Beispiel #1
0
func TestCloneProto(t *testing.T) {
	testCases := []struct {
		pb          proto.Message
		shouldPanic bool
	}{
		// Uncloneable types (all contain UUID fields).
		{&roachpb.StoreIdent{}, true},
		{&enginepb.TxnMeta{}, true},
		{&roachpb.Transaction{}, true},
		{&roachpb.Error{}, true},

		// Cloneable types. This includes all types for which a
		// protoutil.Clone call exists in the codebase as of 2016-11-21.
		{&config.ZoneConfig{}, false},
		{&gossip.Info{}, false},
		{&gossip.BootstrapInfo{}, false},
		{&tracing.SpanContextCarrier{}, false},
		{&sqlbase.IndexDescriptor{}, false},
		{&roachpb.SplitTrigger{}, false},
		{&roachpb.Value{}, false},
		{&storagebase.ReplicaState{}, false},
		{&roachpb.RangeDescriptor{}, false},
	}
	for _, tc := range testCases {
		var clone proto.Message
		var panicObj interface{}
		func() {
			defer func() {
				panicObj = recover()
			}()
			clone = protoutil.Clone(tc.pb)
		}()

		if tc.shouldPanic {
			if panicObj == nil {
				t.Errorf("%T: expected panic but didn't get one", tc.pb)
			} else {
				if panicStr := fmt.Sprint(panicObj); !strings.Contains(panicStr, "attempt to clone") {
					t.Errorf("%T: got unexpected panic %s", tc.pb, panicStr)
				}
			}
		} else {
			if panicObj != nil {
				t.Errorf("%T: got unexpected panic %v", tc.pb, panicObj)
			}
		}

		if panicObj == nil {
			realClone := proto.Clone(tc.pb)
			if !reflect.DeepEqual(clone, realClone) {
				t.Errorf("%T: clone did not equal original. expected:\n%+v\ngot:\n%+v", tc.pb, realClone, clone)
			}
		}
	}
}
Beispiel #2
0
func (ls *Stores) updateBootstrapInfo(bi *gossip.BootstrapInfo) error {
	if bi.Timestamp.Less(ls.biLatestTS) {
		return nil
	}
	ctx := ls.AnnotateCtx(context.TODO())
	// Update the latest timestamp and set cached version.
	ls.biLatestTS = bi.Timestamp
	ls.latestBI = protoutil.Clone(bi).(*gossip.BootstrapInfo)
	// Update all stores.
	for _, s := range ls.storeMap {
		if err := engine.MVCCPutProto(ctx, s.engine, nil, keys.StoreGossipKey(), hlc.ZeroTimestamp, nil, bi); err != nil {
			return err
		}
	}
	return nil
}
Beispiel #3
0
// loadState loads a ReplicaState from disk. The exception is the Desc field,
// which is updated transactionally, and is populated from the supplied
// RangeDescriptor under the convention that that is the latest committed
// version.
func loadState(
	ctx context.Context, reader engine.Reader, desc *roachpb.RangeDescriptor,
) (storagebase.ReplicaState, error) {
	var s storagebase.ReplicaState
	// TODO(tschottdorf): figure out whether this is always synchronous with
	// on-disk state (likely iffy during Split/ChangeReplica triggers).
	s.Desc = protoutil.Clone(desc).(*roachpb.RangeDescriptor)
	// Read the range lease.
	lease, err := loadLease(ctx, reader, desc.RangeID)
	if err != nil {
		return storagebase.ReplicaState{}, err
	}
	s.Lease = &lease

	if s.Frozen, err = loadFrozenStatus(ctx, reader, desc.RangeID); err != nil {
		return storagebase.ReplicaState{}, err
	}

	if s.GCThreshold, err = loadGCThreshold(ctx, reader, desc.RangeID); err != nil {
		return storagebase.ReplicaState{}, err
	}

	if s.TxnSpanGCThreshold, err = loadTxnSpanGCThreshold(ctx, reader, desc.RangeID); err != nil {
		return storagebase.ReplicaState{}, err
	}

	if s.RaftAppliedIndex, s.LeaseAppliedIndex, err = loadAppliedIndex(
		ctx, reader, desc.RangeID,
	); err != nil {
		return storagebase.ReplicaState{}, err
	}

	if s.Stats, err = loadMVCCStats(ctx, reader, desc.RangeID); err != nil {
		return storagebase.ReplicaState{}, err
	}

	// The truncated state should not be optional (i.e. the pointer is
	// pointless), but it is and the migration is not worth it.
	truncState, err := loadTruncatedState(ctx, reader, desc.RangeID)
	if err != nil {
		return storagebase.ReplicaState{}, err
	}
	s.TruncatedState = &truncState

	return s, nil
}
Beispiel #4
0
func convertBackfillError(tableDesc *sqlbase.TableDescriptor, b *client.Batch) error {
	// A backfill on a new schema element has failed and the batch contains
	// information useful in printing a sensible error. However
	// convertBatchError() will only work correctly if the schema elements
	// are "live" in the tableDesc.
	desc := protoutil.Clone(tableDesc).(*sqlbase.TableDescriptor)
	mutationID := desc.Mutations[0].MutationID
	for _, mutation := range desc.Mutations {
		if mutation.MutationID != mutationID {
			// Mutations are applied in a FIFO order. Only apply the first set
			// of mutations if they have the mutation ID we're looking for.
			break
		}
		desc.MakeMutationComplete(mutation)
	}
	return convertBatchError(desc, b)
}
Beispiel #5
0
func TestCloneProto(t *testing.T) {
	u := uuid.MakeV4()

	testCases := []struct {
		pb          proto.Message
		shouldPanic bool
	}{
		{&roachpb.StoreIdent{}, false},
		{&roachpb.StoreIdent{ClusterID: uuid.MakeV4()}, true},
		{&enginepb.TxnMeta{}, false},
		{&enginepb.TxnMeta{ID: &u}, true},
		{&roachpb.Transaction{}, false},
		{&config.ZoneConfig{RangeMinBytes: 123, RangeMaxBytes: 456}, false},
	}
	for _, tc := range testCases {
		var clone proto.Message
		var panicObj interface{}
		func() {
			defer func() {
				panicObj = recover()
			}()
			clone = protoutil.Clone(tc.pb)
		}()

		if tc.shouldPanic {
			if panicObj == nil {
				t.Errorf("%T: expected panic but didn't get one", tc.pb)
			}
		} else {
			if panicObj != nil {
				if panicStr := fmt.Sprint(panicObj); !strings.Contains(panicStr, "attempt to clone") {
					t.Errorf("%T: got unexpected panic %s", tc.pb, panicStr)
				}
			}
		}

		if panicObj == nil {
			realClone := proto.Clone(tc.pb)
			if !reflect.DeepEqual(clone, realClone) {
				t.Errorf("%T: clone did not equal original. expected:\n%+v\ngot:\n%+v", tc.pb, realClone, clone)
			}
		}
	}
}
Beispiel #6
0
// InitOrJoinRequest executes a RequestLease command asynchronously and returns a
// channel on which the result will be posted. If there's already a request in
// progress, we join in waiting for the results of that request.
// It is an error to call InitOrJoinRequest() while a request is in progress
// naming another replica as lease holder.
//
// replica is used to schedule and execute async work (proposing a RequestLease
// command). replica.mu is locked when delivering results, so calls from the
// replica happen either before or after a result for a pending request has
// happened.
//
// transfer needs to be set if the request represents a lease transfer (as
// opposed to an extension, or acquiring the lease when none is held).
//
// Note: Once this function gets a context to be used for cancellation, instead
// of replica.store.Stopper().ShouldQuiesce(), care will be needed for cancelling
// the Raft command, similar to replica.addWriteCmd.
func (p *pendingLeaseRequest) InitOrJoinRequest(
	replica *Replica,
	nextLeaseHolder roachpb.ReplicaDescriptor,
	timestamp hlc.Timestamp,
	startKey roachpb.Key,
	transfer bool,
) <-chan *roachpb.Error {
	if nextLease, ok := p.RequestPending(); ok {
		if nextLease.Replica.ReplicaID == nextLeaseHolder.ReplicaID {
			// Join a pending request asking for the same replica to become lease
			// holder.
			return p.JoinRequest()
		}
		llChan := make(chan *roachpb.Error, 1)
		// We can't join the request in progress.
		llChan <- roachpb.NewErrorf("request for different replica in progress "+
			"(requesting: %+v, in progress: %+v)",
			nextLeaseHolder.ReplicaID, nextLease.Replica.ReplicaID)
		return llChan
	}
	llChan := make(chan *roachpb.Error, 1)
	// No request in progress. Let's propose a Lease command asynchronously.
	// TODO(tschottdorf): get duration from configuration, either as a
	// config flag or, later, dynamically adjusted.
	startStasis := timestamp.Add(int64(replica.store.cfg.RangeLeaseActiveDuration), 0)
	expiration := startStasis.Add(int64(replica.store.Clock().MaxOffset()), 0)
	reqSpan := roachpb.Span{
		Key: startKey,
	}
	var leaseReq roachpb.Request
	reqLease := roachpb.Lease{
		Start:       timestamp,
		StartStasis: startStasis,
		Expiration:  expiration,
		Replica:     nextLeaseHolder,
	}
	if transfer {
		leaseReq = &roachpb.TransferLeaseRequest{
			Span:  reqSpan,
			Lease: reqLease,
		}
	} else {
		leaseReq = &roachpb.RequestLeaseRequest{
			Span:  reqSpan,
			Lease: reqLease,
		}
	}
	if replica.store.Stopper().RunAsyncTask(context.TODO(), func(ctx context.Context) {
		ctx = replica.AnnotateCtx(ctx)
		// Propose a RequestLease command and wait for it to apply.
		ba := roachpb.BatchRequest{}
		ba.Timestamp = replica.store.Clock().Now()
		ba.RangeID = replica.RangeID
		ba.Add(leaseReq)
		if log.V(2) {
			log.Infof(ctx, "sending lease request %v", leaseReq)
		}
		_, pErr := replica.Send(ctx, ba)

		// Send result of lease to all waiter channels.
		replica.mu.Lock()
		defer replica.mu.Unlock()
		for i, llChan := range p.llChans {
			// Don't send the same pErr object twice; this can lead to races. We could
			// clone every time but it's more efficient to send pErr itself to one of
			// the channels (the last one; if we send it earlier the race can still
			// happen).
			if i == len(p.llChans)-1 {
				llChan <- pErr
			} else {
				llChan <- protoutil.Clone(pErr).(*roachpb.Error) // works with `nil`
			}
		}
		p.llChans = p.llChans[:0]
		p.nextLease = roachpb.Lease{}
	}) != nil {
		// We failed to start the asynchronous task. Send a blank NotLeaseHolderError
		// back to indicate that we have no idea who the range lease holder might
		// be; we've withdrawn from active duty.
		llChan <- roachpb.NewError(
			newNotLeaseHolderError(nil, replica.store.StoreID(), replica.mu.state.Desc))
		return llChan
	}
	p.llChans = append(p.llChans, llChan)
	p.nextLease = reqLease
	return llChan
}
func TestSchemaChangeProcess(t *testing.T) {
	defer leaktest.AfterTest(t)()
	// The descriptor changes made must have an immediate effect
	// so disable leases on tables.
	defer csql.TestDisableTableLeases()()

	params, _ := createTestServerParams()
	// Disable external processing of mutations.
	params.Knobs.SQLSchemaChanger = &csql.SchemaChangerTestingKnobs{
		AsyncExecNotification: asyncSchemaChangerDisabled,
	}
	s, sqlDB, kvDB := serverutils.StartServer(t, params)
	defer s.Stopper().Stop()

	var id = sqlbase.ID(keys.MaxReservedDescID + 2)
	var node = roachpb.NodeID(2)
	stopper := stop.NewStopper()
	leaseMgr := csql.NewLeaseManager(
		&base.NodeIDContainer{},
		*kvDB,
		hlc.NewClock(hlc.UnixNano, time.Nanosecond),
		csql.LeaseManagerTestingKnobs{},
		stopper,
		&csql.MemoryMetrics{},
	)
	defer stopper.Stop()
	changer := csql.NewSchemaChangerForTesting(id, 0, node, *kvDB, leaseMgr)

	if _, err := sqlDB.Exec(`
CREATE DATABASE t;
CREATE TABLE t.test (k CHAR PRIMARY KEY, v CHAR, INDEX foo(v));
INSERT INTO t.test VALUES ('a', 'b'), ('c', 'd');
`); err != nil {
		t.Fatal(err)
	}

	// Read table descriptor for version.
	tableDesc := sqlbase.GetTableDescriptor(kvDB, "t", "test")

	expectedVersion := tableDesc.Version

	desc, err := changer.MaybeIncrementVersion()
	if err != nil {
		t.Fatal(err)
	}
	tableDesc = desc.GetTable()
	newVersion := tableDesc.Version
	if newVersion != expectedVersion {
		t.Fatalf("bad version; e = %d, v = %d", expectedVersion, newVersion)
	}
	isDone, err := changer.IsDone()
	if err != nil {
		t.Fatal(err)
	}
	if !isDone {
		t.Fatalf("table expected to not have an outstanding schema change: %v", tableDesc)
	}

	// Check that MaybeIncrementVersion increments the version
	// correctly.
	expectedVersion++
	tableDesc.UpVersion = true
	if err := kvDB.Put(
		context.TODO(),
		sqlbase.MakeDescMetadataKey(tableDesc.ID),
		sqlbase.WrapDescriptor(tableDesc),
	); err != nil {
		t.Fatal(err)
	}
	isDone, err = changer.IsDone()
	if err != nil {
		t.Fatal(err)
	}
	if isDone {
		t.Fatalf("table expected to have an outstanding schema change: %v", desc.GetTable())
	}
	desc, err = changer.MaybeIncrementVersion()
	if err != nil {
		t.Fatal(err)
	}
	tableDesc = desc.GetTable()
	savedTableDesc := sqlbase.GetTableDescriptor(kvDB, "t", "test")
	newVersion = tableDesc.Version
	if newVersion != expectedVersion {
		t.Fatalf("bad version in returned desc; e = %d, v = %d", expectedVersion, newVersion)
	}
	newVersion = savedTableDesc.Version
	if newVersion != expectedVersion {
		t.Fatalf("bad version in saved desc; e = %d, v = %d", expectedVersion, newVersion)
	}
	isDone, err = changer.IsDone()
	if err != nil {
		t.Fatal(err)
	}
	if !isDone {
		t.Fatalf("table expected to not have an outstanding schema change: %v", tableDesc)
	}

	// Check that RunStateMachineBeforeBackfill doesn't do anything
	// if there are no mutations queued.
	if err := changer.RunStateMachineBeforeBackfill(); err != nil {
		t.Fatal(err)
	}

	tableDesc = sqlbase.GetTableDescriptor(kvDB, "t", "test")
	newVersion = tableDesc.Version
	if newVersion != expectedVersion {
		t.Fatalf("bad version; e = %d, v = %d", expectedVersion, newVersion)
	}

	// Check that RunStateMachineBeforeBackfill functions properly.
	expectedVersion = tableDesc.Version
	// Make a copy of the index for use in a mutation.
	index := protoutil.Clone(&tableDesc.Indexes[0]).(*sqlbase.IndexDescriptor)
	index.Name = "bar"
	index.ID = tableDesc.NextIndexID
	tableDesc.NextIndexID++
	changer = csql.NewSchemaChangerForTesting(id, tableDesc.NextMutationID, node, *kvDB, leaseMgr)
	tableDesc.Mutations = append(tableDesc.Mutations, sqlbase.DescriptorMutation{
		Descriptor_: &sqlbase.DescriptorMutation_Index{Index: index},
		Direction:   sqlbase.DescriptorMutation_ADD,
		State:       sqlbase.DescriptorMutation_DELETE_ONLY,
		MutationID:  tableDesc.NextMutationID,
	})
	tableDesc.NextMutationID++

	// Run state machine in both directions.
	for _, direction := range []sqlbase.DescriptorMutation_Direction{sqlbase.DescriptorMutation_ADD, sqlbase.DescriptorMutation_DROP} {
		tableDesc.Mutations[0].Direction = direction
		expectedVersion++
		if err := kvDB.Put(
			context.TODO(),
			sqlbase.MakeDescMetadataKey(tableDesc.ID),
			sqlbase.WrapDescriptor(tableDesc),
		); err != nil {
			t.Fatal(err)
		}
		// The expected end state.
		expectedState := sqlbase.DescriptorMutation_WRITE_ONLY
		if direction == sqlbase.DescriptorMutation_DROP {
			expectedState = sqlbase.DescriptorMutation_DELETE_ONLY
		}
		// Run two times to ensure idempotency of operations.
		for i := 0; i < 2; i++ {
			if err := changer.RunStateMachineBeforeBackfill(); err != nil {
				t.Fatal(err)
			}

			tableDesc = sqlbase.GetTableDescriptor(kvDB, "t", "test")
			newVersion = tableDesc.Version
			if newVersion != expectedVersion {
				t.Fatalf("bad version; e = %d, v = %d", expectedVersion, newVersion)
			}
			state := tableDesc.Mutations[0].State
			if state != expectedState {
				t.Fatalf("bad state; e = %d, v = %d", expectedState, state)
			}
		}
	}
	// RunStateMachineBeforeBackfill() doesn't complete the schema change.
	isDone, err = changer.IsDone()
	if err != nil {
		t.Fatal(err)
	}
	if isDone {
		t.Fatalf("table expected to have an outstanding schema change: %v", tableDesc)
	}

}
Beispiel #8
0
// Send implements the batch.Sender interface. If the request is part of a
// transaction, the TxnCoordSender adds the transaction to a map of active
// transactions and begins heartbeating it. Every subsequent request for the
// same transaction updates the lastUpdate timestamp to prevent live
// transactions from being considered abandoned and garbage collected.
// Read/write mutating requests have their key or key range added to the
// transaction's interval tree of key ranges for eventual cleanup via resolved
// write intents; they're tagged to an outgoing EndTransaction request, with
// the receiving replica in charge of resolving them.
func (tc *TxnCoordSender) Send(
	ctx context.Context, ba roachpb.BatchRequest,
) (*roachpb.BatchResponse, *roachpb.Error) {
	// Start new or pick up active trace. From here on, there's always an active
	// Trace, though its overhead is small unless it's sampled.
	sp := opentracing.SpanFromContext(ctx)
	var tracer opentracing.Tracer
	if sp == nil {
		tracer = tc.AmbientContext.Tracer
		sp = tracer.StartSpan(opTxnCoordSender)
		defer sp.Finish()
		ctx = opentracing.ContextWithSpan(ctx, sp)
	} else {
		tracer = sp.Tracer()
	}

	startNS := tc.clock.PhysicalNow()

	if ba.Txn != nil {
		// If this request is part of a transaction...
		if err := tc.maybeBeginTxn(&ba); err != nil {
			return nil, roachpb.NewError(err)
		}

		txnID := *ba.Txn.ID

		// Associate the txnID with the trace. We need to do this after the
		// maybeBeginTxn call. We set both a baggage item and a tag because only
		// tags show up in the LIghtstep UI.
		txnIDStr := txnID.String()
		sp.SetTag("txnID", txnIDStr)
		sp.SetBaggageItem("txnID", txnIDStr)

		var et *roachpb.EndTransactionRequest
		var hasET bool
		{
			var rArgs roachpb.Request
			rArgs, hasET = ba.GetArg(roachpb.EndTransaction)
			if hasET {
				et = rArgs.(*roachpb.EndTransactionRequest)
				if len(et.Key) != 0 {
					return nil, roachpb.NewErrorf("EndTransaction must not have a Key set")
				}
				et.Key = ba.Txn.Key
				if len(et.IntentSpans) > 0 {
					// TODO(tschottdorf): it may be useful to allow this later.
					// That would be part of a possible plan to allow txns which
					// write on multiple coordinators.
					return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction")
				}
			}
		}

		if pErr := func() *roachpb.Error {
			tc.Lock()
			defer tc.Unlock()
			if pErr := tc.maybeRejectClientLocked(ctx, *ba.Txn); pErr != nil {
				return pErr
			}

			if !hasET {
				return nil
			}
			// Everything below is carried out only when trying to commit.

			// Populate et.IntentSpans, taking into account both any existing
			// and new writes, and taking care to perform proper deduplication.
			txnMeta := tc.txns[txnID]
			distinctSpans := true
			if txnMeta != nil {
				et.IntentSpans = txnMeta.keys
				// Defensively set distinctSpans to false if we had any previous
				// requests in this transaction. This effectively limits the distinct
				// spans optimization to 1pc transactions.
				distinctSpans = len(txnMeta.keys) == 0
			}
			// We can't pass in a batch response here to better limit the key
			// spans as we don't know what is going to be affected. This will
			// affect queries such as `DELETE FROM my.table LIMIT 10` when
			// executed as a 1PC transaction. e.g.: a (BeginTransaction,
			// DeleteRange, EndTransaction) batch.
			ba.IntentSpanIterate(nil, func(key, endKey roachpb.Key) {
				et.IntentSpans = append(et.IntentSpans, roachpb.Span{
					Key:    key,
					EndKey: endKey,
				})
			})
			// TODO(peter): Populate DistinctSpans on all batches, not just batches
			// which contain an EndTransactionRequest.
			var distinct bool
			// The request might already be used by an outgoing goroutine, so
			// we can't safely mutate anything in-place (as MergeSpans does).
			et.IntentSpans = append([]roachpb.Span(nil), et.IntentSpans...)
			et.IntentSpans, distinct = roachpb.MergeSpans(et.IntentSpans)
			ba.Header.DistinctSpans = distinct && distinctSpans
			if len(et.IntentSpans) == 0 {
				// If there aren't any intents, then there's factually no
				// transaction to end. Read-only txns have all of their state
				// in the client.
				return roachpb.NewErrorf("cannot commit a read-only transaction")
			}
			if txnMeta != nil {
				txnMeta.keys = et.IntentSpans
			}
			return nil
		}(); pErr != nil {
			return nil, pErr
		}

		if hasET && log.V(1) {
			for _, intent := range et.IntentSpans {
				log.Eventf(ctx, "intent: [%s,%s)", intent.Key, intent.EndKey)
			}
		}
	}

	// Embed the trace metadata into the header for use by RPC recipients. We need
	// to do this after the maybeBeginTxn call above.
	// TODO(tschottdorf): To get rid of the spurious alloc below we need to
	// implement the carrier interface on ba.Header or make Span non-nullable,
	// both of which force all of ba on the Heap. It's already there, so may
	// not be a big deal, but ba should live on the stack. Also not easy to use
	// a buffer pool here since anything that goes into the RPC layer could be
	// used by goroutines we didn't wait for.
	if ba.TraceContext == nil {
		ba.TraceContext = &tracing.SpanContextCarrier{}
	} else {
		// We didn't make this object but are about to mutate it, so we
		// have to take a copy - the original might already have been
		// passed to the RPC layer.
		ba.TraceContext = protoutil.Clone(ba.TraceContext).(*tracing.SpanContextCarrier)
	}
	if err := tracer.Inject(sp.Context(), basictracer.Delegator, ba.TraceContext); err != nil {
		return nil, roachpb.NewError(err)
	}

	// Send the command through wrapped sender, taking appropriate measures
	// on error.
	var br *roachpb.BatchResponse
	{
		var pErr *roachpb.Error
		br, pErr = tc.wrapped.Send(ctx, ba)

		if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok {
			// TODO(tschottdorf): needs to keep the trace.
			br, pErr = tc.resendWithTxn(ba)
		}

		if pErr = tc.updateState(ctx, startNS, ba, br, pErr); pErr != nil {
			log.Eventf(ctx, "error: %s", pErr)
			return nil, pErr
		}
	}

	if br.Txn == nil {
		return br, nil
	}

	if _, ok := ba.GetArg(roachpb.EndTransaction); !ok {
		return br, nil
	}
	// If the --linearizable flag is set, we want to make sure that
	// all the clocks in the system are past the commit timestamp
	// of the transaction. This is guaranteed if either
	// - the commit timestamp is MaxOffset behind startNS
	// - MaxOffset ns were spent in this function
	// when returning to the client. Below we choose the option
	// that involves less waiting, which is likely the first one
	// unless a transaction commits with an odd timestamp.
	if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS {
		startNS = tsNS
	}
	sleepNS := tc.clock.MaxOffset() -
		time.Duration(tc.clock.PhysicalNow()-startNS)
	if tc.linearizable && sleepNS > 0 {
		defer func() {
			if log.V(1) {
				log.Infof(ctx, "%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond))
			}
			time.Sleep(sleepNS)
		}()
	}
	if br.Txn.Status != roachpb.PENDING {
		tc.Lock()
		tc.cleanupTxnLocked(ctx, *br.Txn)
		tc.Unlock()
	}
	return br, nil
}