示例#1
0
func (check *Checker) comparison(x, y *operand, op token.Token) {
	// spec: "In any comparison, the first operand must be assignable
	// to the type of the second operand, or vice versa."
	err := ""
	if x.assignableTo(check.conf, y.typ) || y.assignableTo(check.conf, x.typ) {
		defined := false
		switch op {
		case token.EQL, token.NEQ:
			// spec: "The equality operators == and != apply to operands that are comparable."
			defined = Comparable(x.typ) || x.isNil() && hasNil(y.typ) || y.isNil() && hasNil(x.typ)
		case token.LSS, token.LEQ, token.GTR, token.GEQ:
			// spec: The ordering operators <, <=, >, and >= apply to operands that are ordered."
			defined = isOrdered(x.typ)
		default:
			unreachable()
		}
		if !defined {
			typ := x.typ
			if x.isNil() {
				typ = y.typ
			}
			err = check.sprintf("operator %s not defined for %s", op, typ)
		}
	} else {
		err = check.sprintf("mismatched types %s and %s", x.typ, y.typ)
	}

	if err != "" {
		check.errorf(x.pos(), "cannot compare %s %s %s (%s)", x.expr, op, y.expr, err)
		x.mode = invalid
		return
	}

	if x.mode == constant && y.mode == constant {
		x.val = exact.MakeBool(exact.Compare(x.val, op, y.val))
		// The operands are never materialized; no need to update
		// their types.
	} else {
		x.mode = value
		// The operands have now their final types, which at run-
		// time will be materialized. Update the expression trees.
		// If the current types are untyped, the materialized type
		// is the respective default type.
		check.updateExprType(x.expr, defaultType(x.typ), true)
		check.updateExprType(y.expr, defaultType(y.typ), true)
	}

	// spec: "Comparison operators compare two operands and yield
	//        an untyped boolean value."
	x.typ = Typ[UntypedBool]
}
示例#2
0
func checkConstValue(t *testing.T, prog *ssa.Program, obj *types.Const) {
	c := prog.ConstValue(obj)
	// fmt.Printf("ConstValue(%s) = %s\n", obj, c) // debugging
	if c == nil {
		t.Errorf("ConstValue(%s) == nil", obj)
		return
	}
	if !types.Identical(c.Type(), obj.Type()) {
		t.Errorf("ConstValue(%s).Type() == %s", obj, c.Type())
		return
	}
	if obj.Name() != "nil" {
		if !exact.Compare(c.Value, token.EQL, obj.Val()) {
			t.Errorf("ConstValue(%s).Value (%s) != %s",
				obj, c.Value, obj.Val())
			return
		}
	}
}
// matchExpr reports whether pattern x matches y.
//
// If tr.allowWildcards, Idents in x that refer to parameters are
// treated as wildcards, and match any y that is assignable to the
// parameter type; matchExpr records this correspondence in tr.env.
// Otherwise, matchExpr simply reports whether the two trees are
// equivalent.
//
// A wildcard appearing more than once in the pattern must
// consistently match the same tree.
//
func (tr *Transformer) matchExpr(x, y ast.Expr) bool {
	if x == nil && y == nil {
		return true
	}
	if x == nil || y == nil {
		return false
	}
	x = unparen(x)
	y = unparen(y)

	// Is x a wildcard?  (a reference to a 'before' parameter)
	if xobj, ok := tr.wildcardObj(x); ok {
		return tr.matchWildcard(xobj, y)
	}

	// Object identifiers (including pkg-qualified ones)
	// are handled semantically, not syntactically.
	xobj := isRef(x, tr.info)
	yobj := isRef(y, tr.info)
	if xobj != nil {
		return xobj == yobj
	}
	if yobj != nil {
		return false
	}

	// TODO(adonovan): audit: we cannot assume these ast.Exprs
	// contain non-nil pointers.  e.g. ImportSpec.Name may be a
	// nil *ast.Ident.

	if reflect.TypeOf(x) != reflect.TypeOf(y) {
		return false
	}
	switch x := x.(type) {
	case *ast.Ident:
		log.Fatalf("unexpected Ident: %s", astString(tr.fset, x))

	case *ast.BasicLit:
		y := y.(*ast.BasicLit)
		xval := exact.MakeFromLiteral(x.Value, x.Kind)
		yval := exact.MakeFromLiteral(y.Value, y.Kind)
		return exact.Compare(xval, token.EQL, yval)

	case *ast.FuncLit:
		// func literals (and thus statement syntax) never match.
		return false

	case *ast.CompositeLit:
		y := y.(*ast.CompositeLit)
		return (x.Type == nil) == (y.Type == nil) &&
			(x.Type == nil || tr.matchType(x.Type, y.Type)) &&
			tr.matchExprs(x.Elts, y.Elts)

	case *ast.SelectorExpr:
		y := y.(*ast.SelectorExpr)
		return tr.matchSelectorExpr(x, y) &&
			tr.info.Selections[x].Obj() == tr.info.Selections[y].Obj()

	case *ast.IndexExpr:
		y := y.(*ast.IndexExpr)
		return tr.matchExpr(x.X, y.X) &&
			tr.matchExpr(x.Index, y.Index)

	case *ast.SliceExpr:
		y := y.(*ast.SliceExpr)
		return tr.matchExpr(x.X, y.X) &&
			tr.matchExpr(x.Low, y.Low) &&
			tr.matchExpr(x.High, y.High) &&
			tr.matchExpr(x.Max, y.Max) &&
			x.Slice3 == y.Slice3

	case *ast.TypeAssertExpr:
		y := y.(*ast.TypeAssertExpr)
		return tr.matchExpr(x.X, y.X) &&
			tr.matchType(x.Type, y.Type)

	case *ast.CallExpr:
		y := y.(*ast.CallExpr)
		match := tr.matchExpr // function call
		if tr.info.Types[x.Fun].IsType() {
			match = tr.matchType // type conversion
		}
		return x.Ellipsis.IsValid() == y.Ellipsis.IsValid() &&
			match(x.Fun, y.Fun) &&
			tr.matchExprs(x.Args, y.Args)

	case *ast.StarExpr:
		y := y.(*ast.StarExpr)
		return tr.matchExpr(x.X, y.X)

	case *ast.UnaryExpr:
		y := y.(*ast.UnaryExpr)
		return x.Op == y.Op &&
			tr.matchExpr(x.X, y.X)

	case *ast.BinaryExpr:
		y := y.(*ast.BinaryExpr)
		return x.Op == y.Op &&
			tr.matchExpr(x.X, y.X) &&
			tr.matchExpr(x.Y, y.Y)

	case *ast.KeyValueExpr:
		y := y.(*ast.KeyValueExpr)
		return tr.matchExpr(x.Key, y.Key) &&
			tr.matchExpr(x.Value, y.Value)
	}

	panic(fmt.Sprintf("unhandled AST node type: %T", x))
}