func TestExpansionsPlugin(t *testing.T) {
	Convey("Should be able to update expansions", t, func() {
		updateCommand := UpdateCommand{
			Updates: []PutCommandParams{
				{
					Key:   "base",
					Value: "eggs",
				},
				{
					Key:    "topping",
					Concat: ",sausage",
				},
			},
		}

		expansions := command.Expansions{}
		expansions.Put("base", "not eggs")
		expansions.Put("topping", "bacon")

		taskConfig := model.TaskConfig{
			Expansions: &expansions,
		}

		updateCommand.ExecuteUpdates(&taskConfig)

		So(expansions.Get("base"), ShouldEqual, "eggs")
		So(expansions.Get("topping"), ShouldEqual, "bacon,sausage")
	})
}
Beispiel #2
0
// buildMatrixVariant does the heavy lifting of building a matrix variant based on axis information.
// We do this by iterating over all axes and merging the axis value's settings when applicable. Expansions
// are evaluated during this process. Rules are parsed and added to the resulting parserBV for later
// excecution.
func buildMatrixVariant(axes []matrixAxis, mv matrixValue, m *matrix, ase *axisSelectorEvaluator) (*parserBV, error) {
	v := parserBV{
		matrixVal:  mv,
		matrixId:   m.Id,
		Stepback:   m.Stepback,
		BatchTime:  m.BatchTime,
		Modules:    m.Modules,
		RunOn:      m.RunOn,
		Expansions: *command.NewExpansions(mv),
	}
	// we declare a separate expansion map for evaluating the display name
	displayNameExp := command.Expansions{}

	// build up the variant id while iterating through axis values
	idBuf := bytes.Buffer{}
	idBuf.WriteString(m.Id)
	idBuf.WriteString("__")

	// track how many axes we cover, so we know the value is only using real axes
	usedAxes := 0

	// we must iterate over axis definitions to have a consistent ordering for our axis priority
	for _, a := range axes {
		// skip any axes that aren't used in the variant's definition
		if _, ok := mv[a.Id]; !ok {
			continue
		}
		usedAxes++
		axisVal, err := a.find(mv[a.Id])
		if err != nil {
			return nil, err
		}
		if err := v.mergeAxisValue(axisVal); err != nil {
			return nil, fmt.Errorf("processing axis value %v,%v: %v", a.Id, axisVal.Id, err)
		}
		// for display names, fall back to the axis values id so we have *something*
		if axisVal.DisplayName != "" {
			displayNameExp.Put(a.Id, axisVal.DisplayName)
		} else {
			displayNameExp.Put(a.Id, axisVal.Id)
		}

		// append to the variant's name
		idBuf.WriteString(a.Id)
		idBuf.WriteRune('~')
		idBuf.WriteString(axisVal.Id)
		if usedAxes < len(mv) {
			idBuf.WriteRune('_')
		}
	}
	if usedAxes != len(mv) {
		// we could make this error more helpful at the expense of extra complexity
		return nil, fmt.Errorf("cell %v uses undefined axes", mv)
	}
	v.Name = idBuf.String()
	disp, err := displayNameExp.ExpandString(m.DisplayName)
	if err != nil {
		return nil, fmt.Errorf("processing display name: %v", err)
	}
	v.DisplayName = disp

	// add final matrix-level tags and tasks
	if err := v.mergeAxisValue(axisValue{Tags: m.Tags}); err != nil {
		return nil, fmt.Errorf("processing matrix tags: %v", err)
	}
	for _, t := range m.Tasks {
		expTask, err := expandParserBVTask(t, v.Expansions)
		if err != nil {
			return nil, fmt.Errorf("processing task %v: %v", t.Name, err)
		}
		v.Tasks = append(v.Tasks, expTask)
	}

	// evaluate rules for matching matrix values
	for i, rule := range m.Rules {
		r, err := expandRule(rule, v.Expansions)
		if err != nil {
			return nil, fmt.Errorf("processing rule[%v]: %v", i, err)
		}
		matchers, errs := r.If.evaluatedCopies(ase) // we could cache this
		if len(errs) > 0 {
			return nil, fmt.Errorf("evaluating rules for matrix %v: %v", m.Id, errs)
		}
		if matchers.contain(mv) {
			if r.Then.Set != nil {
				if err := v.mergeAxisValue(*r.Then.Set); err != nil {
					return nil, fmt.Errorf("evaluating %v rule %v: %v", m.Id, i, err)
				}
			}
			// we append add/remove task rules internally and execute them
			// during task evaluation, when other tasks are being evaluated.
			if len(r.Then.RemoveTasks) > 0 || len(r.Then.AddTasks) > 0 {
				v.matrixRules = append(v.matrixRules, r.Then)
			}
		}
	}
	return &v, nil
}