Beispiel #1
0
func addpltsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Plt >= 0 {
		return
	}

	adddynsym(ctxt, s)

	if ld.Iself {
		plt := ld.Linklookup(ctxt, ".plt", 0)
		got := ld.Linklookup(ctxt, ".got.plt", 0)
		rel := ld.Linklookup(ctxt, ".rel.plt", 0)
		if plt.Size == 0 {
			elfsetupplt()
		}

		// jmpq *got+size
		ld.Adduint8(ctxt, plt, 0xff)

		ld.Adduint8(ctxt, plt, 0x25)
		ld.Addaddrplus(ctxt, plt, got, got.Size)

		// add to got: pointer to current pos in plt
		ld.Addaddrplus(ctxt, got, plt, plt.Size)

		// pushl $x
		ld.Adduint8(ctxt, plt, 0x68)

		ld.Adduint32(ctxt, plt, uint32(rel.Size))

		// jmp .plt
		ld.Adduint8(ctxt, plt, 0xe9)

		ld.Adduint32(ctxt, plt, uint32(-(plt.Size + 4)))

		// rel
		ld.Addaddrplus(ctxt, rel, got, got.Size-4)

		ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_386_JMP_SLOT))

		s.Plt = int32(plt.Size - 16)
	} else if ld.HEADTYPE == ld.Hdarwin {
		// Same laziness as in 6l.

		plt := ld.Linklookup(ctxt, ".plt", 0)

		addgotsym(ctxt, s)

		ld.Adduint32(ctxt, ld.Linklookup(ctxt, ".linkedit.plt", 0), uint32(s.Dynid))

		// jmpq *got+size(IP)
		s.Plt = int32(plt.Size)

		ld.Adduint8(ctxt, plt, 0xff)
		ld.Adduint8(ctxt, plt, 0x25)
		ld.Addaddrplus(ctxt, plt, ld.Linklookup(ctxt, ".got", 0), int64(s.Got))
	} else {
		ld.Diag("addpltsym: unsupported binary format")
	}
}
Beispiel #2
0
func Addcall(ctxt *ld.Link, s *ld.LSym, t *ld.LSym) int64 {
	s.Reachable = true
	i := s.Size
	s.Size += 4
	ld.Symgrow(ctxt, s, s.Size)
	r := ld.Addrel(s)
	r.Sym = t
	r.Off = int32(i)
	r.Type = ld.R_CALL
	r.Siz = 4
	return i + int64(r.Siz)
}
Beispiel #3
0
func addpltreloc(ctxt *ld.Link, plt *ld.LSym, got *ld.LSym, sym *ld.LSym, typ int) *ld.Reloc {
	r := ld.Addrel(plt)
	r.Sym = got
	r.Off = int32(plt.Size)
	r.Siz = 4
	r.Type = int32(typ)
	r.Add = int64(sym.Got) - 8

	plt.Reachable = true
	plt.Size += 4
	ld.Symgrow(ctxt, plt, plt.Size)

	return r
}
Beispiel #4
0
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Dynid >= 0 {
		return
	}

	if ld.Iself {
		s.Dynid = int32(ld.Nelfsym)
		ld.Nelfsym++

		d := ld.Linklookup(ctxt, ".dynsym", 0)

		name := s.Extname
		ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))

		/* type */
		t := ld.STB_GLOBAL << 4

		if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
			t |= ld.STT_FUNC
		} else {
			t |= ld.STT_OBJECT
		}
		ld.Adduint8(ctxt, d, uint8(t))

		/* reserved */
		ld.Adduint8(ctxt, d, 0)

		/* section where symbol is defined */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
		} else {
			ld.Adduint16(ctxt, d, 1)
		}

		/* value */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint64(ctxt, d, 0)
		} else {
			ld.Addaddr(ctxt, d, s)
		}

		/* size of object */
		ld.Adduint64(ctxt, d, uint64(s.Size))

		if s.Cgoexport&ld.CgoExportDynamic == 0 && s.Dynimplib != "" && needlib(s.Dynimplib) != 0 {
			ld.Elfwritedynent(ld.Linklookup(ctxt, ".dynamic", 0), ld.DT_NEEDED, uint64(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), s.Dynimplib)))
		}
	} else if ld.HEADTYPE == ld.Hdarwin {
		ld.Diag("adddynsym: missed symbol %s (%s)", s.Name, s.Extname)
	} else if ld.HEADTYPE == ld.Hwindows {
	} else // already taken care of
	{
		ld.Diag("adddynsym: unsupported binary format")
	}
}
Beispiel #5
0
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Dynid >= 0 {
		return
	}

	if ld.Iself {
		s.Dynid = int32(ld.Nelfsym)
		ld.Nelfsym++

		d := ld.Linklookup(ctxt, ".dynsym", 0)

		/* name */
		name := s.Extname

		ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))

		/* value */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint32(ctxt, d, 0)
		} else {
			ld.Addaddr(ctxt, d, s)
		}

		/* size */
		ld.Adduint32(ctxt, d, 0)

		/* type */
		t := ld.STB_GLOBAL << 4

		if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
			t |= ld.STT_FUNC
		} else {
			t |= ld.STT_OBJECT
		}
		ld.Adduint8(ctxt, d, uint8(t))
		ld.Adduint8(ctxt, d, 0)

		/* shndx */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
		} else {
			ld.Adduint16(ctxt, d, 1)
		}
	} else if ld.HEADTYPE == ld.Hdarwin {
		ld.Diag("adddynsym: missed symbol %s (%s)", s.Name, s.Extname)
	} else if ld.HEADTYPE == ld.Hwindows {
	} else // already taken care of
	{
		ld.Diag("adddynsym: unsupported binary format")
	}
}
Beispiel #6
0
func addpltsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Plt >= 0 {
		return
	}

	adddynsym(ctxt, s)

	if ld.Iself {
		plt := ld.Linklookup(ctxt, ".plt", 0)
		got := ld.Linklookup(ctxt, ".got.plt", 0)
		rel := ld.Linklookup(ctxt, ".rel.plt", 0)
		if plt.Size == 0 {
			elfsetupplt()
		}

		// .got entry
		s.Got = int32(got.Size)

		// In theory, all GOT should point to the first PLT entry,
		// Linux/ARM's dynamic linker will do that for us, but FreeBSD/ARM's
		// dynamic linker won't, so we'd better do it ourselves.
		ld.Addaddrplus(ctxt, got, plt, 0)

		// .plt entry, this depends on the .got entry
		s.Plt = int32(plt.Size)

		addpltreloc(ctxt, plt, got, s, ld.R_PLT0) // add lr, pc, #0xXX00000
		addpltreloc(ctxt, plt, got, s, ld.R_PLT1) // add lr, lr, #0xYY000
		addpltreloc(ctxt, plt, got, s, ld.R_PLT2) // ldr pc, [lr, #0xZZZ]!

		// rel
		ld.Addaddrplus(ctxt, rel, got, int64(s.Got))

		ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_ARM_JUMP_SLOT))
	} else {
		ld.Diag("addpltsym: unsupported binary format")
	}
}
Beispiel #7
0
func addgotsyminternal(ctxt *ld.Link, s *ld.LSym) {
	if s.Got >= 0 {
		return
	}

	got := ld.Linklookup(ctxt, ".got", 0)
	s.Got = int32(got.Size)

	ld.Addaddrplus(ctxt, got, s, 0)

	if ld.Iself {
	} else {
		ld.Diag("addgotsyminternal: unsupported binary format")
	}
}
Beispiel #8
0
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Dynid >= 0 {
		return
	}

	if ld.Iself {
		s.Dynid = int32(ld.Nelfsym)
		ld.Nelfsym++

		d := ld.Linklookup(ctxt, ".dynsym", 0)

		name := s.Extname
		ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))

		/* type */
		t := ld.STB_GLOBAL << 4

		if s.Cgoexport != 0 && s.Type&ld.SMASK == ld.STEXT {
			t |= ld.STT_FUNC
		} else {
			t |= ld.STT_OBJECT
		}
		ld.Adduint8(ctxt, d, uint8(t))

		/* reserved */
		ld.Adduint8(ctxt, d, 0)

		/* section where symbol is defined */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
		} else {
			ld.Adduint16(ctxt, d, 1)
		}

		/* value */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint64(ctxt, d, 0)
		} else {
			ld.Addaddr(ctxt, d, s)
		}

		/* size of object */
		ld.Adduint64(ctxt, d, uint64(s.Size))
	} else {
		ld.Diag("adddynsym: unsupported binary format")
	}
}
Beispiel #9
0
func adddynsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Dynid >= 0 {
		return
	}

	if ld.Iself {
		s.Dynid = int32(ld.Nelfsym)
		ld.Nelfsym++

		d := ld.Linklookup(ctxt, ".dynsym", 0)

		/* name */
		name := s.Extname

		ld.Adduint32(ctxt, d, uint32(ld.Addstring(ld.Linklookup(ctxt, ".dynstr", 0), name)))

		/* value */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint32(ctxt, d, 0)
		} else {
			ld.Addaddr(ctxt, d, s)
		}

		/* size */
		ld.Adduint32(ctxt, d, 0)

		/* type */
		t := ld.STB_GLOBAL << 4

		if (s.Cgoexport&ld.CgoExportDynamic != 0) && s.Type&ld.SMASK == ld.STEXT {
			t |= ld.STT_FUNC
		} else {
			t |= ld.STT_OBJECT
		}
		ld.Adduint8(ctxt, d, uint8(t))
		ld.Adduint8(ctxt, d, 0)

		/* shndx */
		if s.Type == ld.SDYNIMPORT {
			ld.Adduint16(ctxt, d, ld.SHN_UNDEF)
		} else {
			ld.Adduint16(ctxt, d, 1)
		}
	} else {
		ld.Diag("adddynsym: unsupported binary format")
	}
}
Beispiel #10
0
func addgotsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Got >= 0 {
		return
	}

	adddynsym(ctxt, s)
	got := ld.Linklookup(ctxt, ".got", 0)
	s.Got = int32(got.Size)
	ld.Adduint32(ctxt, got, 0)

	if ld.Iself {
		rel := ld.Linklookup(ctxt, ".rel", 0)
		ld.Addaddrplus(ctxt, rel, got, int64(s.Got))
		ld.Adduint32(ctxt, rel, ld.ELF32_R_INFO(uint32(s.Dynid), ld.R_ARM_GLOB_DAT))
	} else {
		ld.Diag("addgotsym: unsupported binary format")
	}
}
Beispiel #11
0
func addpltsym(ctxt *ld.Link, s *ld.LSym) {
	if s.Plt >= 0 {
		return
	}

	adddynsym(ctxt, s)

	if ld.Iself {
		plt := ld.Linklookup(ctxt, ".plt", 0)
		rela := ld.Linklookup(ctxt, ".rela.plt", 0)
		if plt.Size == 0 {
			elfsetupplt()
		}

		// Create the glink resolver if necessary
		glink := ensureglinkresolver()

		// Write symbol resolver stub (just a branch to the
		// glink resolver stub)
		r := ld.Addrel(glink)

		r.Sym = glink
		r.Off = int32(glink.Size)
		r.Siz = 4
		r.Type = ld.R_CALLPOWER
		ld.Adduint32(ctxt, glink, 0x48000000) // b .glink

		// In the ppc64 ABI, the dynamic linker is responsible
		// for writing the entire PLT.  We just need to
		// reserve 8 bytes for each PLT entry and generate a
		// JMP_SLOT dynamic relocation for it.
		//
		// TODO(austin): ABI v1 is different
		s.Plt = int32(plt.Size)

		plt.Size += 8

		ld.Addaddrplus(ctxt, rela, plt, int64(s.Plt))
		ld.Adduint64(ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_PPC64_JMP_SLOT))
		ld.Adduint64(ctxt, rela, 0)
	} else {
		ld.Diag("addpltsym: unsupported binary format")
	}
}
Beispiel #12
0
// Construct a call stub in stub that calls symbol targ via its PLT
// entry.
func gencallstub(abicase int, stub *ld.LSym, targ *ld.LSym) {
	if abicase != 1 {
		// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
		// relocations, we'll need to implement cases 2 and 3.
		log.Fatalf("gencallstub only implements case 1 calls")
	}

	plt := ld.Linklookup(ld.Ctxt, ".plt", 0)

	stub.Type = ld.STEXT

	// Save TOC pointer in TOC save slot
	ld.Adduint32(ld.Ctxt, stub, 0xf8410018) // std r2,24(r1)

	// Load the function pointer from the PLT.
	r := ld.Addrel(stub)

	r.Off = int32(stub.Size)
	r.Sym = plt
	r.Add = int64(targ.Plt)
	r.Siz = 2
	if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
		r.Off += int32(r.Siz)
	}
	r.Type = ld.R_POWER_TOC
	r.Variant = ld.RV_POWER_HA
	ld.Adduint32(ld.Ctxt, stub, 0x3d820000) // addis r12,r2,[email protected]@[email protected]
	r = ld.Addrel(stub)
	r.Off = int32(stub.Size)
	r.Sym = plt
	r.Add = int64(targ.Plt)
	r.Siz = 2
	if ld.Ctxt.Arch.ByteOrder == binary.BigEndian {
		r.Off += int32(r.Siz)
	}
	r.Type = ld.R_POWER_TOC
	r.Variant = ld.RV_POWER_LO
	ld.Adduint32(ld.Ctxt, stub, 0xe98c0000) // ld r12,[email protected]@[email protected](r12)

	// Jump to the loaded pointer
	ld.Adduint32(ld.Ctxt, stub, 0x7d8903a6) // mtctr r12
	ld.Adduint32(ld.Ctxt, stub, 0x4e800420) // bctr
}
Beispiel #13
0
func addgotsym(s *ld.LSym) {
	if s.Got >= 0 {
		return
	}

	adddynsym(ld.Ctxt, s)
	got := ld.Linklookup(ld.Ctxt, ".got", 0)
	s.Got = int32(got.Size)
	ld.Adduint64(ld.Ctxt, got, 0)

	if ld.Iself {
		rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
		ld.Addaddrplus(ld.Ctxt, rela, got, int64(s.Got))
		ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_GLOB_DAT))
		ld.Adduint64(ld.Ctxt, rela, 0)
	} else if ld.HEADTYPE == ld.Hdarwin {
		ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(s.Dynid))
	} else {
		ld.Diag("addgotsym: unsupported binary format")
	}
}
Beispiel #14
0
func addpltsym(s *ld.LSym) {
	if s.Plt >= 0 {
		return
	}

	adddynsym(ld.Ctxt, s)

	if ld.Iself {
		plt := ld.Linklookup(ld.Ctxt, ".plt", 0)
		got := ld.Linklookup(ld.Ctxt, ".got.plt", 0)
		rela := ld.Linklookup(ld.Ctxt, ".rela.plt", 0)
		if plt.Size == 0 {
			elfsetupplt()
		}

		// jmpq *got+size(IP)
		ld.Adduint8(ld.Ctxt, plt, 0xff)

		ld.Adduint8(ld.Ctxt, plt, 0x25)
		ld.Addpcrelplus(ld.Ctxt, plt, got, got.Size)

		// add to got: pointer to current pos in plt
		ld.Addaddrplus(ld.Ctxt, got, plt, plt.Size)

		// pushq $x
		ld.Adduint8(ld.Ctxt, plt, 0x68)

		ld.Adduint32(ld.Ctxt, plt, uint32((got.Size-24-8)/8))

		// jmpq .plt
		ld.Adduint8(ld.Ctxt, plt, 0xe9)

		ld.Adduint32(ld.Ctxt, plt, uint32(-(plt.Size + 4)))

		// rela
		ld.Addaddrplus(ld.Ctxt, rela, got, got.Size-8)

		ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(s.Dynid), ld.R_X86_64_JMP_SLOT))
		ld.Adduint64(ld.Ctxt, rela, 0)

		s.Plt = int32(plt.Size - 16)
	} else if ld.HEADTYPE == ld.Hdarwin {
		// To do lazy symbol lookup right, we're supposed
		// to tell the dynamic loader which library each
		// symbol comes from and format the link info
		// section just so.  I'm too lazy (ha!) to do that
		// so for now we'll just use non-lazy pointers,
		// which don't need to be told which library to use.
		//
		// http://networkpx.blogspot.com/2009/09/about-lcdyldinfoonly-command.html
		// has details about what we're avoiding.

		addgotsym(s)
		plt := ld.Linklookup(ld.Ctxt, ".plt", 0)

		ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.plt", 0), uint32(s.Dynid))

		// jmpq *got+size(IP)
		s.Plt = int32(plt.Size)

		ld.Adduint8(ld.Ctxt, plt, 0xff)
		ld.Adduint8(ld.Ctxt, plt, 0x25)
		ld.Addpcrelplus(ld.Ctxt, plt, ld.Linklookup(ld.Ctxt, ".got", 0), int64(s.Got))
	} else {
		ld.Diag("addpltsym: unsupported binary format")
	}
}
Beispiel #15
0
func adddynrel(s *ld.LSym, r *ld.Reloc) {
	targ := r.Sym
	ld.Ctxt.Cursym = s

	switch r.Type {
	default:
		if r.Type >= 256 {
			ld.Diag("unexpected relocation type %d", r.Type)
			return
		}

		// Handle relocations found in ELF object files.
	case 256 + ld.R_386_PC32:
		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected R_386_PC32 relocation for dynamic symbol %s", targ.Name)
		}
		if targ.Type == 0 || targ.Type == ld.SXREF {
			ld.Diag("unknown symbol %s in pcrel", targ.Name)
		}
		r.Type = ld.R_PCREL
		r.Add += 4
		return

	case 256 + ld.R_386_PLT32:
		r.Type = ld.R_PCREL
		r.Add += 4
		if targ.Type == ld.SDYNIMPORT {
			addpltsym(ld.Ctxt, targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add += int64(targ.Plt)
		}

		return

	case 256 + ld.R_386_GOT32:
		if targ.Type != ld.SDYNIMPORT {
			// have symbol
			if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
				// turn MOVL of GOT entry into LEAL of symbol address, relative to GOT.
				s.P[r.Off-2] = 0x8d

				r.Type = ld.R_GOTOFF
				return
			}

			if r.Off >= 2 && s.P[r.Off-2] == 0xff && s.P[r.Off-1] == 0xb3 {
				// turn PUSHL of GOT entry into PUSHL of symbol itself.
				// use unnecessary SS prefix to keep instruction same length.
				s.P[r.Off-2] = 0x36

				s.P[r.Off-1] = 0x68
				r.Type = ld.R_ADDR
				return
			}

			ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
			return
		}

		addgotsym(ld.Ctxt, targ)
		r.Type = ld.R_CONST // write r->add during relocsym
		r.Sym = nil
		r.Add += int64(targ.Got)
		return

	case 256 + ld.R_386_GOTOFF:
		r.Type = ld.R_GOTOFF
		return

	case 256 + ld.R_386_GOTPC:
		r.Type = ld.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += 4
		return

	case 256 + ld.R_386_32:
		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected R_386_32 relocation for dynamic symbol %s", targ.Name)
		}
		r.Type = ld.R_ADDR
		return

	case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 0:
		r.Type = ld.R_ADDR
		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 1:
		if targ.Type == ld.SDYNIMPORT {
			addpltsym(ld.Ctxt, targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			r.Type = ld.R_PCREL
			return
		}

		r.Type = ld.R_PCREL
		return

	case 512 + ld.MACHO_FAKE_GOTPCREL:
		if targ.Type != ld.SDYNIMPORT {
			// have symbol
			// turn MOVL of GOT entry into LEAL of symbol itself
			if r.Off < 2 || s.P[r.Off-2] != 0x8b {
				ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
				return
			}

			s.P[r.Off-2] = 0x8d
			r.Type = ld.R_PCREL
			return
		}

		addgotsym(ld.Ctxt, targ)
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += int64(targ.Got)
		r.Type = ld.R_PCREL
		return
	}

	// Handle references to ELF symbols from our own object files.
	if targ.Type != ld.SDYNIMPORT {
		return
	}

	switch r.Type {
	case ld.R_CALL,
		ld.R_PCREL:
		addpltsym(ld.Ctxt, targ)
		r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
		r.Add = int64(targ.Plt)
		return

	case ld.R_ADDR:
		if s.Type != ld.SDATA {
			break
		}
		if ld.Iself {
			adddynsym(ld.Ctxt, targ)
			rel := ld.Linklookup(ld.Ctxt, ".rel", 0)
			ld.Addaddrplus(ld.Ctxt, rel, s, int64(r.Off))
			ld.Adduint32(ld.Ctxt, rel, ld.ELF32_R_INFO(uint32(targ.Dynid), ld.R_386_32))
			r.Type = ld.R_CONST // write r->add during relocsym
			r.Sym = nil
			return
		}

		if ld.HEADTYPE == ld.Hdarwin && s.Size == PtrSize && r.Off == 0 {
			// Mach-O relocations are a royal pain to lay out.
			// They use a compact stateful bytecode representation
			// that is too much bother to deal with.
			// Instead, interpret the C declaration
			//	void *_Cvar_stderr = &stderr;
			// as making _Cvar_stderr the name of a GOT entry
			// for stderr.  This is separate from the usual GOT entry,
			// just in case the C code assigns to the variable,
			// and of course it only works for single pointers,
			// but we only need to support cgo and that's all it needs.
			adddynsym(ld.Ctxt, targ)

			got := ld.Linklookup(ld.Ctxt, ".got", 0)
			s.Type = got.Type | ld.SSUB
			s.Outer = got
			s.Sub = got.Sub
			got.Sub = s
			s.Value = got.Size
			ld.Adduint32(ld.Ctxt, got, 0)
			ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(targ.Dynid))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == ld.Hwindows && s.Size == PtrSize {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		}
	}

	ld.Ctxt.Cursym = s
	ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
}
Beispiel #16
0
func adddynrel(s *ld.LSym, r *ld.Reloc) {
	targ := r.Sym
	ld.Ctxt.Cursym = s

	switch r.Type {
	default:
		if r.Type >= 256 {
			ld.Diag("unexpected relocation type %d", r.Type)
			return
		}

		// Handle relocations found in ELF object files.
	case 256 + ld.R_X86_64_PC32:
		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name)
		}
		if targ.Type == 0 || targ.Type == ld.SXREF {
			ld.Diag("unknown symbol %s in pcrel", targ.Name)
		}
		r.Type = ld.R_PCREL
		r.Add += 4
		return

	case 256 + ld.R_X86_64_PLT32:
		r.Type = ld.R_PCREL
		r.Add += 4
		if targ.Type == ld.SDYNIMPORT {
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add += int64(targ.Plt)
		}

		return

	case 256 + ld.R_X86_64_GOTPCREL:
		if targ.Type != ld.SDYNIMPORT {
			// have symbol
			if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
				// turn MOVQ of GOT entry into LEAQ of symbol itself
				s.P[r.Off-2] = 0x8d

				r.Type = ld.R_PCREL
				r.Add += 4
				return
			}
		}

		// fall back to using GOT and hope for the best (CMOV*)
		// TODO: just needs relocation, no need to put in .dynsym
		addgotsym(targ)

		r.Type = ld.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += 4
		r.Add += int64(targ.Got)
		return

	case 256 + ld.R_X86_64_64:
		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name)
		}
		r.Type = ld.R_ADDR
		return

	// Handle relocations found in Mach-O object files.
	case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0,
		512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0,
		512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0:
		// TODO: What is the difference between all these?
		r.Type = ld.R_ADDR

		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1:
		if targ.Type == ld.SDYNIMPORT {
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			r.Type = ld.R_PCREL
			return
		}
		fallthrough

		// fall through
	case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1:
		r.Type = ld.R_PCREL

		if targ.Type == ld.SDYNIMPORT {
			ld.Diag("unexpected pc-relative reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1:
		if targ.Type != ld.SDYNIMPORT {
			// have symbol
			// turn MOVQ of GOT entry into LEAQ of symbol itself
			if r.Off < 2 || s.P[r.Off-2] != 0x8b {
				ld.Diag("unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name)
				return
			}

			s.P[r.Off-2] = 0x8d
			r.Type = ld.R_PCREL
			return
		}
		fallthrough

		// fall through
	case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1:
		if targ.Type != ld.SDYNIMPORT {
			ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
		}
		addgotsym(targ)
		r.Type = ld.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += int64(targ.Got)
		return
	}

	// Handle references to ELF symbols from our own object files.
	if targ.Type != ld.SDYNIMPORT {
		return
	}

	switch r.Type {
	case ld.R_CALL,
		ld.R_PCREL:
		if ld.HEADTYPE == ld.Hwindows {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		} else {
			// for both ELF and Mach-O
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			return
		}

	case ld.R_ADDR:
		if s.Type == ld.STEXT && ld.Iself {
			// The code is asking for the address of an external
			// function.  We provide it with the address of the
			// correspondent GOT symbol.
			addgotsym(targ)

			r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
			r.Add += int64(targ.Got)
			return
		}

		if s.Type != ld.SDATA {
			break
		}
		if ld.Iself {
			adddynsym(ld.Ctxt, targ)
			rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
			ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
			if r.Siz == 8 {
				ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64))
			} else {
				ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32))
			}
			ld.Adduint64(ld.Ctxt, rela, uint64(r.Add))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == ld.Hdarwin && s.Size == int64(ld.Thearch.Ptrsize) && r.Off == 0 {
			// Mach-O relocations are a royal pain to lay out.
			// They use a compact stateful bytecode representation
			// that is too much bother to deal with.
			// Instead, interpret the C declaration
			//	void *_Cvar_stderr = &stderr;
			// as making _Cvar_stderr the name of a GOT entry
			// for stderr.  This is separate from the usual GOT entry,
			// just in case the C code assigns to the variable,
			// and of course it only works for single pointers,
			// but we only need to support cgo and that's all it needs.
			adddynsym(ld.Ctxt, targ)

			got := ld.Linklookup(ld.Ctxt, ".got", 0)
			s.Type = got.Type | ld.SSUB
			s.Outer = got
			s.Sub = got.Sub
			got.Sub = s
			s.Value = got.Size
			ld.Adduint64(ld.Ctxt, got, 0)
			ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(targ.Dynid))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == ld.Hwindows {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		}
	}

	ld.Ctxt.Cursym = s
	ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
}
Beispiel #17
0
func gentext() {
	var s *ld.LSym
	var stub *ld.LSym
	var pprevtextp **ld.LSym
	var r *ld.Reloc
	var n string
	var o1 uint32
	var i int

	// The ppc64 ABI PLT has similar concepts to other
	// architectures, but is laid out quite differently.  When we
	// see an R_PPC64_REL24 relocation to a dynamic symbol
	// (indicating that the call needs to go through the PLT), we
	// generate up to three stubs and reserve a PLT slot.
	//
	// 1) The call site will be bl x; nop (where the relocation
	//    applies to the bl).  We rewrite this to bl x_stub; ld
	//    r2,24(r1).  The ld is necessary because x_stub will save
	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
	//
	// 2) We reserve space for a pointer in the .plt section (once
	//    per referenced dynamic function).  .plt is a data
	//    section filled solely by the dynamic linker (more like
	//    .plt.got on other architectures).  Initially, the
	//    dynamic linker will fill each slot with a pointer to the
	//    corresponding [email protected] entry point.
	//
	// 3) We generate the "call stub" x_stub (once per dynamic
	//    function/object file pair).  This saves the TOC in the
	//    TOC save slot, reads the function pointer from x's .plt
	//    slot and calls it like any other global entry point
	//    (including setting r12 to the function address).
	//
	// 4) We generate the "symbol resolver stub" [email protected] (once per
	//    dynamic function).  This is solely a branch to the glink
	//    resolver stub.
	//
	// 5) We generate the glink resolver stub (only once).  This
	//    computes which symbol resolver stub we came through and
	//    invokes the dynamic resolver via a pointer provided by
	//    the dynamic linker.  This will patch up the .plt slot to
	//    point directly at the function so future calls go
	//    straight from the call stub to the real function, and
	//    then call the function.

	// NOTE: It's possible we could make ppc64 closer to other
	// architectures: ppc64's .plt is like .plt.got on other
	// platforms and ppc64's .glink is like .plt on other
	// platforms.

	// Find all R_PPC64_REL24 relocations that reference dynamic
	// imports.  Reserve PLT entries for these symbols and
	// generate call stubs.  The call stubs need to live in .text,
	// which is why we need to do this pass this early.
	//
	// This assumes "case 1" from the ABI, where the caller needs
	// us to save and restore the TOC pointer.
	pprevtextp = &ld.Ctxt.Textp

	for s = *pprevtextp; s != nil; pprevtextp, s = &s.Next, s.Next {
		for i = range s.R {
			r = &s.R[i]
			if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != ld.SDYNIMPORT {
				continue
			}

			// Reserve PLT entry and generate symbol
			// resolver
			addpltsym(ld.Ctxt, r.Sym)

			// Generate call stub
			n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)

			stub = ld.Linklookup(ld.Ctxt, n, 0)
			stub.Reachable = stub.Reachable || s.Reachable
			if stub.Size == 0 {
				// Need outer to resolve .TOC.
				stub.Outer = s

				// Link in to textp before s (we could
				// do it after, but would have to skip
				// the subsymbols)
				*pprevtextp = stub

				stub.Next = s
				pprevtextp = &stub.Next

				gencallstub(1, stub, r.Sym)
			}

			// Update the relocation to use the call stub
			r.Sym = stub

			// Restore TOC after bl.  The compiler put a
			// nop here for us to overwrite.
			o1 = 0xe8410018 // ld r2,24(r1)
			ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
		}
	}
}