the current head func WriteHead(db common.Database, block *types.Block) error { err := WriteCanonNumber(db, block) if err != nil { return err } err = db.Put([]byte("LastBlock"), block.Hash().Bytes()) if err != nil { return err } return nil }
func (self *CpuAgent) mine(block *types.Block, stop <-chan struct{}) { glog.V(logger.Debug).Infof("(re)started agent[%d]. mining...\n", self.index) // Mine nonce, mixDigest := self.pow.Search(block, stop) if nonce != 0 { self.returnCh <- block.WithMiningResult(nonce, common.BytesToHash(mixDigest)) } else { self.returnCh <- nil } }
func (self *ChainManager) GetAncestors(block *types.Block, length int) (blocks []*types.Block) { for i := 0; i < length; i++ { block = self.GetBlock(block.ParentHash()) if block == nil { break } blocks = append(blocks, block) } return }
// GetReceiptFromBlock returns all receipts with the given block func GetReceiptsFromBlock(db common.Database, block *types.Block) types.Receipts { // at some point we want: //receipts := make(types.Receipts, len(block.Transactions())) // but since we need to support legacy, we can't (yet) var receipts types.Receipts for _, tx := range block.Transactions() { if receipt := GetReceipt(db, tx.Hash()); receipt != nil { receipts = append(receipts, receipt) } } return receipts }
func (sm *BlockProcessor) RetryProcess(block *types.Block) (logs state.Logs, err error) { // Processing a blocks may never happen simultaneously sm.mutex.Lock() defer sm.mutex.Unlock() header := block.Header() if !sm.bc.HasBlock(header.ParentHash) { return nil, ParentError(header.ParentHash) } parent := sm.bc.GetBlock(header.ParentHash) return sm.processWithParent(block, parent) }
func env(block *types.Block, eth core.Backend) *environment { state := state.New(block.Root(), eth.StateDb()) env := &environment{ totalUsedGas: new(big.Int), state: state, block: block, family: set.New(), uncles: set.New(), coinbase: state.GetOrNewStateObject(block.Coinbase()), } return env }