/* * findinc finds ADD instructions with a constant * argument which falls within the immed_12 range. */ func findinc(r *gc.Flow, r2 *gc.Flow, v *obj.Addr) *gc.Flow { var r1 *gc.Flow var p *obj.Prog for r1 = gc.Uniqs(r); r1 != nil && r1 != r2; r, r1 = r1, gc.Uniqs(r1) { if gc.Uniqp(r1) != r { return nil } switch copyu(r1.Prog, v, nil) { case 0: /* not touched */ continue case 4: /* set and used */ p = r1.Prog if p.As == arm.AADD { if isdconst(&p.From) { if p.From.Offset > -4096 && p.From.Offset < 4096 { return r1 } } } fallthrough default: return nil } } return nil }
func conprop(r0 *gc.Flow) { var p *obj.Prog var t int p0 := r0.Prog v0 := &p0.To r := r0 loop: r = gc.Uniqs(r) if r == nil || r == r0 { return } if gc.Uniqp(r) == nil { return } p = r.Prog t = copyu(p, v0, nil) switch t { case 0, // miss 1: // use goto loop case 2, // rar 4: // use and set break case 3: // set if p.As == p0.As { if p.From.Type == p0.From.Type { if p.From.Reg == p0.From.Reg { if p.From.Node == p0.From.Node { if p.From.Offset == p0.From.Offset { if p.From.Scale == p0.From.Scale { if p.From.Type == obj.TYPE_FCONST && p.From.U.Dval == p0.From.U.Dval { if p.From.Index == p0.From.Index { excise(r) goto loop } } } } } } } } } }
func rnops(r *gc.Flow) *gc.Flow { if r != nil { var p *obj.Prog var r1 *gc.Flow for { p = r.Prog if p.As != obj.ANOP || p.From.Type != obj.TYPE_NONE || p.To.Type != obj.TYPE_NONE { break } r1 = gc.Uniqs(r) if r1 == nil { break } r = r1 } } return r }
/* * findpre returns the last instruction mentioning v * before r. It must be a set, and there must be * a unique path from that instruction to r. */ func findpre(r *gc.Flow, v *obj.Addr) *gc.Flow { var r1 *gc.Flow for r1 = gc.Uniqp(r); r1 != nil; r, r1 = r1, gc.Uniqp(r1) { if gc.Uniqs(r1) != r { return nil } switch copyu(r1.Prog, v, nil) { case 1, /* used */ 2: /* read-alter-rewrite */ return nil case 3, /* set */ 4: /* set and used */ return r1 } } return nil }
func nochange(r *gc.Flow, r2 *gc.Flow, p *obj.Prog) bool { if r == r2 { return true } n := int(0) var a [3]obj.Addr if p.Reg != 0 && p.Reg != p.To.Reg { a[n].Type = obj.TYPE_REG a[n].Reg = p.Reg n++ } switch p.From.Type { case obj.TYPE_SHIFT: a[n].Type = obj.TYPE_REG a[n].Reg = int16(arm.REG_R0 + (p.From.Offset & 0xf)) n++ fallthrough case obj.TYPE_REG: a[n].Type = obj.TYPE_REG a[n].Reg = p.From.Reg n++ } if n == 0 { return true } var i int for ; r != nil && r != r2; r = gc.Uniqs(r) { p = r.Prog for i = 0; i < n; i++ { if copyu(p, &a[i], nil) > 1 { return false } } } return true }
func peep(firstp *obj.Prog) { g := gc.Flowstart(firstp, nil) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r1 *gc.Flow var p1 *obj.Prog var r *gc.Flow var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AADDL, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := g.Start; r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } gc.Flowend(g) }
/* * the idea is to substitute * one register for another * from one MOV to another * MOV a, R0 * ADD b, R0 / no use of R1 * MOV R0, R1 * would be converted to * MOV a, R1 * ADD b, R1 * MOV R1, R0 * hopefully, then the former or latter MOV * will be eliminated by copy propagation. */ func subprop(r0 *gc.Flow) bool { p := r0.Prog v1 := &p.From if !regtyp(v1) { return false } v2 := &p.To if !regtyp(v2) { return false } var info gc.ProgInfo for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\t? %v\n", r.Prog) } if gc.Uniqs(r) == nil { break } p = r.Prog if p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } info = proginfo(p) if info.Flags&gc.Call != 0 { return false } if info.Reguse|info.Regset != 0 { return false } if (info.Flags&gc.Move != 0) && (info.Flags&(gc.SizeL|gc.SizeQ|gc.SizeF|gc.SizeD) != 0) && p.To.Type == v1.Type && p.To.Reg == v1.Reg { copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog) if p.From.Type == v2.Type && p.From.Reg == v2.Reg { fmt.Printf(" excise") } fmt.Printf("\n") } for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) { p = r.Prog copysub(&p.From, v1, v2, 1) copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("%v\n", r.Prog) } } t := int(v1.Reg) v1.Reg = v2.Reg v2.Reg = int16(t) if gc.Debug['P'] != 0 { fmt.Printf("%v last\n", r.Prog) } return true } if copyau(&p.From, v2) || copyau(&p.To, v2) { break } if copysub(&p.From, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 { break } } return false }
/* * the idea is to substitute * one register for another * from one MOV to another * MOV a, R1 * ADD b, R1 / no use of R2 * MOV R1, R2 * would be converted to * MOV a, R2 * ADD b, R2 * MOV R2, R1 * hopefully, then the former or latter MOV * will be eliminated by copy propagation. * * r0 (the argument, not the register) is the MOV at the end of the * above sequences. This returns 1 if it modified any instructions. */ func subprop(r0 *gc.Flow) bool { p := (*obj.Prog)(r0.Prog) v1 := (*obj.Addr)(&p.From) if !regtyp(v1) { return false } v2 := (*obj.Addr)(&p.To) if !regtyp(v2) { return false } for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) { if gc.Uniqs(r) == nil { break } p = r.Prog if p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } if p.Info.Flags&gc.Call != 0 { return false } if p.Info.Flags&(gc.RightRead|gc.RightWrite) == gc.RightWrite { if p.To.Type == v1.Type { if p.To.Reg == v1.Reg { copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog) if p.From.Type == v2.Type { fmt.Printf(" excise") } fmt.Printf("\n") } for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) { p = r.Prog copysub(&p.From, v1, v2, 1) copysub1(p, v1, v2, 1) copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("%v\n", r.Prog) } } t := int(int(v1.Reg)) v1.Reg = v2.Reg v2.Reg = int16(t) if gc.Debug['P'] != 0 { fmt.Printf("%v last\n", r.Prog) } return true } } } if copyau(&p.From, v2) || copyau1(p, v2) || copyau(&p.To, v2) { break } if copysub(&p.From, v1, v2, 0) != 0 || copysub1(p, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 { break } } return false }
func peep(firstp *obj.Prog) { g := (*gc.Graph)(gc.Flowstart(firstp, nil)) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL, x86.ALEAQ: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r *gc.Flow var r1 *gc.Flow var p1 *obj.Prog var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AMOVBQSX, x86.AMOVBQZX, x86.AMOVWQSX, x86.AMOVWQZX, x86.AMOVLQSX, x86.AMOVLQZX, x86.AMOVQL: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVQ t++ } } } case x86.AADDL, x86.AADDQ, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDQ { p.As = x86.ADECQ } else if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDQ { p.As = x86.AINCQ } else if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBQ, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBQ { p.As = x86.AINCQ } else if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBQ { p.As = x86.ADECQ } else if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVLQZX removal. // The MOVLQZX exists to avoid being confused for a // MOVL that is just copying 32-bit data around during // copyprop. Now that copyprop is done, remov MOVLQZX R1, R2 // if it is dominated by an earlier ADDL/MOVL/etc into R1 that // will have already cleared the high bits. // // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVLQZX { if regtyp(&p.From) { if p.From.Type == p.To.Type && p.From.Reg == p.To.Reg { if prevl(r, int(p.From.Reg)) { excise(r) } } } } if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } // load pipelining // push any load from memory as early as possible // to give it time to complete before use. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVLQZX: if regtyp(&p.To) && !regconsttyp(&p.From) { pushback(r) } } } gc.Flowend(g) }
/* * the idea is to substitute * one register for another * from one MOV to another * MOV a, R0 * ADD b, R0 / no use of R1 * MOV R0, R1 * would be converted to * MOV a, R1 * ADD b, R1 * MOV R1, R0 * hopefully, then the former or latter MOV * will be eliminated by copy propagation. */ func subprop(r0 *gc.Flow) bool { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("subprop %v\n", r0.Prog) } p := (*obj.Prog)(r0.Prog) v1 := (*obj.Addr)(&p.From) if !regtyp(v1) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tnot regtype %v; return 0\n", gc.Ctxt.Dconv(v1)) } return false } v2 := (*obj.Addr)(&p.To) if !regtyp(v2) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tnot regtype %v; return 0\n", gc.Ctxt.Dconv(v2)) } return false } var info gc.ProgInfo for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\t? %v\n", r.Prog) } if gc.Uniqs(r) == nil { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tno unique successor\n") } break } p = r.Prog if p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } info = proginfo(p) if info.Flags&gc.Call != 0 { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tfound %v; return 0\n", p) } return false } if info.Reguse|info.Regset != 0 { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tfound %v; return 0\n", p) } return false } if (info.Flags&gc.Move != 0) && (info.Flags&(gc.SizeL|gc.SizeQ|gc.SizeF|gc.SizeD) != 0) && p.To.Type == v1.Type && p.To.Reg == v1.Reg { copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog) if p.From.Type == v2.Type && p.From.Reg == v2.Reg { fmt.Printf(" excise") } fmt.Printf("\n") } for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) { p = r.Prog copysub(&p.From, v1, v2, 1) copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("%v\n", r.Prog) } } t := int(int(v1.Reg)) v1.Reg = v2.Reg v2.Reg = int16(t) if gc.Debug['P'] != 0 { fmt.Printf("%v last\n", r.Prog) } return true } if copyau(&p.From, v2) || copyau(&p.To, v2) { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tcopyau %v failed\n", gc.Ctxt.Dconv(v2)) } break } if copysub(&p.From, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 { if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tcopysub failed\n") } break } } if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { fmt.Printf("\tran off end; return 0\n") } return false }
func pushback(r0 *gc.Flow) { var r *gc.Flow var p *obj.Prog var b *gc.Flow p0 := (*obj.Prog)(r0.Prog) for r = gc.Uniqp(r0); r != nil && gc.Uniqs(r) != nil; r = gc.Uniqp(r) { p = r.Prog if p.As != obj.ANOP { if !regconsttyp(&p.From) || !regtyp(&p.To) { break } if copyu(p, &p0.To, nil) != 0 || copyu(p0, &p.To, nil) != 0 { break } } if p.As == obj.ACALL { break } b = r } if b == nil { if gc.Debug['v'] != 0 { fmt.Printf("no pushback: %v\n", r0.Prog) if r != nil { fmt.Printf("\t%v [%d]\n", r.Prog, gc.Uniqs(r) != nil) } } return } if gc.Debug['v'] != 0 { fmt.Printf("pushback\n") for r := (*gc.Flow)(b); ; r = r.Link { fmt.Printf("\t%v\n", r.Prog) if r == r0 { break } } } t := obj.Prog(*r0.Prog) for r = gc.Uniqp(r0); ; r = gc.Uniqp(r) { p0 = r.Link.Prog p = r.Prog p0.As = p.As p0.Lineno = p.Lineno p0.From = p.From p0.To = p.To if r == b { break } } p0 = r.Prog p0.As = t.As p0.Lineno = t.Lineno p0.From = t.From p0.To = t.To if gc.Debug['v'] != 0 { fmt.Printf("\tafter\n") for r := (*gc.Flow)(b); ; r = r.Link { fmt.Printf("\t%v\n", r.Prog) if r == r0 { break } } } }
/* * xtramodes enables the ARM post increment and * shift offset addressing modes to transform * MOVW 0(R3),R1 * ADD $4,R3,R3 * into * MOVW.P 4(R3),R1 * and * ADD R0,R1 * MOVBU 0(R1),R0 * into * MOVBU R0<<0(R1),R0 */ func xtramodes(g *gc.Graph, r *gc.Flow, a *obj.Addr) bool { p := (*obj.Prog)(r.Prog) v := obj.Addr(*a) v.Type = obj.TYPE_REG r1 := (*gc.Flow)(findpre(r, &v)) if r1 != nil { p1 := r1.Prog if p1.To.Type == obj.TYPE_REG && p1.To.Reg == v.Reg { switch p1.As { case arm.AADD: if p1.Scond&arm.C_SBIT != 0 { // avoid altering ADD.S/ADC sequences. break } if p1.From.Type == obj.TYPE_REG || (p1.From.Type == obj.TYPE_SHIFT && p1.From.Offset&(1<<4) == 0 && ((p.As != arm.AMOVB && p.As != arm.AMOVBS) || (a == &p.From && p1.From.Offset&^0xf == 0))) || ((p1.From.Type == obj.TYPE_ADDR || p1.From.Type == obj.TYPE_CONST) && p1.From.Offset > -4096 && p1.From.Offset < 4096) { if nochange(gc.Uniqs(r1), r, p1) { if a != &p.From || v.Reg != p.To.Reg { if finduse(g, r.S1, &v) { if p1.Reg == 0 || p1.Reg == v.Reg { /* pre-indexing */ p.Scond |= arm.C_WBIT } else { return false } } } switch p1.From.Type { /* register offset */ case obj.TYPE_REG: if gc.Nacl { return false } *a = obj.Addr{} a.Type = obj.TYPE_SHIFT a.Offset = int64(p1.From.Reg) & 15 /* scaled register offset */ case obj.TYPE_SHIFT: if gc.Nacl { return false } *a = obj.Addr{} a.Type = obj.TYPE_SHIFT fallthrough /* immediate offset */ case obj.TYPE_CONST, obj.TYPE_ADDR: a.Offset = p1.From.Offset } if p1.Reg != 0 { a.Reg = p1.Reg } excise(r1) return true } } case arm.AMOVW: if p1.From.Type == obj.TYPE_REG { r2 := (*gc.Flow)(findinc(r1, r, &p1.From)) if r2 != nil { var r3 *gc.Flow for r3 = gc.Uniqs(r2); r3.Prog.As == obj.ANOP; r3 = gc.Uniqs(r3) { } if r3 == r { /* post-indexing */ p1 := r2.Prog a.Reg = p1.To.Reg a.Offset = p1.From.Offset p.Scond |= arm.C_PBIT if !finduse(g, r, &r1.Prog.To) { excise(r1) } excise(r2) return true } } } } } } if a != &p.From || a.Reg != p.To.Reg { r1 := (*gc.Flow)(findinc(r, nil, &v)) if r1 != nil { /* post-indexing */ p1 := r1.Prog a.Offset = p1.From.Offset p.Scond |= arm.C_PBIT excise(r1) return true } } return false }
/* * ASLL x,y,w * .. (not use w, not set x y w) * AXXX w,a,b (a != w) * .. (not use w) * (set w) * ----------- changed to * .. * AXXX (x<<y),a,b * .. */ func shiftprop(r *gc.Flow) bool { p := (*obj.Prog)(r.Prog) if p.To.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: result not reg; FAILURE\n") } return false } n := int(int(p.To.Reg)) a := obj.Addr(obj.Addr{}) if p.Reg != 0 && p.Reg != p.To.Reg { a.Type = obj.TYPE_REG a.Reg = p.Reg } if gc.Debug['P'] != 0 { fmt.Printf("shiftprop\n%v", p) } r1 := (*gc.Flow)(r) var p1 *obj.Prog for { /* find first use of shift result; abort if shift operands or result are changed */ r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tbranch; FAILURE\n") } return false } if gc.Uniqp(r1) == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tmerge; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ if (p.From.Type == obj.TYPE_REG && copyu(p1, &p.From, nil) > 1) || (a.Type == obj.TYPE_REG && copyu(p1, &a, nil) > 1) { if gc.Debug['P'] != 0 { fmt.Printf("\targs modified; FAILURE\n") } return false } continue case 3: /* set, not used */ { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: noref; FAILURE\n") } return false } } break } /* check whether substitution can be done */ switch p1.As { default: if gc.Debug['P'] != 0 { fmt.Printf("\tnon-dpi; FAILURE\n") } return false case arm.AAND, arm.AEOR, arm.AADD, arm.AADC, arm.AORR, arm.ASUB, arm.ASBC, arm.ARSB, arm.ARSC: if int(p1.Reg) == n || (p1.Reg == 0 && p1.To.Type == obj.TYPE_REG && int(p1.To.Reg) == n) { if p1.From.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } p1.Reg = p1.From.Reg p1.From.Reg = int16(n) switch p1.As { case arm.ASUB: p1.As = arm.ARSB case arm.ARSB: p1.As = arm.ASUB case arm.ASBC: p1.As = arm.ARSC case arm.ARSC: p1.As = arm.ASBC } if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v", p1) } } fallthrough case arm.ABIC, arm.ATST, arm.ACMP, arm.ACMN: if int(p1.Reg) == n { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } if p1.Reg == 0 && int(p1.To.Reg) == n { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used twice; FAILURE\n") } return false } // case AMVN: if p1.From.Type == obj.TYPE_SHIFT { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used in shift; FAILURE\n") } return false } if p1.From.Type != obj.TYPE_REG || int(p1.From.Reg) != n { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: where is it used?; FAILURE\n") } return false } } /* check whether shift result is used subsequently */ p2 := (*obj.Prog)(p1) if int(p1.To.Reg) != n { var p1 *obj.Prog for { r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tinconclusive; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ continue case 3: /* set, not used */ break default: /* used */ if gc.Debug['P'] != 0 { fmt.Printf("\treused; FAILURE\n") } return false } break } } /* make the substitution */ p2.From.Reg = 0 o := int(int(p.Reg)) if o == 0 { o = int(p.To.Reg) } o &= 15 switch p.From.Type { case obj.TYPE_CONST: o |= int((p.From.Offset & 0x1f) << 7) case obj.TYPE_REG: o |= 1<<4 | (int(p.From.Reg)&15)<<8 } switch p.As { case arm.ASLL: o |= 0 << 5 case arm.ASRL: o |= 1 << 5 case arm.ASRA: o |= 2 << 5 } p2.From = obj.Addr{} p2.From.Type = obj.TYPE_SHIFT p2.From.Offset = int64(o) if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v\tSUCCEED\n", p2) } return true }
/* * the idea is to substitute * one register for another * from one MOV to another * MOV a, R0 * ADD b, R0 / no use of R1 * MOV R0, R1 * would be converted to * MOV a, R1 * ADD b, R1 * MOV R1, R0 * hopefully, then the former or latter MOV * will be eliminated by copy propagation. */ func subprop(r0 *gc.Flow) bool { p := (*obj.Prog)(r0.Prog) v1 := (*obj.Addr)(&p.From) if !regtyp(v1) { return false } v2 := (*obj.Addr)(&p.To) if !regtyp(v2) { return false } for r := gc.Uniqp(r0); r != nil; r = gc.Uniqp(r) { if gc.Uniqs(r) == nil { break } p = r.Prog if p.As == obj.AVARDEF || p.As == obj.AVARKILL { continue } if p.Info.Flags&gc.Call != 0 { return false } // TODO(rsc): Whatever invalidated the info should have done this call. proginfo(p) if (p.Info.Flags&gc.CanRegRead != 0) && p.To.Type == obj.TYPE_REG { p.Info.Flags |= gc.RegRead p.Info.Flags &^= (gc.CanRegRead | gc.RightRead) p.Reg = p.To.Reg } switch p.As { case arm.AMULLU, arm.AMULA, arm.AMVN: return false } if p.Info.Flags&(gc.RightRead|gc.RightWrite) == gc.RightWrite { if p.To.Type == v1.Type { if p.To.Reg == v1.Reg { if p.Scond == arm.C_SCOND_NONE { copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("gotit: %v->%v\n%v", gc.Ctxt.Dconv(v1), gc.Ctxt.Dconv(v2), r.Prog) if p.From.Type == v2.Type { fmt.Printf(" excise") } fmt.Printf("\n") } for r = gc.Uniqs(r); r != r0; r = gc.Uniqs(r) { p = r.Prog copysub(&p.From, v1, v2, 1) copysub1(p, v1, v2, 1) copysub(&p.To, v1, v2, 1) if gc.Debug['P'] != 0 { fmt.Printf("%v\n", r.Prog) } } t := int(int(v1.Reg)) v1.Reg = v2.Reg v2.Reg = int16(t) if gc.Debug['P'] != 0 { fmt.Printf("%v last\n", r.Prog) } return true } } } } if copyau(&p.From, v2) || copyau1(p, v2) || copyau(&p.To, v2) { break } if copysub(&p.From, v1, v2, 0) != 0 || copysub1(p, v1, v2, 0) != 0 || copysub(&p.To, v1, v2, 0) != 0 { break } } return false }