Beispiel #1
0
// WriteStatusSummary generates a summary and immediately writes it to the given
// client.
func (mr *MetricsRecorder) WriteStatusSummary(ctx context.Context, db *client.DB) error {
	mr.writeSummaryMu.Lock()
	defer mr.writeSummaryMu.Unlock()

	nodeStatus := mr.GetStatusSummary()
	if nodeStatus != nil {
		key := keys.NodeStatusKey(nodeStatus.Desc.NodeID)
		// We use PutInline to store only a single version of the node status.
		// There's not much point in keeping the historical versions as we keep
		// all of the constituent data as timeseries. Further, due to the size
		// of the build info in the node status, writing one of these every 10s
		// will generate more versions than will easily fit into a range over
		// the course of a day.
		if err := db.PutInline(ctx, key, nodeStatus); err != nil {
			return err
		}
		if log.V(2) {
			statusJSON, err := json.Marshal(nodeStatus)
			if err != nil {
				log.Errorf(ctx, "error marshaling nodeStatus to json: %s", err)
			}
			log.Infof(ctx, "node %d status: %s", nodeStatus.Desc.NodeID, statusJSON)
		}
	}
	return nil
}
Beispiel #2
0
func countRangeReplicas(db *client.DB) (int, error) {
	desc := &roachpb.RangeDescriptor{}
	if err := db.GetProto(context.TODO(), keys.RangeDescriptorKey(roachpb.RKeyMin), desc); err != nil {
		return 0, err
	}
	return len(desc.Replicas), nil
}
Beispiel #3
0
// allocateNodeID increments the node id generator key to allocate
// a new, unique node id.
func allocateNodeID(ctx context.Context, db *client.DB) (roachpb.NodeID, error) {
	r, err := db.Inc(ctx, keys.NodeIDGenerator, 1)
	if err != nil {
		return 0, errors.Errorf("unable to allocate node ID: %s", err)
	}
	return roachpb.NodeID(r.ValueInt()), nil
}
Beispiel #4
0
func checkKeyCount(t *testing.T, kvDB *client.DB, prefix roachpb.Key, numKeys int) {
	if kvs, err := kvDB.Scan(context.TODO(), prefix, prefix.PrefixEnd(), 0); err != nil {
		t.Fatal(err)
	} else if l := numKeys; len(kvs) != l {
		t.Fatalf("expected %d key value pairs, but got %d", l, len(kvs))
	}
}
Beispiel #5
0
// truncateTableInChunks truncates the data of a table in chunks. It deletes a
// range of data for the table, which includes the PK and all indexes.
func truncateTableInChunks(
	ctx context.Context, tableDesc *sqlbase.TableDescriptor, db *client.DB,
) error {
	const chunkSize = TableTruncateChunkSize
	var resume roachpb.Span
	for row, done := 0, false; !done; row += chunkSize {
		resumeAt := resume
		if log.V(2) {
			log.Infof(ctx, "table %s truncate at row: %d, span: %s", tableDesc.Name, row, resume)
		}
		if err := db.Txn(ctx, func(txn *client.Txn) error {
			rd, err := makeRowDeleter(txn, tableDesc, nil, nil, false)
			if err != nil {
				return err
			}
			td := tableDeleter{rd: rd}
			if err := td.init(txn); err != nil {
				return err
			}
			resume, err = td.deleteAllRows(txn.Context, resumeAt, chunkSize)
			return err
		}); err != nil {
			return err
		}
		done = resume.Key == nil
	}
	return nil
}
Beispiel #6
0
// pushTxn attempts to abort the txn via push. The wait group is signaled on
// completion.
func pushTxn(
	ctx context.Context,
	db *client.DB,
	now hlc.Timestamp,
	txn *roachpb.Transaction,
	typ roachpb.PushTxnType,
) {
	// Attempt to push the transaction which created the intent.
	pushArgs := &roachpb.PushTxnRequest{
		Span: roachpb.Span{
			Key: txn.Key,
		},
		Now:       now,
		PusherTxn: roachpb.Transaction{TxnMeta: enginepb.TxnMeta{Priority: math.MaxInt32}},
		PusheeTxn: txn.TxnMeta,
		PushType:  typ,
	}
	b := &client.Batch{}
	b.AddRawRequest(pushArgs)
	if err := db.Run(ctx, b); err != nil {
		log.Warningf(ctx, "push of txn %s failed: %s", txn, err)
		return
	}
	br := b.RawResponse()
	// Update the supplied txn on successful push.
	*txn = br.Responses[0].GetInner().(*roachpb.PushTxnResponse).PusheeTxn
}
Beispiel #7
0
// allocateStoreIDs increments the store id generator key for the
// specified node to allocate "inc" new, unique store ids. The
// first ID in a contiguous range is returned on success.
func allocateStoreIDs(
	ctx context.Context, nodeID roachpb.NodeID, inc int64, db *client.DB,
) (roachpb.StoreID, error) {
	r, err := db.Inc(ctx, keys.StoreIDGenerator, inc)
	if err != nil {
		return 0, errors.Errorf("unable to allocate %d store IDs for node %d: %s", inc, nodeID, err)
	}
	return roachpb.StoreID(r.ValueInt() - inc + 1), nil
}
Beispiel #8
0
func (hv *historyVerifier) runTxn(
	txnIdx int,
	priority int32,
	isolation enginepb.IsolationType,
	cmds []*cmd,
	db *client.DB,
	t *testing.T,
) error {
	var retry int
	txnName := fmt.Sprintf("txn %d", txnIdx+1)
	cmdIdx := -1

	err := db.Txn(context.TODO(), func(txn *client.Txn) error {
		// If this is 2nd attempt, and a retry wasn't expected, return a
		// retry error which results in further histories being enumerated.
		if retry++; retry > 1 {
			if !cmds[cmdIdx].expRetry {
				// Propagate retry error to history execution to enumerate all
				// histories where this txn retries at this command.
				return &retryError{txnIdx: txnIdx, cmdIdx: cmdIdx}
			}
			// We're expecting a retry, so just send nil down the done channel.
			cmds[cmdIdx].done(nil)
		}

		txn.SetDebugName(txnName, 0)
		if isolation == enginepb.SNAPSHOT {
			if err := txn.SetIsolation(enginepb.SNAPSHOT); err != nil {
				return err
			}
		}
		txn.InternalSetPriority(priority)

		env := map[string]int64{}
		for cmdIdx+1 < len(cmds) {
			cmdIdx++
			cmds[cmdIdx].env = env
			_, err := hv.runCmd(txn, txnIdx, retry, cmds[cmdIdx], t)
			if err != nil {
				if log.V(1) {
					log.Infof(context.Background(), "%s: failed running %s: %s", txnName, cmds[cmdIdx], err)
				}
				return err
			}
		}
		return nil
	})
	if err != nil {
		for _, c := range cmds[cmdIdx:] {
			c.done(err)
		}
	}
	return err
}
Beispiel #9
0
// getRangeKeys returns the end keys of all ranges.
func getRangeKeys(db *client.DB) ([]roachpb.Key, error) {
	rows, err := db.Scan(context.TODO(), keys.Meta2Prefix, keys.MetaMax, 0)
	if err != nil {
		return nil, err
	}
	ret := make([]roachpb.Key, len(rows), len(rows))
	for i := 0; i < len(rows); i++ {
		ret[i] = bytes.TrimPrefix(rows[i].Key, keys.Meta2Prefix)
	}
	return ret, nil
}
Beispiel #10
0
// startTestWriter creates a writer which initiates a sequence of
// transactions, each which writes up to 10 times to random keys with
// random values. If not nil, txnChannel is written to non-blockingly
// every time a new transaction starts.
func startTestWriter(
	db *client.DB,
	i int64,
	valBytes int32,
	wg *sync.WaitGroup,
	retries *int32,
	txnChannel chan struct{},
	done <-chan struct{},
	t *testing.T,
) {
	src := rand.New(rand.NewSource(i))
	defer func() {
		if wg != nil {
			wg.Done()
		}
	}()

	for j := 0; ; j++ {
		select {
		case <-done:
			return
		default:
			first := true
			err := db.Txn(context.TODO(), func(txn *client.Txn) error {
				if first && txnChannel != nil {
					select {
					case txnChannel <- struct{}{}:
					default:
					}
				} else if !first && retries != nil {
					atomic.AddInt32(retries, 1)
				}
				first = false
				for j := 0; j <= int(src.Int31n(10)); j++ {
					key := randutil.RandBytes(src, 10)
					val := randutil.RandBytes(src, int(src.Int31n(valBytes)))
					if err := txn.Put(key, val); err != nil {
						log.Infof(context.Background(), "experienced an error in routine %d: %s", i, err)
						return err
					}
				}
				return nil
			})
			if err != nil {
				t.Error(err)
			} else {
				time.Sleep(1 * time.Millisecond)
			}
		}
	}
}
Beispiel #11
0
// WaitForInitialSplits waits for the expected number of initial ranges to be
// populated in the meta2 table. If the expected range count is not reached
// within a configured timeout, an error is returned.
func WaitForInitialSplits(db *client.DB) error {
	expectedRanges := ExpectedInitialRangeCount()
	return util.RetryForDuration(initialSplitsTimeout, func() error {
		// Scan all keys in the Meta2Prefix; we only need a count.
		rows, err := db.Scan(context.TODO(), keys.Meta2Prefix, keys.MetaMax, 0)
		if err != nil {
			return err
		}
		if a, e := len(rows), expectedRanges; a != e {
			return errors.Errorf("had %d ranges at startup, expected %d", a, e)
		}
		return nil
	})
}
Beispiel #12
0
// purgeOldLeases refreshes the leases on a table. Unused leases older than
// minVersion will be released.
// If deleted is set, minVersion is ignored; no lease is acquired and all
// existing unused leases are released. The table is further marked for
// deletion, which will cause existing in-use leases to be eagerly released once
// they're not in use any more.
// If t has no active leases, nothing is done.
func (t *tableState) purgeOldLeases(
	db *client.DB, deleted bool, minVersion sqlbase.DescriptorVersion, store LeaseStore,
) error {
	t.mu.Lock()
	empty := len(t.active.data) == 0
	t.mu.Unlock()
	if empty {
		// We don't currently have a lease on this table, so no need to refresh
		// anything.
		return nil
	}

	// Acquire and release a lease on the table at a version >= minVersion.
	var lease *LeaseState
	err := db.Txn(context.TODO(), func(txn *client.Txn) error {
		var err error
		if !deleted {
			lease, err = t.acquire(txn, minVersion, store)
			if err == errTableDropped {
				deleted = true
			}
		}
		if err == nil || deleted {
			t.mu.Lock()
			defer t.mu.Unlock()
			var toRelease []*LeaseState
			if deleted {
				t.deleted = true
			}
			toRelease = append([]*LeaseState(nil), t.active.data...)

			t.releaseLeasesIfNotActive(toRelease, store)
			return nil
		}
		return err
	})
	if err != nil {
		return err
	}
	if lease == nil {
		return nil
	}
	return t.release(lease, store)
}
// LeaseInfo runs a LeaseInfoRequest using the specified server.
func LeaseInfo(
	t *testing.T,
	db *client.DB,
	rangeDesc roachpb.RangeDescriptor,
	readConsistency roachpb.ReadConsistencyType,
) roachpb.LeaseInfoResponse {
	leaseInfoReq := &roachpb.LeaseInfoRequest{
		Span: roachpb.Span{
			Key: rangeDesc.StartKey.AsRawKey(),
		},
	}
	reply, pErr := client.SendWrappedWith(context.Background(), db.GetSender(), roachpb.Header{
		ReadConsistency: readConsistency,
	}, leaseInfoReq)
	if pErr != nil {
		t.Fatal(pErr)
	}
	return *(reply.(*roachpb.LeaseInfoResponse))
}
Beispiel #14
0
// pruneTimeSeries will prune data for the supplied set of time series. Time
// series series are identified by name and resolution.
//
// For each time series supplied, the pruning operation will delete all data
// older than a constant threshold. The threshold is different depending on the
// resolution; typically, lower-resolution time series data will be retained for
// a longer period.
//
// If data is stored at a resolution which is not known to the system, it is
// assumed that the resolution has been deprecated and all data for that time
// series at that resolution will be deleted.
//
// As range deletion of inline data is an idempotent operation, it is safe to
// run this operation concurrently on multiple nodes at the same time.
func pruneTimeSeries(
	ctx context.Context, db *client.DB, timeSeriesList []timeSeriesResolutionInfo, now hlc.Timestamp,
) error {
	thresholds := computeThresholds(now.WallTime)

	for _, timeSeries := range timeSeriesList {
		// Time series data for a specific resolution falls in a contiguous key
		// range, and can be deleted with a DelRange command.

		// The start key is the prefix unique to this name/resolution pair.
		start := makeDataKeySeriesPrefix(timeSeries.Name, timeSeries.Resolution)

		// The end key can be created by generating a time series key with the
		// threshold timestamp for the resolution. If the resolution is not
		// supported, the start key's PrefixEnd is used instead (which will clear
		// the time series entirely).
		var end roachpb.Key
		threshold, ok := thresholds[timeSeries.Resolution]
		if ok {
			end = MakeDataKey(timeSeries.Name, "", timeSeries.Resolution, threshold)
		} else {
			end = start.PrefixEnd()
		}

		// TODO(mrtracy): There is no reason not to execute the individual
		// deletes in parallel, although the best way to do that is not clear.
		// See the RFC PR #9343 for details.
		b := &client.Batch{}
		b.AddRawRequest(&roachpb.DeleteRangeRequest{
			Span: roachpb.Span{
				Key:    start,
				EndKey: end,
			},
			Inline: true,
		})
		if err := db.Run(ctx, b); err != nil {
			return err
		}
	}

	return nil
}
Beispiel #15
0
func (hv *historyVerifier) runCmds(
	cmds []*cmd, db *client.DB, t *testing.T,
) (string, map[string]int64, error) {
	var strs []string
	env := map[string]int64{}
	err := db.Txn(context.TODO(), func(txn *client.Txn) error {
		for _, c := range cmds {
			c.historyIdx = hv.idx
			c.env = env
			c.init(nil)
			fmtStr, err := c.execute(txn, t)
			if err != nil {
				return err
			}
			strs = append(strs, fmt.Sprintf(fmtStr, 0, 0))
		}
		return nil
	})
	return strings.Join(strs, " "), env, err
}
Beispiel #16
0
// GetTableDescriptor retrieves a table descriptor directly from the KV layer.
func GetTableDescriptor(kvDB *client.DB, database string, table string) *TableDescriptor {
	dbNameKey := MakeNameMetadataKey(keys.RootNamespaceID, database)
	gr, err := kvDB.Get(context.TODO(), dbNameKey)
	if err != nil {
		panic(err)
	}
	if !gr.Exists() {
		panic("database missing")
	}
	dbDescID := ID(gr.ValueInt())

	tableNameKey := MakeNameMetadataKey(dbDescID, table)
	gr, err = kvDB.Get(context.TODO(), tableNameKey)
	if err != nil {
		panic(err)
	}
	if !gr.Exists() {
		panic("table missing")
	}

	descKey := MakeDescMetadataKey(ID(gr.ValueInt()))
	desc := &Descriptor{}
	if err := kvDB.GetProto(context.TODO(), descKey, desc); err != nil {
		panic("proto missing")
	}
	return desc.GetTable()
}
Beispiel #17
0
// pruneTimeSeries will prune data for the supplied set of time series. Time
// series series are identified by name and resolution.
//
// For each time series supplied, the pruning operation will delete all data
// older than a constant threshold. The threshold is different depending on the
// resolution; typically, lower-resolution time series data will be retained for
// a longer period.
//
// If data is stored at a resolution which is not known to the system, it is
// assumed that the resolution has been deprecated and all data for that time
// series at that resolution will be deleted.
//
// As range deletion of inline data is an idempotent operation, it is safe to
// run this operation concurrently on multiple nodes at the same time.
func pruneTimeSeries(
	ctx context.Context, db *client.DB, timeSeriesList []timeSeriesResolutionInfo, now hlc.Timestamp,
) error {
	thresholds := computeThresholds(now.WallTime)

	b := &client.Batch{}
	for _, timeSeries := range timeSeriesList {
		// Time series data for a specific resolution falls in a contiguous key
		// range, and can be deleted with a DelRange command.

		// The start key is the prefix unique to this name/resolution pair.
		start := makeDataKeySeriesPrefix(timeSeries.Name, timeSeries.Resolution)

		// The end key can be created by generating a time series key with the
		// threshold timestamp for the resolution. If the resolution is not
		// supported, the start key's PrefixEnd is used instead (which will clear
		// the time series entirely).
		var end roachpb.Key
		threshold, ok := thresholds[timeSeries.Resolution]
		if ok {
			end = MakeDataKey(timeSeries.Name, "", timeSeries.Resolution, threshold)
		} else {
			end = start.PrefixEnd()
		}

		b.AddRawRequest(&roachpb.DeleteRangeRequest{
			Span: roachpb.Span{
				Key:    start,
				EndKey: end,
			},
			Inline: true,
		})
	}

	return db.Run(ctx, b)
}
Beispiel #18
0
// concurrentIncrements starts two Goroutines in parallel, both of which
// read the integers stored at the other's key and add it onto their own.
// It is checked that the outcome is serializable, i.e. exactly one of the
// two Goroutines (the later write) sees the previous write by the other.
func concurrentIncrements(db *client.DB, t *testing.T) {
	// wgStart waits for all transactions to line up, wgEnd has the main
	// function wait for them to finish.
	var wgStart, wgEnd sync.WaitGroup
	wgStart.Add(2 + 1)
	wgEnd.Add(2)

	for i := 0; i < 2; i++ {
		go func(i int) {
			// Read the other key, write key i.
			readKey := []byte(fmt.Sprintf(testUser+"/value-%d", (i+1)%2))
			writeKey := []byte(fmt.Sprintf(testUser+"/value-%d", i))
			defer wgEnd.Done()
			wgStart.Done()
			// Wait until the other goroutines are running.
			wgStart.Wait()

			if err := db.Txn(context.TODO(), func(txn *client.Txn) error {
				txn.SetDebugName(fmt.Sprintf("test-%d", i), 0)

				// Retrieve the other key.
				gr, err := txn.Get(readKey)
				if err != nil {
					return err
				}

				otherValue := int64(0)
				if gr.Value != nil {
					otherValue = gr.ValueInt()
				}

				_, err = txn.Inc(writeKey, 1+otherValue)
				return err
			}); err != nil {
				t.Error(err)
			}
		}(i)
	}

	// Kick the goroutines loose.
	wgStart.Done()
	// Wait for the goroutines to finish.
	wgEnd.Wait()
	// Verify that both keys contain something and, more importantly, that
	// one key actually contains the value of the first writer and not only
	// its own.
	total := int64(0)
	results := []int64(nil)
	for i := 0; i < 2; i++ {
		readKey := []byte(fmt.Sprintf(testUser+"/value-%d", i))
		gr, err := db.Get(context.TODO(), readKey)
		if err != nil {
			t.Fatal(err)
		}
		if gr.Value == nil {
			t.Fatalf("unexpected empty key: %s=%v", readKey, gr.Value)
		}
		total += gr.ValueInt()
		results = append(results, gr.ValueInt())
	}

	// First writer should have 1, second one 2
	if total != 3 {
		t.Fatalf("got unserializable values %v", results)
	}
}
// Run a particular schema change and run some OLTP operations in parallel, as
// soon as the schema change starts executing its backfill.
func runSchemaChangeWithOperations(
	t *testing.T,
	sqlDB *gosql.DB,
	kvDB *client.DB,
	schemaChange string,
	maxValue int,
	keyMultiple int,
	backfillNotification chan bool,
) {
	tableDesc := sqlbase.GetTableDescriptor(kvDB, "t", "test")

	// Run the schema change in a separate goroutine.
	var wg sync.WaitGroup
	wg.Add(1)
	go func() {
		start := timeutil.Now()
		// Start schema change that eventually runs a backfill.
		if _, err := sqlDB.Exec(schemaChange); err != nil {
			t.Error(err)
		}
		t.Logf("schema change %s took %v", schemaChange, timeutil.Since(start))
		wg.Done()
	}()

	// Wait until the schema change backfill starts.
	<-backfillNotification

	// Run a variety of operations during the backfill.

	// Grabbing a schema change lease on the table will fail, disallowing
	// another schema change from being simultaneously executed.
	sc := csql.NewSchemaChangerForTesting(tableDesc.ID, 0, 0, *kvDB, nil)
	if l, err := sc.AcquireLease(); err == nil {
		t.Fatalf("schema change lease acquisition on table %d succeeded: %v", tableDesc.ID, l)
	}

	// Update some rows.
	var updatedKeys []int
	for i := 0; i < 10; i++ {
		k := rand.Intn(maxValue)
		v := maxValue + i + 1
		if _, err := sqlDB.Exec(`UPDATE t.test SET v = $1 WHERE k = $2`, v, k); err != nil {
			t.Error(err)
		}
		updatedKeys = append(updatedKeys, k)
	}

	// Reupdate updated values back to what they were before.
	for _, k := range updatedKeys {
		if _, err := sqlDB.Exec(`UPDATE t.test SET v = $1 WHERE k = $2`, maxValue-k, k); err != nil {
			t.Error(err)
		}
	}

	// Delete some rows.
	deleteStartKey := rand.Intn(maxValue - 10)
	for i := 0; i < 10; i++ {
		if _, err := sqlDB.Exec(`DELETE FROM t.test WHERE k = $1`, deleteStartKey+i); err != nil {
			t.Error(err)
		}
	}
	// Reinsert deleted rows.
	for i := 0; i < 10; i++ {
		k := deleteStartKey + i
		if _, err := sqlDB.Exec(`INSERT INTO t.test VALUES($1, $2)`, k, maxValue-k); err != nil {
			t.Error(err)
		}
	}

	// Insert some new rows.
	numInserts := 10
	for i := 0; i < numInserts; i++ {
		k := maxValue + i + 1
		if _, err := sqlDB.Exec(`INSERT INTO t.test VALUES($1, $1)`, k); err != nil {
			t.Error(err)
		}
	}

	wg.Wait() // for schema change to complete.

	// Verify the number of keys left behind in the table to validate schema
	// change operations.
	tablePrefix := roachpb.Key(keys.MakeTablePrefix(uint32(tableDesc.ID)))
	tableEnd := tablePrefix.PrefixEnd()
	if kvs, err := kvDB.Scan(context.TODO(), tablePrefix, tableEnd, 0); err != nil {
		t.Fatal(err)
	} else if e := keyMultiple * (maxValue + numInserts + 1); len(kvs) != e {
		for _, kv := range kvs {
			t.Errorf("key %s, value %s", kv.Key, kv.Value)
		}
		t.Fatalf("expected %d key value pairs, but got %d", e, len(kvs))
	}

	// Delete the rows inserted.
	for i := 0; i < numInserts; i++ {
		if _, err := sqlDB.Exec(`DELETE FROM t.test WHERE k = $1`, maxValue+i+1); err != nil {
			t.Error(err)
		}
	}
}
Beispiel #20
0
// restoreTable inserts the given DatabaseDescriptor. If the name conflicts with
// an existing table, the one being restored is rekeyed with a new ID and the
// old data is deleted.
func restoreTable(
	ctx context.Context,
	db client.DB,
	database sqlbase.DatabaseDescriptor,
	table *sqlbase.TableDescriptor,
	ranges []sqlbase.BackupRangeDescriptor,
) error {
	if log.V(1) {
		log.Infof(ctx, "Restoring Table %q", table.Name)
	}

	var newTableID sqlbase.ID
	if err := db.Txn(ctx, func(txn *client.Txn) error {
		// Make sure there's a database with a name that matches the original.
		if _, err := getDescriptorID(txn, tableKey{name: database.Name}); err != nil {
			return errors.Wrapf(err, "a database named %q needs to exist to restore table %q",
				database.Name, table.Name)
		}

		// Assign a new ID for the table. TODO(dan): For now, we're always
		// generating a new ID, but varints get longer as they get bigger and so
		// our keys will, too. We should someday figure out how to overwrite an
		// existing table and steal its ID.
		var err error
		newTableID, err = GenerateUniqueDescID(txn)
		return err
	}); err != nil {
		return err
	}

	// Create the iteration keys before we give the table its new ID.
	tableStartKeyOld := roachpb.Key(sqlbase.MakeIndexKeyPrefix(table, table.PrimaryIndex.ID))
	tableEndKeyOld := tableStartKeyOld.PrefixEnd()

	// This loop makes restoring multiple tables O(N*M), where N is the number
	// of tables and M is the number of ranges. We could reduce this using an
	// interval tree if necessary.
	var wg sync.WaitGroup
	result := struct {
		syncutil.Mutex
		firstErr error
		numErrs  int
	}{}
	for _, rangeDesc := range ranges {
		if len(rangeDesc.Path) == 0 {
			// Empty path means empty range.
			continue
		}

		intersectBegin, intersectEnd := IntersectHalfOpen(
			rangeDesc.StartKey, rangeDesc.EndKey, tableStartKeyOld, tableEndKeyOld)
		if intersectBegin != nil && intersectEnd != nil {
			// Write the data under the new ID.
			// TODO(dan): There's no SQL descriptors that point at this yet, so it
			// should be possible to remove it from the one txn this is all currently
			// run under. If we do that, make sure this data gets cleaned up on errors.
			wg.Add(1)
			go func(desc sqlbase.BackupRangeDescriptor) {
				for r := retry.StartWithCtx(ctx, base.DefaultRetryOptions()); r.Next(); {
					err := db.Txn(ctx, func(txn *client.Txn) error {
						return Ingest(ctx, txn, desc.Path, desc.CRC, intersectBegin, intersectEnd, newTableID)
					})
					if _, ok := err.(*client.AutoCommitError); ok {
						log.Errorf(ctx, "auto commit error during ingest: %s", err)
						// TODO(dan): Ingest currently does not rely on the
						// range being empty, but the plan is that it will. When
						// that change happens, this will have to delete any
						// partially ingested data or something.
						continue
					}

					if err != nil {
						log.Errorf(ctx, "%T %s", err, err)
						result.Lock()
						defer result.Unlock()
						if result.firstErr != nil {
							result.firstErr = err
						}
						result.numErrs++
					}
					break
				}
				wg.Done()
			}(rangeDesc)
		}
	}
	wg.Wait()
	// All concurrent accesses have finished, we don't need the lock anymore.
	if result.firstErr != nil {
		// This leaves the data that did get imported in case the user wants to
		// retry.
		// TODO(dan): Build tooling to allow a user to restart a failed restore.
		return errors.Wrapf(result.firstErr, "ingest encountered %d errors", result.numErrs)
	}

	table.ID = newTableID
	return db.Txn(ctx, func(txn *client.Txn) error {
		// Pass the descriptors by value to keep this idempotent.
		return restoreTableDesc(ctx, txn, database, *table)
	})
}