Beispiel #1
0
func IpBmatrix_sparse(B *la.Triplet, ndim, nne int, G [][]float64, radius float64, S []float64, axisym bool) {
	B.Start()
	if ndim == 3 {
		for i := 0; i < nne; i++ {
			B.Put(0, 0+i*3, G[i][0])
			B.Put(1, 1+i*3, G[i][1])
			B.Put(2, 2+i*3, G[i][2])
			B.Put(3, 0+i*3, G[i][1]/SQ2)
			B.Put(4, 1+i*3, G[i][2]/SQ2)
			B.Put(5, 2+i*3, G[i][0]/SQ2)
			B.Put(3, 1+i*3, G[i][0]/SQ2)
			B.Put(4, 2+i*3, G[i][1]/SQ2)
			B.Put(5, 0+i*3, G[i][2]/SQ2)
		}
		return
	}
	if axisym {
		for i := 0; i < nne; i++ {
			B.Put(0, 0+i*2, G[i][0])
			B.Put(1, 1+i*2, G[i][1])
			B.Put(2, 0+i*2, S[i]/radius)
			B.Put(3, 0+i*2, G[i][1]/SQ2)
			B.Put(3, 1+i*2, G[i][0]/SQ2)
		}
		return
	}
	for i := 0; i < nne; i++ {
		B.Put(0, 0+i*2, G[i][0])
		B.Put(1, 1+i*2, G[i][1])
		B.Put(3, 0+i*2, G[i][1]/SQ2)
		B.Put(3, 1+i*2, G[i][0]/SQ2)
	}
}
Beispiel #2
0
/*  Jacobian
    ========
        Calculates (with N=n-1):
            df0dx0, df0dx1, df0dx2, ... df0dxN
            df1dx0, df1dx1, df1dx2, ... df1dxN
                 . . . . . . . . . . . . .
            dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
    INPUT:
        ffcn : f(x) function
        x    : station where dfdx has to be calculated
        fx   : f @ x
        w    : workspace with size == n == len(x)
    RETURNS:
        J : dfdx @ x [must be pre-allocated]        */
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64, distr bool) (err error) {
	ndim := len(x)
	start, endp1 := 0, ndim
	if distr {
		id, sz := mpi.Rank(), mpi.Size()
		start, endp1 = (id*ndim)/sz, ((id+1)*ndim)/sz
		if J.Max() == 0 {
			J.Init(ndim, ndim, (endp1-start)*ndim)
		}
	} else {
		if J.Max() == 0 {
			J.Init(ndim, ndim, ndim*ndim)
		}
	}
	J.Start()
	// NOTE: cannot split calculation by columns unless the f function is
	//       independently calculated by each MPI processor.
	//       Otherwise, the AllReduce in f calculation would
	//       join pieces of f from different processors calculated for
	//       different x values (δx[col] from different columns).
	/*
	   for col := start; col < endp1; col++ {
	       xsafe := x[col]
	       delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
	       x[col] = xsafe + delta
	       ffcn(w, x) // fnew
	       io.Pforan("x = %v, f = %v\n", x, w)
	       for row := 0; row < ndim; row++ {
	           J.Put(row, col, (w[row]-fx[row])/delta)
	       }
	       x[col] = xsafe
	   }
	*/
	var df float64
	for col := 0; col < ndim; col++ {
		xsafe := x[col]
		delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
		x[col] = xsafe + delta
		err = ffcn(w, x) // w := f(x+δx[col])
		if err != nil {
			return
		}
		for row := start; row < endp1; row++ {
			df = w[row] - fx[row]
			//if math.Abs(df) > EPS {
			J.Put(row, col, df/delta)
			//}
		}
		x[col] = xsafe
	}
	return
}
Beispiel #3
0
func Assemble(K11, K12 *la.Triplet, F1 []float64, src Cb_src, g *Grid2D, e *Equations) {
	K11.Start()
	K12.Start()
	la.VecFill(F1, 0.0)
	kx, ky := 1.0, 1.0
	alp, bet, gam := 2.0*(kx/g.Dxx+ky/g.Dyy), -kx/g.Dxx, -ky/g.Dyy
	mol := []float64{alp, bet, bet, gam, gam}
	for i, I := range e.RF1 {
		col, row := I%g.Nx, I/g.Nx
		nodes := []int{I, I - 1, I + 1, I - g.Nx, I + g.Nx} // I, left, right, bottom, top
		if col == 0 {
			nodes[1] = nodes[2]
		}
		if col == g.Nx-1 {
			nodes[2] = nodes[1]
		}
		if row == 0 {
			nodes[3] = nodes[4]
		}
		if row == g.Ny-1 {
			nodes[4] = nodes[3]
		}
		for k, J := range nodes {
			j1, j2 := e.FR1[J], e.FR2[J] // 1 or 2?
			if j1 > -1 {                 // 11
				K11.Put(i, j1, mol[k])
			} else { // 12
				K12.Put(i, j2, mol[k])
			}
		}
		if src != nil {
			x := float64(col) * g.Dx
			y := float64(row) * g.Dy
			F1[i] += src(x, y)
		}
	}
}
Beispiel #4
0
// Jacobian computes Jacobian (sparse) matrix
//      Calculates (with N=n-1):
//          df0dx0, df0dx1, df0dx2, ... df0dxN
//          df1dx0, df1dx1, df1dx2, ... df1dxN
//               . . . . . . . . . . . . .
//          dfNdx0, dfNdx1, dfNdx2, ... dfNdxN
//  INPUT:
//      ffcn : f(x) function
//      x    : station where dfdx has to be calculated
//      fx   : f @ x
//      w    : workspace with size == n == len(x)
//  RETURNS:
//      J : dfdx @ x [must be pre-allocated]
func Jacobian(J *la.Triplet, ffcn Cb_f, x, fx, w []float64) (err error) {
	ndim := len(x)
	start, endp1 := 0, ndim
	if J.Max() == 0 {
		J.Init(ndim, ndim, ndim*ndim)
	}
	J.Start()
	var df float64
	for col := 0; col < ndim; col++ {
		xsafe := x[col]
		delta := math.Sqrt(EPS * max(CTE1, math.Abs(xsafe)))
		x[col] = xsafe + delta
		err = ffcn(w, x) // w := f(x+δx[col])
		if err != nil {
			return
		}
		for row := start; row < endp1; row++ {
			df = w[row] - fx[row]
			J.Put(row, col, df/delta)
		}
		x[col] = xsafe
	}
	return
}
Beispiel #5
0
func main() {

	mpi.Start(false)
	defer func() {
		mpi.Stop(false)
	}()

	if mpi.Rank() == 0 {
		chk.PrintTitle("Test ODE 04b (MPI)")
		io.Pfcyan("Hairer-Wanner VII-p376 Transistor Amplifier (MPI)\n")
		io.Pfcyan("(from E Hairer's website, not the system in the book)\n")
	}
	if mpi.Size() != 3 {
		chk.Panic(">> error: this test requires 3 MPI processors\n")
		return
	}

	// RIGHT-HAND SIDE OF THE AMPLIFIER PROBLEM
	w := make([]float64, 8) // workspace
	fcn := func(f []float64, x float64, y []float64, args ...interface{}) error {
		d := args[0].(*HWtransData)
		UET := d.UE * math.Sin(d.W*x)
		FAC1 := d.BETA * (math.Exp((y[3]-y[2])/d.UF) - 1.0)
		FAC2 := d.BETA * (math.Exp((y[6]-y[5])/d.UF) - 1.0)
		la.VecFill(f, 0)
		switch mpi.Rank() {
		case 0:
			f[0] = y[0] / d.R9
		case 1:
			f[1] = (y[1]-d.UB)/d.R8 + d.ALPHA*FAC1
			f[2] = y[2]/d.R7 - FAC1
		case 2:
			f[3] = y[3]/d.R5 + (y[3]-d.UB)/d.R6 + (1.0-d.ALPHA)*FAC1
			f[4] = (y[4]-d.UB)/d.R4 + d.ALPHA*FAC2
			f[5] = y[5]/d.R3 - FAC2
			f[6] = y[6]/d.R1 + (y[6]-d.UB)/d.R2 + (1.0-d.ALPHA)*FAC2
			f[7] = (y[7] - UET) / d.R0
		}
		mpi.AllReduceSum(f, w)
		return nil
	}

	// JACOBIAN OF THE AMPLIFIER PROBLEM
	jac := func(dfdy *la.Triplet, x float64, y []float64, args ...interface{}) error {
		d := args[0].(*HWtransData)
		FAC14 := d.BETA * math.Exp((y[3]-y[2])/d.UF) / d.UF
		FAC27 := d.BETA * math.Exp((y[6]-y[5])/d.UF) / d.UF
		if dfdy.Max() == 0 {
			dfdy.Init(8, 8, 16)
		}
		NU := 2
		dfdy.Start()
		switch mpi.Rank() {
		case 0:
			dfdy.Put(2+0-NU, 0, 1.0/d.R9)
			dfdy.Put(2+1-NU, 1, 1.0/d.R8)
			dfdy.Put(1+2-NU, 2, -d.ALPHA*FAC14)
			dfdy.Put(0+3-NU, 3, d.ALPHA*FAC14)
			dfdy.Put(2+2-NU, 2, 1.0/d.R7+FAC14)
		case 1:
			dfdy.Put(1+3-NU, 3, -FAC14)
			dfdy.Put(2+3-NU, 3, 1.0/d.R5+1.0/d.R6+(1.0-d.ALPHA)*FAC14)
			dfdy.Put(3+2-NU, 2, -(1.0-d.ALPHA)*FAC14)
			dfdy.Put(2+4-NU, 4, 1.0/d.R4)
			dfdy.Put(1+5-NU, 5, -d.ALPHA*FAC27)
		case 2:
			dfdy.Put(0+6-NU, 6, d.ALPHA*FAC27)
			dfdy.Put(2+5-NU, 5, 1.0/d.R3+FAC27)
			dfdy.Put(1+6-NU, 6, -FAC27)
			dfdy.Put(2+6-NU, 6, 1.0/d.R1+1.0/d.R2+(1.0-d.ALPHA)*FAC27)
			dfdy.Put(3+5-NU, 5, -(1.0-d.ALPHA)*FAC27)
			dfdy.Put(2+7-NU, 7, 1.0/d.R0)
		}
		return nil
	}

	// MATRIX "M"
	c1, c2, c3, c4, c5 := 1.0e-6, 2.0e-6, 3.0e-6, 4.0e-6, 5.0e-6
	var M la.Triplet
	M.Init(8, 8, 14)
	M.Start()
	NU := 1
	switch mpi.Rank() {
	case 0:
		M.Put(1+0-NU, 0, -c5)
		M.Put(0+1-NU, 1, c5)
		M.Put(2+0-NU, 0, c5)
		M.Put(1+1-NU, 1, -c5)
		M.Put(1+2-NU, 2, -c4)
		M.Put(1+3-NU, 3, -c3)
	case 1:
		M.Put(0+4-NU, 4, c3)
		M.Put(2+3-NU, 3, c3)
		M.Put(1+4-NU, 4, -c3)
	case 2:
		M.Put(1+5-NU, 5, -c2)
		M.Put(1+6-NU, 6, -c1)
		M.Put(0+7-NU, 7, c1)
		M.Put(2+6-NU, 6, c1)
		M.Put(1+7-NU, 7, -c1)
	}

	// WRITE FILE FUNCTION
	idxstp := 1
	var b bytes.Buffer
	out := func(first bool, dx, x float64, y []float64, args ...interface{}) error {
		if mpi.Rank() == 0 {
			if first {
				fmt.Fprintf(&b, "%6s%23s%23s%23s%23s%23s%23s%23s%23s%23s\n", "ns", "x", "y0", "y1", "y2", "y3", "y4", "y5", "y6", "y7")
			}
			fmt.Fprintf(&b, "%6d%23.15E", idxstp, x)
			for j := 0; j < len(y); j++ {
				fmt.Fprintf(&b, "%23.15E", y[j])
			}
			fmt.Fprintf(&b, "\n")
			idxstp += 1
		}
		return nil
	}
	defer func() {
		if mpi.Rank() == 0 {
			io.WriteFileD("/tmp/gosl", "hwamplifierB.res", &b)
		}
	}()

	// INITIAL DATA
	D, xa, xb, ya := HWtransIni()

	// SET ODE SOLVER
	silent := false
	fixstp := false
	//method := "Dopri5"
	method := "Radau5"
	ndim := len(ya)
	//numjac := true
	numjac := false
	var osol ode.ODE

	osol.Pll = true

	if numjac {
		osol.Init(method, ndim, fcn, nil, &M, out, silent)
	} else {
		osol.Init(method, ndim, fcn, jac, &M, out, silent)
	}
	osol.IniH = 1.0e-6 // initial step size

	// SET TOLERANCES
	atol, rtol := 1e-11, 1e-5
	osol.SetTol(atol, rtol)

	// RUN
	t0 := time.Now()
	if fixstp {
		osol.Solve(ya, xa, xb, 0.01, fixstp, &D)
	} else {
		osol.Solve(ya, xa, xb, xb-xa, fixstp, &D)
	}
	if mpi.Rank() == 0 {
		io.Pfmag("elapsed time = %v\n", time.Now().Sub(t0))
	}
}
Beispiel #6
0
func main() {

	mpi.Start(false)
	defer func() {
		mpi.Stop(false)
	}()

	if mpi.Rank() == 0 {
		chk.PrintTitle("ode04: Hairer-Wanner VII-p376 Transistor Amplifier\n")
	}
	if mpi.Size() != 3 {
		chk.Panic(">> error: this test requires 3 MPI processors\n")
		return
	}

	// data
	UE, UB, UF, ALPHA, BETA := 0.1, 6.0, 0.026, 0.99, 1.0e-6
	R0, R1, R2, R3, R4, R5 := 1000.0, 9000.0, 9000.0, 9000.0, 9000.0, 9000.0
	R6, R7, R8, R9 := 9000.0, 9000.0, 9000.0, 9000.0
	W := 2.0 * 3.141592654 * 100.0

	// initial values
	xa := 0.0
	ya := []float64{0.0,
		UB,
		UB / (R6/R5 + 1.0),
		UB / (R6/R5 + 1.0),
		UB,
		UB / (R2/R1 + 1.0),
		UB / (R2/R1 + 1.0),
		0.0}

	// endpoint of integration
	xb := 0.05
	//xb = 0.0123 // OK
	//xb = 0.01235 // !OK

	// right-hand side of the amplifier problem
	w := make([]float64, 8) // workspace
	fcn := func(f []float64, dx, x float64, y []float64, args ...interface{}) error {
		UET := UE * math.Sin(W*x)
		FAC1 := BETA * (math.Exp((y[3]-y[2])/UF) - 1.0)
		FAC2 := BETA * (math.Exp((y[6]-y[5])/UF) - 1.0)
		la.VecFill(f, 0)
		switch mpi.Rank() {
		case 0:
			f[0] = y[0] / R9
		case 1:
			f[1] = (y[1]-UB)/R8 + ALPHA*FAC1
			f[2] = y[2]/R7 - FAC1
		case 2:
			f[3] = y[3]/R5 + (y[3]-UB)/R6 + (1.0-ALPHA)*FAC1
			f[4] = (y[4]-UB)/R4 + ALPHA*FAC2
			f[5] = y[5]/R3 - FAC2
			f[6] = y[6]/R1 + (y[6]-UB)/R2 + (1.0-ALPHA)*FAC2
			f[7] = (y[7] - UET) / R0
		}
		mpi.AllReduceSum(f, w)
		return nil
	}

	// Jacobian of the amplifier problem
	jac := func(dfdy *la.Triplet, dx, x float64, y []float64, args ...interface{}) error {
		FAC14 := BETA * math.Exp((y[3]-y[2])/UF) / UF
		FAC27 := BETA * math.Exp((y[6]-y[5])/UF) / UF
		if dfdy.Max() == 0 {
			dfdy.Init(8, 8, 16)
		}
		NU := 2
		dfdy.Start()
		switch mpi.Rank() {
		case 0:
			dfdy.Put(2+0-NU, 0, 1.0/R9)
			dfdy.Put(2+1-NU, 1, 1.0/R8)
			dfdy.Put(1+2-NU, 2, -ALPHA*FAC14)
			dfdy.Put(0+3-NU, 3, ALPHA*FAC14)
			dfdy.Put(2+2-NU, 2, 1.0/R7+FAC14)
		case 1:
			dfdy.Put(1+3-NU, 3, -FAC14)
			dfdy.Put(2+3-NU, 3, 1.0/R5+1.0/R6+(1.0-ALPHA)*FAC14)
			dfdy.Put(3+2-NU, 2, -(1.0-ALPHA)*FAC14)
			dfdy.Put(2+4-NU, 4, 1.0/R4)
			dfdy.Put(1+5-NU, 5, -ALPHA*FAC27)
		case 2:
			dfdy.Put(0+6-NU, 6, ALPHA*FAC27)
			dfdy.Put(2+5-NU, 5, 1.0/R3+FAC27)
			dfdy.Put(1+6-NU, 6, -FAC27)
			dfdy.Put(2+6-NU, 6, 1.0/R1+1.0/R2+(1.0-ALPHA)*FAC27)
			dfdy.Put(3+5-NU, 5, -(1.0-ALPHA)*FAC27)
			dfdy.Put(2+7-NU, 7, 1.0/R0)
		}
		return nil
	}

	// matrix "M"
	c1, c2, c3, c4, c5 := 1.0e-6, 2.0e-6, 3.0e-6, 4.0e-6, 5.0e-6
	var M la.Triplet
	M.Init(8, 8, 14)
	M.Start()
	NU := 1
	switch mpi.Rank() {
	case 0:
		M.Put(1+0-NU, 0, -c5)
		M.Put(0+1-NU, 1, c5)
		M.Put(2+0-NU, 0, c5)
		M.Put(1+1-NU, 1, -c5)
		M.Put(1+2-NU, 2, -c4)
		M.Put(1+3-NU, 3, -c3)
	case 1:
		M.Put(0+4-NU, 4, c3)
		M.Put(2+3-NU, 3, c3)
		M.Put(1+4-NU, 4, -c3)
	case 2:
		M.Put(1+5-NU, 5, -c2)
		M.Put(1+6-NU, 6, -c1)
		M.Put(0+7-NU, 7, c1)
		M.Put(2+6-NU, 6, c1)
		M.Put(1+7-NU, 7, -c1)
	}

	// flags
	silent := false
	fixstp := false
	//method := "Dopri5"
	method := "Radau5"
	ndim := len(ya)
	numjac := false

	// structure to hold numerical results
	res := ode.Results{Method: method}

	// ODE solver
	var osol ode.Solver
	osol.Pll = true

	// solve problem
	if numjac {
		osol.Init(method, ndim, fcn, nil, &M, ode.SimpleOutput, silent)
	} else {
		osol.Init(method, ndim, fcn, jac, &M, ode.SimpleOutput, silent)
	}
	osol.IniH = 1.0e-6 // initial step size

	// set tolerances
	atol, rtol := 1e-11, 1e-5
	osol.SetTol(atol, rtol)

	// run
	t0 := time.Now()
	if fixstp {
		osol.Solve(ya, xa, xb, 0.01, fixstp, &res)
	} else {
		osol.Solve(ya, xa, xb, xb-xa, fixstp, &res)
	}

	// plot
	if mpi.Rank() == 0 {
		io.Pfmag("elapsed time = %v\n", time.Now().Sub(t0))
		plt.SetForEps(2.0, 400)
		args := "'b-', marker='.', lw=1, clip_on=0"
		ode.Plot("/tmp/gosl/ode", "hwamplifier_mpi.eps", &res, nil, xa, xb, "", args, func() {
			_, T, err := io.ReadTable("data/radau5_hwamplifier.dat")
			if err != nil {
				chk.Panic("%v", err)
			}
			for j := 0; j < ndim; j++ {
				plt.Subplot(ndim+1, 1, j+1)
				plt.Plot(T["x"], T[io.Sf("y%d", j)], "'k+',label='reference',ms=10")
			}
		})
	}
}