Beispiel #1
0
// createSpendTx generates a basic spending transaction given the passed
// signature and public key scripts.
func createSpendingTx(sigScript, pkScript []byte) *wire.MsgTx {
	coinbaseTx := wire.NewMsgTx()

	outPoint := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0),
		dcrutil.TxTreeRegular)
	txIn := wire.NewTxIn(outPoint, []byte{OP_0, OP_0})
	txOut := wire.NewTxOut(0, pkScript)
	coinbaseTx.AddTxIn(txIn)
	coinbaseTx.AddTxOut(txOut)

	spendingTx := wire.NewMsgTx()
	coinbaseTxSha := coinbaseTx.TxSha()
	outPoint = wire.NewOutPoint(&coinbaseTxSha, 0,
		dcrutil.TxTreeRegular)
	txIn = wire.NewTxIn(outPoint, sigScript)
	txOut = wire.NewTxOut(0, nil)

	spendingTx.AddTxIn(txIn)
	spendingTx.AddTxOut(txOut)

	return spendingTx
}
Beispiel #2
0
// toMsgTx generates a wire.MsgTx with this tx's inputs and outputs.
func (tx *withdrawalTx) toMsgTx() *wire.MsgTx {
	msgtx := wire.NewMsgTx()
	for _, o := range tx.outputs {
		msgtx.AddTxOut(wire.NewTxOut(int64(o.amount), o.pkScript()))
	}

	if tx.hasChange() {
		msgtx.AddTxOut(tx.changeOutput)
	}

	for _, i := range tx.inputs {
		msgtx.AddTxIn(wire.NewTxIn(&i.OutPoint, []byte{}))
	}
	return msgtx
}
Beispiel #3
0
func makeInputSource(unspents []*wire.TxOut) InputSource {
	// Return outputs in order.
	currentTotal := dcrutil.Amount(0)
	currentInputs := make([]*wire.TxIn, 0, len(unspents))
	f := func(target dcrutil.Amount) (dcrutil.Amount, []*wire.TxIn, [][]byte, error) {
		for currentTotal < target && len(unspents) != 0 {
			u := unspents[0]
			unspents = unspents[1:]
			nextInput := wire.NewTxIn(&wire.OutPoint{}, nil)
			currentTotal += dcrutil.Amount(u.Value)
			currentInputs = append(currentInputs, nextInput)
		}
		return currentTotal, currentInputs, make([][]byte, len(currentInputs)), nil
	}
	return InputSource(f)
}
Beispiel #4
0
// makeInputSource creates an InputSource that creates inputs for every unspent
// output with non-zero output values.  The target amount is ignored since every
// output is consumed.  The InputSource does not return any previous output
// scripts as they are not needed for creating the unsinged transaction and are
// looked up again by the wallet during the call to signrawtransaction.
func makeInputSource(outputs []dcrjson.ListUnspentResult) txauthor.InputSource {
	var (
		totalInputValue dcrutil.Amount
		inputs          = make([]*wire.TxIn, 0, len(outputs))
		sourceErr       error
	)
	for _, output := range outputs {
		outputAmount, err := dcrutil.NewAmount(output.Amount)
		if err != nil {
			sourceErr = fmt.Errorf(
				"invalid amount `%v` in listunspent result",
				output.Amount)
			break
		}
		if outputAmount == 0 {
			continue
		}
		if !saneOutputValue(outputAmount) {
			sourceErr = fmt.Errorf(
				"impossible output amount `%v` in listunspent result",
				outputAmount)
			break
		}
		totalInputValue += outputAmount

		previousOutPoint, err := parseOutPoint(&output)
		if err != nil {
			sourceErr = fmt.Errorf(
				"invalid data in listunspent result: %v",
				err)
			break
		}

		inputs = append(inputs, wire.NewTxIn(&previousOutPoint, nil))
	}

	if sourceErr == nil && totalInputValue == 0 {
		sourceErr = noInputValue{}
	}

	return func(dcrutil.Amount) (dcrutil.Amount, []*wire.TxIn, [][]byte, error) {
		return totalInputValue, inputs, nil, sourceErr
	}
}
Beispiel #5
0
// makeTx generates a transaction spending outputs to a single address.
func makeTx(params *chaincfg.Params,
	inputs []*extendedOutPoint,
	addr dcrutil.Address,
	txFee int64) (*wire.MsgTx, error) {
	mtx := wire.NewMsgTx()

	allInAmts := int64(0)
	for _, input := range inputs {
		txIn := wire.NewTxIn(input.op, []byte{})
		mtx.AddTxIn(txIn)
		allInAmts += input.amt
	}

	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		return nil, err
	}
	txOut := wire.NewTxOut(allInAmts-txFee, pkScript)
	txOut.Version = txscript.DefaultScriptVersion
	mtx.AddTxOut(txOut)

	return mtx, nil

}
Beispiel #6
0
func TestInsertsCreditsDebitsRollbacks(t *testing.T) {
	t.Parallel()

	// Create a double spend of the received blockchain transaction.
	dupRecvTx, err := dcrutil.NewTxFromBytesLegacy(TstRecvSerializedTx)
	if err != nil {
		t.Errorf("failed to deserialize test transaction: %v", err.Error())
		return
	}

	// Switch txout amount to 1 DCR.  Transaction store doesn't
	// validate txs, so this is fine for testing a double spend
	// removal.

	TstDupRecvAmount := int64(1e8)
	newDupMsgTx := dupRecvTx.MsgTx()
	newDupMsgTx.TxOut[0].Value = TstDupRecvAmount
	TstDoubleSpendTx := dcrutil.NewTx(newDupMsgTx)
	TstDoubleSpendSerializedTx := serializeTx(TstDoubleSpendTx)

	// Create a "signed" (with invalid sigs) tx that spends output 0 of
	// the double spend.
	spendingTx := wire.NewMsgTx()
	spendingTxIn := wire.NewTxIn(wire.NewOutPoint(TstDoubleSpendTx.Sha(), 0, dcrutil.TxTreeRegular), []byte{0, 1, 2, 3, 4})
	spendingTx.AddTxIn(spendingTxIn)
	spendingTxOut1 := wire.NewTxOut(1e7, []byte{5, 6, 7, 8, 9})
	spendingTxOut2 := wire.NewTxOut(9e7, []byte{10, 11, 12, 13, 14})
	spendingTx.AddTxOut(spendingTxOut1)
	spendingTx.AddTxOut(spendingTxOut2)
	TstSpendingTx := dcrutil.NewTx(spendingTx)
	TstSpendingSerializedTx := serializeTx(TstSpendingTx)
	var _ = TstSpendingTx

	tests := []struct {
		name     string
		f        func(*Store) (*Store, error)
		bal, unc dcrutil.Amount
		unspents map[wire.OutPoint]struct{}
		unmined  map[chainhash.Hash]struct{}
	}{
		{
			name: "new store",
			f: func(s *Store) (*Store, error) {
				return s, nil
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined:  map[chainhash.Hash]struct{}{},
		},
		{
			name: "txout insert",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, false)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "insert duplicate unconfirmed",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, false)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "confirmed txout insert",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
		{
			name: "insert duplicate confirmed",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
		{
			name: "rollback confirmed credit",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstRecvTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "insert confirmed double spend",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: dcrutil.Amount(TstDoubleSpendTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstDoubleSpendTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
		{
			name: "insert unconfirmed debit",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				return s, err
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined: map[chainhash.Hash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert unconfirmed debit again",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				return s, err
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined: map[chainhash.Hash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert change (index 0)",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, true)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert output back to this own wallet (index 1)",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}
				err = s.AddCredit(rec, nil, 1, true)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
				wire.OutPoint{*TstSpendingTx.Sha(), 1, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "confirm signed tx",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstSignedTxBlockDetails)
				return s, err
			},
			bal: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
				wire.OutPoint{*TstSpendingTx.Sha(), 1, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
		{
			name: "rollback after spending tx",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstSignedTxBlockDetails.Height + 1)
				return s, err
			},
			bal: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
				wire.OutPoint{*TstSpendingTx.Sha(), 1, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
		{
			name: "rollback spending tx block",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstSignedTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{*TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular}: {},
				wire.OutPoint{*TstSpendingTx.Sha(), 1, dcrutil.TxTreeRegular}: {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "rollback double spend tx block",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstRecvTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: dcrutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				*wire.NewOutPoint(TstSpendingTx.Sha(), 0, dcrutil.TxTreeRegular): {},
				*wire.NewOutPoint(TstSpendingTx.Sha(), 1, dcrutil.TxTreeRegular): {},
			},
			unmined: map[chainhash.Hash]struct{}{
				*TstDoubleSpendTx.Sha(): {},
				*TstSpendingTx.Sha():    {},
			},
		},
		{
			name: "insert original recv txout",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}
				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: dcrutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				*wire.NewOutPoint(TstRecvTx.Sha(), 0, dcrutil.TxTreeRegular): {},
			},
			unmined: map[chainhash.Hash]struct{}{},
		},
	}

	s, teardown, err := testStore()
	defer teardown()
	if err != nil {
		t.Fatal(err)
	}

	for _, test := range tests {
		tmpStore, err := test.f(s)
		if err != nil {
			t.Fatalf("%s: got error: %v", test.name, err)
		}
		s = tmpStore
		bal, err := s.Balance(1, TstRecvCurrentHeight, wtxmgr.BFBalanceSpendable)
		if err != nil {
			t.Fatalf("%s: Confirmed Balance failed: %v", test.name, err)
		}
		if bal != test.bal {
			t.Fatalf("%s: balance mismatch: expected: %d, got: %d", test.name, test.bal, bal)
		}
		unc, err := s.Balance(0, TstRecvCurrentHeight, wtxmgr.BFBalanceSpendable)
		if err != nil {
			t.Fatalf("%s: Unconfirmed Balance failed: %v", test.name, err)
		}
		unc -= bal
		if unc != test.unc {
			t.Fatalf("%s: unconfirmed balance mismatch: expected %d, got %d", test.name, test.unc, unc)
		}

		// Check that unspent outputs match expected.
		unspent, err := s.UnspentOutputs()
		if err != nil {
			t.Fatalf("%s: failed to fetch unspent outputs: %v", test.name, err)
		}
		for _, cred := range unspent {
			if _, ok := test.unspents[cred.OutPoint]; !ok {
				t.Errorf("%s: unexpected unspent output: %v", test.name, cred.OutPoint)
			}
			delete(test.unspents, cred.OutPoint)
		}
		if len(test.unspents) != 0 {
			t.Fatalf("%s: missing expected unspent output(s)", test.name)
		}

		// Check that unmined txs match expected.
		unmined, err := s.UnminedTxs()
		if err != nil {
			t.Fatalf("%s: cannot load unmined transactions: %v", test.name, err)
		}
		for _, tx := range unmined {
			txHash := tx.TxSha()
			if _, ok := test.unmined[txHash]; !ok {
				t.Fatalf("%s: unexpected unmined tx: %v", test.name, txHash)
			}
			delete(test.unmined, txHash)
		}
		if len(test.unmined) != 0 {
			t.Fatalf("%s: missing expected unmined tx(s)", test.name)
		}

	}
}
Beispiel #7
0
// This example demonstrates manually creating and signing a redeem transaction.
func ExampleSignTxOutput() {
	// Ordinarily the private key would come from whatever storage mechanism
	// is being used, but for this example just hard code it.
	privKeyBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2" +
		"d4f8720ee63e502ee2869afab7de234b80c")
	if err != nil {
		fmt.Println(err)
		return
	}
	privKey, pubKey := chainec.Secp256k1.PrivKeyFromBytes(privKeyBytes)
	pubKeyHash := dcrutil.Hash160(pubKey.SerializeCompressed())
	addr, err := dcrutil.NewAddressPubKeyHash(pubKeyHash,
		&chaincfg.MainNetParams, chainec.ECTypeSecp256k1)
	if err != nil {
		fmt.Println(err)
		return
	}

	// For this example, create a fake transaction that represents what
	// would ordinarily be the real transaction that is being spent.  It
	// contains a single output that pays to address in the amount of 1 DCR.
	originTx := wire.NewMsgTx()
	prevOut := wire.NewOutPoint(&chainhash.Hash{}, ^uint32(0), dcrutil.TxTreeRegular)
	txIn := wire.NewTxIn(prevOut, []byte{txscript.OP_0, txscript.OP_0})
	originTx.AddTxIn(txIn)
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		fmt.Println(err)
		return
	}
	txOut := wire.NewTxOut(100000000, pkScript)
	originTx.AddTxOut(txOut)
	originTxHash := originTx.TxSha()

	// Create the transaction to redeem the fake transaction.
	redeemTx := wire.NewMsgTx()

	// Add the input(s) the redeeming transaction will spend.  There is no
	// signature script at this point since it hasn't been created or signed
	// yet, hence nil is provided for it.
	prevOut = wire.NewOutPoint(&originTxHash, 0, dcrutil.TxTreeRegular)
	txIn = wire.NewTxIn(prevOut, nil)
	redeemTx.AddTxIn(txIn)

	// Ordinarily this would contain that actual destination of the funds,
	// but for this example don't bother.
	txOut = wire.NewTxOut(0, nil)
	redeemTx.AddTxOut(txOut)

	// Sign the redeeming transaction.
	lookupKey := func(a dcrutil.Address) (chainec.PrivateKey, bool, error) {
		// Ordinarily this function would involve looking up the private
		// key for the provided address, but since the only thing being
		// signed in this example uses the address associated with the
		// private key from above, simply return it with the compressed
		// flag set since the address is using the associated compressed
		// public key.
		//
		// NOTE: If you want to prove the code is actually signing the
		// transaction properly, uncomment the following line which
		// intentionally returns an invalid key to sign with, which in
		// turn will result in a failure during the script execution
		// when verifying the signature.
		//
		// privKey.D.SetInt64(12345)
		//
		return privKey, true, nil
	}
	// Notice that the script database parameter is nil here since it isn't
	// used.  It must be specified when pay-to-script-hash transactions are
	// being signed.
	sigScript, err := txscript.SignTxOutput(&chaincfg.MainNetParams,
		redeemTx, 0, originTx.TxOut[0].PkScript, txscript.SigHashAll,
		txscript.KeyClosure(lookupKey), nil, nil, secp)
	if err != nil {
		fmt.Println(err)
		return
	}
	redeemTx.TxIn[0].SignatureScript = sigScript

	// Prove that the transaction has been validly signed by executing the
	// script pair.
	flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures |
		txscript.ScriptDiscourageUpgradableNops
	vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0,
		flags, 0)
	if err != nil {
		fmt.Println(err)
		return
	}
	if err := vm.Execute(); err != nil {
		fmt.Println(err)
		return
	}
	fmt.Println("Transaction successfully signed")

	// Output:
	// Transaction successfully signed
}
Beispiel #8
0
// GenerateRevocation generates a revocation (SSRtx), signs it, and
// submits it by SendRawTransaction. It also stores a record of it
// in the local database.
func (s *StakeStore) generateRevocation(ns walletdb.ReadWriteBucket, waddrmgrNs walletdb.ReadBucket, blockHash *chainhash.Hash, height int64, sstxHash *chainhash.Hash,
	allowHighFees bool) (*StakeNotification, error) {

	// 1. Fetch the SStx, then calculate all the values we'll need later for
	// the generation of the SSRtx tx outputs.
	sstxRecord, err := s.getSStx(ns, sstxHash)
	if err != nil {
		return nil, err
	}
	sstx := sstxRecord.tx

	// Store the sstx pubkeyhashes and amounts as found in the transaction
	// outputs.
	// TODO Get information on the allowable fee range for the revocation
	// and check to make sure we don't overflow that.
	sstxPayTypes, sstxPkhs, sstxAmts, _, _, _ :=
		stake.TxSStxStakeOutputInfo(sstx.MsgTx())
	ssrtxCalcAmts := stake.CalculateRewards(sstxAmts, sstx.MsgTx().TxOut[0].Value,
		int64(0))

	// Calculate the fee to use for this revocation based on the fee
	// per KB that is standard for mainnet.
	revocationSizeEst := estimateSSRtxTxSize(1, len(sstxPkhs))
	revocationFee := txrules.FeeForSerializeSize(revocationFeePerKB,
		revocationSizeEst)

	// 2. Add the only input.
	msgTx := wire.NewMsgTx()

	// SStx tagged output as an OutPoint; reference this as
	// the only input.
	prevOut := wire.NewOutPoint(sstxHash,
		0, // Index 0
		1) // Tree stake
	txIn := wire.NewTxIn(prevOut, []byte{})
	msgTx.AddTxIn(txIn)

	// 3. Add all the OP_SSRTX tagged outputs.

	// Add all the SSRtx-tagged transaction outputs to the transaction after
	// performing some validity checks.
	feeAdded := false
	for i, sstxPkh := range sstxPkhs {
		// Create a new script which pays to the provided address specified in
		// the original ticket tx.
		var ssrtxOutScript []byte
		switch sstxPayTypes[i] {
		case false: // P2PKH
			ssrtxOutScript, err = txscript.PayToSSRtxPKHDirect(sstxPkh)
			if err != nil {
				return nil, err
			}
		case true: // P2SH
			ssrtxOutScript, err = txscript.PayToSSRtxSHDirect(sstxPkh)
			if err != nil {
				return nil, err
			}
		}

		// Add a fee from an output that has enough.
		amt := ssrtxCalcAmts[i]
		if !feeAdded && ssrtxCalcAmts[i] >= int64(revocationFee) {
			amt -= int64(revocationFee)
			feeAdded = true
		}

		// Add the txout to our SSRtx tx.
		txOut := wire.NewTxOut(amt, ssrtxOutScript)
		msgTx.AddTxOut(txOut)
	}

	// Check to make sure our SSRtx was created correctly.
	_, err = stake.IsSSRtx(msgTx)
	if err != nil {
		return nil, err
	}

	// Sign the transaction.
	err = s.SignVRTransaction(waddrmgrNs, msgTx, sstx, false)
	if err != nil {
		return nil, err
	}

	// Store the information about the SSRtx.
	hash := msgTx.TxSha()
	err = s.insertSSRtx(ns,
		blockHash,
		height,
		&hash,
		sstx.Sha())
	if err != nil {
		return nil, err
	}

	// Send the transaction.
	ssrtxSha, err := s.chainSvr.SendRawTransaction(msgTx, allowHighFees)
	if err != nil {
		return nil, err
	}

	log.Debugf("Generated SSRtx %v. The ticket used to "+
		"generate the SSRtx was %v.", ssrtxSha, sstx.Sha())

	// Generate a notification to return.
	ntfn := &StakeNotification{
		TxType:    int8(stake.TxTypeSSRtx),
		TxHash:    *ssrtxSha,
		BlockHash: chainhash.Hash{},
		Height:    0,
		Amount:    0,
		SStxIn:    *sstx.Sha(),
		VoteBits:  0,
	}

	return ntfn, nil
}
Beispiel #9
0
// generateVote creates a new SSGen given a header hash, height, sstx
// tx hash, and votebits.
func (s *StakeStore) generateVote(ns walletdb.ReadWriteBucket, waddrmgrNs walletdb.ReadBucket, blockHash *chainhash.Hash, height int64, sstxHash *chainhash.Hash, defaultVoteBits stake.VoteBits, allowHighFees bool) (*StakeNotification, error) {
	// 1. Fetch the SStx, then calculate all the values we'll need later for
	// the generation of the SSGen tx outputs.
	sstxRecord, err := s.getSStx(ns, sstxHash)
	if err != nil {
		return nil, err
	}
	sstx := sstxRecord.tx
	sstxMsgTx := sstx.MsgTx()

	// The legacy wallet didn't store anything about the voteBits to use.
	// In the case we're loading a legacy wallet and the voteBits are
	// unset, just use the default voteBits as set by the user.
	voteBits := defaultVoteBits
	if sstxRecord.voteBitsSet {
		voteBits.Bits = sstxRecord.voteBits
		voteBits.ExtendedBits = sstxRecord.voteBitsExt
	}

	// Store the sstx pubkeyhashes and amounts as found in the transaction
	// outputs.
	// TODO Get information on the allowable fee range for the vote
	// and check to make sure we don't overflow that.
	ssgenPayTypes, ssgenPkhs, sstxAmts, _, _, _ :=
		stake.TxSStxStakeOutputInfo(sstxMsgTx)

	// Get the current reward.
	initSudsidyCacheOnce.Do(func() {
		subsidyCache = blockchain.NewSubsidyCache(height, s.Params)
	})
	stakeVoteSubsidy := blockchain.CalcStakeVoteSubsidy(subsidyCache,
		height, s.Params)

	// Calculate the output values from this data.
	ssgenCalcAmts := stake.CalculateRewards(sstxAmts,
		sstxMsgTx.TxOut[0].Value,
		stakeVoteSubsidy)

	subsidyCache = blockchain.NewSubsidyCache(height, s.Params)
	// 2. Add all transaction inputs to a new transaction after performing
	// some validity checks. First, add the stake base, then the OP_SSTX
	// tagged output.
	msgTx := wire.NewMsgTx()

	// Stakebase.
	stakeBaseOutPoint := wire.NewOutPoint(&chainhash.Hash{},
		uint32(0xFFFFFFFF),
		wire.TxTreeRegular)
	txInStakeBase := wire.NewTxIn(stakeBaseOutPoint, []byte{})
	msgTx.AddTxIn(txInStakeBase)

	// Add the subsidy amount into the input.
	msgTx.TxIn[0].ValueIn = stakeVoteSubsidy

	// SStx tagged output as an OutPoint.
	prevOut := wire.NewOutPoint(sstxHash,
		0, // Index 0
		1) // Tree stake
	txIn := wire.NewTxIn(prevOut, []byte{})
	msgTx.AddTxIn(txIn)

	// 3. Add the OP_RETURN null data pushes of the block header hash,
	// the block height, and votebits, then add all the OP_SSGEN tagged
	// outputs.
	//
	// Block reference output.
	blockRefScript, err := txscript.GenerateSSGenBlockRef(*blockHash,
		uint32(height))
	if err != nil {
		return nil, err
	}
	blockRefOut := wire.NewTxOut(0, blockRefScript)
	msgTx.AddTxOut(blockRefOut)

	// Votebits output.
	blockVBScript, err := generateVoteScript(voteBits)
	if err != nil {
		return nil, err
	}
	blockVBOut := wire.NewTxOut(0, blockVBScript)
	msgTx.AddTxOut(blockVBOut)

	// Add all the SSGen-tagged transaction outputs to the transaction after
	// performing some validity checks.
	for i, ssgenPkh := range ssgenPkhs {
		// Create a new script which pays to the provided address specified in
		// the original ticket tx.
		var ssgenOutScript []byte
		switch ssgenPayTypes[i] {
		case false: // P2PKH
			ssgenOutScript, err = txscript.PayToSSGenPKHDirect(ssgenPkh)
			if err != nil {
				return nil, err
			}
		case true: // P2SH
			ssgenOutScript, err = txscript.PayToSSGenSHDirect(ssgenPkh)
			if err != nil {
				return nil, err
			}
		}

		// Add the txout to our SSGen tx.
		txOut := wire.NewTxOut(ssgenCalcAmts[i], ssgenOutScript)

		msgTx.AddTxOut(txOut)
	}

	// Check to make sure our SSGen was created correctly.
	_, err = stake.IsSSGen(msgTx)
	if err != nil {
		return nil, err
	}

	// Sign the transaction.
	err = s.SignVRTransaction(waddrmgrNs, msgTx, sstx, true)
	if err != nil {
		return nil, err
	}

	// Store the information about the SSGen.
	hash := msgTx.TxSha()
	err = s.insertSSGen(ns,
		blockHash,
		height,
		&hash,
		voteBits.Bits,
		sstx.Sha())
	if err != nil {
		return nil, err
	}

	// Send the transaction.
	ssgenSha, err := s.chainSvr.SendRawTransaction(msgTx, allowHighFees)
	if err != nil {
		return nil, err
	}

	log.Debugf("Generated SSGen %v, voting on block %v at height %v. "+
		"The ticket used to generate the SSGen was %v.",
		ssgenSha, blockHash, height, sstxHash)

	// Generate a notification to return.
	ntfn := &StakeNotification{
		TxType:    int8(stake.TxTypeSSGen),
		TxHash:    *ssgenSha,
		BlockHash: *blockHash,
		Height:    int32(height),
		Amount:    0,
		SStxIn:    *sstx.Sha(),
		VoteBits:  voteBits.Bits,
	}

	return ntfn, nil
}
Beispiel #10
0
func Test_dupTx(t *testing.T) {

	// Ignore db remove errors since it means we didn't have an old one.
	dbname := fmt.Sprintf("tstdbdup0")
	dbnamever := dbname + ".ver"
	_ = os.RemoveAll(dbname)
	_ = os.RemoveAll(dbnamever)
	db, err := database.CreateDB("leveldb", dbname)
	if err != nil {
		t.Errorf("Failed to open test database %v", err)
		return
	}
	defer os.RemoveAll(dbname)
	defer os.RemoveAll(dbnamever)
	defer func() {
		if err := db.Close(); err != nil {
			t.Errorf("Close: unexpected error: %v", err)
		}
	}()

	testdatafile := filepath.Join("../", "../blockchain/testdata", "blocks0to168.bz2")
	blocks, err := loadBlocks(t, testdatafile)
	if err != nil {
		t.Errorf("Unable to load blocks from test data for: %v",
			err)
		return
	}

	var lastSha *chainhash.Hash

	// Populate with the fisrt 256 blocks, so we have blocks to 'mess with'
	err = nil
out:
	for height := int64(0); height < int64(len(blocks)); height++ {
		block := blocks[height]
		if height != 0 {
			// except for NoVerify which does not allow lookups check inputs
			mblock := block.MsgBlock()
			//t.Errorf("%v", blockchain.DebugBlockString(block))
			parentBlock := blocks[height-1]
			mParentBlock := parentBlock.MsgBlock()
			var txneededList []*chainhash.Hash
			opSpentInBlock := make(map[wire.OutPoint]struct{})
			if dcrutil.IsFlagSet16(dcrutil.BlockValid, mParentBlock.Header.VoteBits) {
				for _, tx := range mParentBlock.Transactions {
					for _, txin := range tx.TxIn {
						if txin.PreviousOutPoint.Index == uint32(4294967295) {
							continue
						}

						if existsInOwnBlockRegTree(mParentBlock, txin.PreviousOutPoint.Hash) {
							_, used := opSpentInBlock[txin.PreviousOutPoint]
							if !used {
								// Origin tx is in the block and so hasn't been
								// added yet, continue
								opSpentInBlock[txin.PreviousOutPoint] = struct{}{}
								continue
							} else {
								t.Errorf("output ref %v attempted double spend of previously spend output", txin.PreviousOutPoint)
							}
						}

						origintxsha := &txin.PreviousOutPoint.Hash
						txneededList = append(txneededList, origintxsha)
						exists, err := db.ExistsTxSha(origintxsha)
						if err != nil {
							t.Errorf("ExistsTxSha: unexpected error %v ", err)
						}
						if !exists {
							t.Errorf("referenced tx not found %v (height %v)", origintxsha, height)
						}

						_, err = db.FetchTxBySha(origintxsha)
						if err != nil {
							t.Errorf("referenced tx not found %v err %v ", origintxsha, err)
						}
					}
				}
			}
			for _, stx := range mblock.STransactions {
				for _, txin := range stx.TxIn {
					if txin.PreviousOutPoint.Index == uint32(4294967295) {
						continue
					}
					if existsInOwnBlockRegTree(mParentBlock, txin.PreviousOutPoint.Hash) {
						_, used := opSpentInBlock[txin.PreviousOutPoint]
						if !used {
							// Origin tx is in the block and so hasn't been
							// added yet, continue
							opSpentInBlock[txin.PreviousOutPoint] = struct{}{}
							continue
						} else {
							t.Errorf("output ref %v attempted double spend of previously spend output", txin.PreviousOutPoint)
						}
					}

					origintxsha := &txin.PreviousOutPoint.Hash
					txneededList = append(txneededList, origintxsha)

					exists, err := db.ExistsTxSha(origintxsha)
					if err != nil {
						t.Errorf("ExistsTxSha: unexpected error %v ", err)
					}
					if !exists {
						t.Errorf("referenced tx not found %v", origintxsha)
					}

					_, err = db.FetchTxBySha(origintxsha)
					if err != nil {
						t.Errorf("referenced tx not found %v err %v ", origintxsha, err)
					}
				}
			}
			txlist := db.FetchUnSpentTxByShaList(txneededList)
			for _, txe := range txlist {
				if txe.Err != nil {
					t.Errorf("tx list fetch failed %v err %v ", txe.Sha, txe.Err)
					break out
				}
			}
		}
		newheight, err := db.InsertBlock(block)
		if err != nil {
			t.Errorf("failed to insert block %v err %v", height, err)
			break out
		}
		if newheight != height {
			t.Errorf("height mismatch expect %v returned %v", height, newheight)
			break out
		}

		newSha, blkid, err := db.NewestSha()
		if err != nil {
			t.Errorf("failed to obtain latest sha %v %v", height, err)
		}

		if blkid != height {
			t.Errorf("height doe not match latest block height %v %v %v", blkid, height, err)
		}

		blkSha := block.Sha()
		if *newSha != *blkSha {
			t.Errorf("Newest block sha does not match freshly inserted one %v %v %v ", newSha, blkSha, err)
		}
		lastSha = blkSha
	}

	// generate a new block based on the last sha
	// these block are not verified, so there are a bunch of garbage fields
	// in the 'generated' block.

	var bh wire.BlockHeader

	bh.Version = 0
	bh.PrevBlock = *lastSha
	// Bits, Nonce are not filled in

	mblk := wire.NewMsgBlock(&bh)

	hash, _ := chainhash.NewHashFromStr("c23953c56cb2ef8e4698e3ed3b0fc4c837754d3cd16485192d893e35f32626b4")

	po := wire.NewOutPoint(hash, 0, dcrutil.TxTreeRegular)
	txI := wire.NewTxIn(po, []byte("garbage"))
	txO := wire.NewTxOut(50000000, []byte("garbageout"))

	var tx wire.MsgTx
	tx.AddTxIn(txI)
	tx.AddTxOut(txO)

	mblk.AddTransaction(&tx)

	blk := dcrutil.NewBlock(mblk)

	fetchList := []*chainhash.Hash{hash}
	listReply := db.FetchUnSpentTxByShaList(fetchList)
	for _, lr := range listReply {
		if lr.Err != nil {
			t.Errorf("sha %v spent %v err %v\n", lr.Sha,
				lr.TxSpent, lr.Err)
		}
	}

	_, err = db.InsertBlock(blk)
	if err != nil {
		t.Errorf("failed to insert phony block %v", err)
	}

	// ok, did it 'spend' the tx ?

	listReply = db.FetchUnSpentTxByShaList(fetchList)
	for _, lr := range listReply {
		if lr.Err != nil && lr.Err != database.ErrTxShaMissing {
			t.Errorf("sha %v spent %v err %v\n", lr.Sha,
				lr.TxSpent, lr.Err)
		}
	}

	txlist := blk.Transactions()
	for _, tx := range txlist {
		txsha := tx.Sha()
		txReply, err := db.FetchTxBySha(txsha)
		if err != nil {
			t.Errorf("fully spent lookup %v err %v\n", hash, err)
		} else {
			for _, lr := range txReply {
				if lr.Err != nil {
					t.Errorf("stx %v spent %v err %v\n", lr.Sha,
						lr.TxSpent, lr.Err)
				}
			}
		}
	}

	err = db.DropAfterBlockBySha(lastSha)
	if err != nil {
		t.Errorf("failed to drop spending block %v", err)
	}
}
Beispiel #11
0
// TestTx tests the MsgTx API.
func TestTx(t *testing.T) {
	pver := wire.ProtocolVersion

	// Block 100000 hash.
	hashStr := "3ba27aa200b1cecaad478d2b00432346c3f1f3986da1afd33e506"
	hash, err := chainhash.NewHashFromStr(hashStr)
	if err != nil {
		t.Errorf("NewShaHashFromStr: %v", err)
	}

	// Ensure the command is expected value.
	wantCmd := "tx"
	msg := wire.NewMsgTx()
	if cmd := msg.Command(); cmd != wantCmd {
		t.Errorf("NewMsgAddr: wrong command - got %v want %v",
			cmd, wantCmd)
	}

	// Ensure max payload is expected value for latest protocol version.
	// Num addresses (varInt) + max allowed addresses.
	wantPayload := uint32(1000 * 1000)
	maxPayload := msg.MaxPayloadLength(pver)
	if maxPayload != wantPayload {
		t.Errorf("MaxPayloadLength: wrong max payload length for "+
			"protocol version %d - got %v, want %v", pver,
			maxPayload, wantPayload)
	}

	// Ensure we get the same transaction output point data back out.
	// NOTE: This is a block hash and made up index, but we're only
	// testing package functionality.
	prevOutIndex := uint32(1)
	prevOut := wire.NewOutPoint(hash, prevOutIndex, dcrutil.TxTreeRegular)
	if !prevOut.Hash.IsEqual(hash) {
		t.Errorf("NewOutPoint: wrong hash - got %v, want %v",
			spew.Sprint(&prevOut.Hash), spew.Sprint(hash))
	}
	if prevOut.Index != prevOutIndex {
		t.Errorf("NewOutPoint: wrong index - got %v, want %v",
			prevOut.Index, prevOutIndex)
	}
	prevOutStr := fmt.Sprintf("%s:%d", hash.String(), prevOutIndex)
	if s := prevOut.String(); s != prevOutStr {
		t.Errorf("OutPoint.String: unexpected result - got %v, "+
			"want %v", s, prevOutStr)
	}

	// Ensure we get the same transaction input back out.
	sigScript := []byte{0x04, 0x31, 0xdc, 0x00, 0x1b, 0x01, 0x62}
	txIn := wire.NewTxIn(prevOut, sigScript)
	if !reflect.DeepEqual(&txIn.PreviousOutPoint, prevOut) {
		t.Errorf("NewTxIn: wrong prev outpoint - got %v, want %v",
			spew.Sprint(&txIn.PreviousOutPoint),
			spew.Sprint(prevOut))
	}
	if !bytes.Equal(txIn.SignatureScript, sigScript) {
		t.Errorf("NewTxIn: wrong signature script - got %v, want %v",
			spew.Sdump(txIn.SignatureScript),
			spew.Sdump(sigScript))
	}

	// Ensure we get the same transaction output back out.
	txValue := int64(5000000000)
	pkScript := []byte{
		0x41, // OP_DATA_65
		0x04, 0xd6, 0x4b, 0xdf, 0xd0, 0x9e, 0xb1, 0xc5,
		0xfe, 0x29, 0x5a, 0xbd, 0xeb, 0x1d, 0xca, 0x42,
		0x81, 0xbe, 0x98, 0x8e, 0x2d, 0xa0, 0xb6, 0xc1,
		0xc6, 0xa5, 0x9d, 0xc2, 0x26, 0xc2, 0x86, 0x24,
		0xe1, 0x81, 0x75, 0xe8, 0x51, 0xc9, 0x6b, 0x97,
		0x3d, 0x81, 0xb0, 0x1c, 0xc3, 0x1f, 0x04, 0x78,
		0x34, 0xbc, 0x06, 0xd6, 0xd6, 0xed, 0xf6, 0x20,
		0xd1, 0x84, 0x24, 0x1a, 0x6a, 0xed, 0x8b, 0x63,
		0xa6, // 65-byte signature
		0xac, // OP_CHECKSIG
	}
	txOut := wire.NewTxOut(txValue, pkScript)
	if txOut.Value != txValue {
		t.Errorf("NewTxOut: wrong pk script - got %v, want %v",
			txOut.Value, txValue)

	}
	if !bytes.Equal(txOut.PkScript, pkScript) {
		t.Errorf("NewTxOut: wrong pk script - got %v, want %v",
			spew.Sdump(txOut.PkScript),
			spew.Sdump(pkScript))
	}

	// Ensure transaction inputs are added properly.
	msg.AddTxIn(txIn)
	if !reflect.DeepEqual(msg.TxIn[0], txIn) {
		t.Errorf("AddTxIn: wrong transaction input added - got %v, want %v",
			spew.Sprint(msg.TxIn[0]), spew.Sprint(txIn))
	}

	// Ensure transaction outputs are added properly.
	msg.AddTxOut(txOut)
	if !reflect.DeepEqual(msg.TxOut[0], txOut) {
		t.Errorf("AddTxIn: wrong transaction output added - got %v, want %v",
			spew.Sprint(msg.TxOut[0]), spew.Sprint(txOut))
	}

	// Ensure the copy produced an identical transaction message.
	newMsg := msg.Copy()
	if !reflect.DeepEqual(newMsg, msg) {
		t.Errorf("Copy: mismatched tx messages - got %v, want %v",
			spew.Sdump(newMsg), spew.Sdump(msg))
	}

	return
}
Beispiel #12
0
// GenerateRevocation generates a revocation (SSRtx), signs it, and
// submits it by SendRawTransaction. It also stores a record of it
// in the local database.
func (s *StakeStore) generateRevocation(blockHash *chainhash.Hash, height int64,
	sstxHash *chainhash.Hash) (*StakeNotification, error) {
	var revocationFee int64
	switch {
	case s.Params == &chaincfg.MainNetParams:
		revocationFee = revocationFeeMainNet
	case s.Params == &chaincfg.TestNetParams:
		revocationFee = revocationFeeTestNet
	default:
		revocationFee = revocationFeeTestNet
	}

	// 1. Fetch the SStx, then calculate all the values we'll need later for
	// the generation of the SSRtx tx outputs.
	sstxRecord, err := s.getSStx(sstxHash)
	if err != nil {
		return nil, err
	}
	sstx := sstxRecord.tx

	// Store the sstx pubkeyhashes and amounts as found in the transaction
	// outputs.
	// TODO Get information on the allowable fee range for the revocation
	// and check to make sure we don't overflow that.
	sstxPayTypes, sstxPkhs, sstxAmts, _, _, _ :=
		stake.GetSStxStakeOutputInfo(sstx)

	ssrtxCalcAmts := stake.GetStakeRewards(sstxAmts, sstx.MsgTx().TxOut[0].Value,
		int64(0))

	// 2. Add the only input.
	msgTx := wire.NewMsgTx()

	// SStx tagged output as an OutPoint; reference this as
	// the only input.
	prevOut := wire.NewOutPoint(sstxHash,
		0, // Index 0
		1) // Tree stake
	txIn := wire.NewTxIn(prevOut, []byte{})
	msgTx.AddTxIn(txIn)

	// 3. Add all the OP_SSRTX tagged outputs.

	// Add all the SSRtx-tagged transaction outputs to the transaction after
	// performing some validity checks.
	feeAdded := false
	for i, sstxPkh := range sstxPkhs {
		// Create a new script which pays to the provided address specified in
		// the original ticket tx.
		var ssrtxOutScript []byte
		switch sstxPayTypes[i] {
		case false: // P2PKH
			ssrtxOutScript, err = txscript.PayToSSRtxPKHDirect(sstxPkh)
			if err != nil {
				return nil, err
			}
		case true: // P2SH
			ssrtxOutScript, err = txscript.PayToSSRtxSHDirect(sstxPkh)
			if err != nil {
				return nil, err
			}
		}

		// Add a fee from an output that has enough.
		amt := ssrtxCalcAmts[i]
		if !feeAdded && ssrtxCalcAmts[i] >= revocationFee {
			amt -= revocationFee
			feeAdded = true
		}

		// Add the txout to our SSRtx tx.
		txOut := wire.NewTxOut(amt, ssrtxOutScript)
		msgTx.AddTxOut(txOut)
	}

	// Check to make sure our SSRtx was created correctly.
	ssrtxTx := dcrutil.NewTx(msgTx)
	ssrtxTx.SetTree(dcrutil.TxTreeStake)
	_, err = stake.IsSSRtx(ssrtxTx)
	if err != nil {
		return nil, err
	}

	// Sign the transaction.
	err = s.SignVRTransaction(msgTx, sstx, false)
	if err != nil {
		return nil, err
	}

	// Send the transaction.
	ssrtxSha, err := s.chainSvr.SendRawTransaction(msgTx, false)
	if err != nil {
		return nil, err
	}

	// Store the information about the SSRtx.
	err = s.insertSSRtx(blockHash,
		height,
		ssrtxSha,
		sstx.Sha())
	if err != nil {
		return nil, err
	}

	log.Debugf("Generated SSRtx %v. "+
		"The ticket used to generate the SSRtx was %v.",
		ssrtxSha, sstx.Sha())

	// Generate a notification to return.
	ntfn := &StakeNotification{
		TxType:    int8(stake.TxTypeSSRtx),
		TxHash:    *ssrtxSha,
		BlockHash: chainhash.Hash{},
		Height:    0,
		Amount:    0,
		SStxIn:    *sstx.Sha(),
		VoteBits:  0,
	}

	return ntfn, nil
}