Beispiel #1
0
// Hash returns the SHA3 hash of the envelope, calculating it if not yet done.
func (self *Envelope) Hash() common.Hash {
	if (self.hash == common.Hash{}) {
		enc, _ := rlp.EncodeToBytes(self)
		self.hash = crypto.Sha3Hash(enc)
	}
	return self.hash
}
Beispiel #2
0
func (req *findnode) handle(t *udp, from *net.UDPAddr, fromID NodeID, mac []byte) error {
	if expired(req.Expiration) {
		return errExpired
	}
	if t.db.node(fromID) == nil {
		// No bond exists, we don't process the packet. This prevents
		// an attack vector where the discovery protocol could be used
		// to amplify traffic in a DDOS attack. A malicious actor
		// would send a findnode request with the IP address and UDP
		// port of the target as the source address. The recipient of
		// the findnode packet would then send a neighbors packet
		// (which is a much bigger packet than findnode) to the victim.
		return errUnknownNode
	}
	target := crypto.Sha3Hash(req.Target[:])
	t.mutex.Lock()
	closest := t.closest(target, bucketSize).entries
	t.mutex.Unlock()

	p := neighbors{Expiration: uint64(time.Now().Add(expiration).Unix())}
	// Send neighbors in chunks with at most maxNeighbors per packet
	// to stay below the 1280 byte limit.
	for i, n := range closest {
		p.Nodes = append(p.Nodes, nodeToRPC(n))
		if len(p.Nodes) == maxNeighbors || i == len(closest)-1 {
			t.send(from, neighborsPacket, p)
			p.Nodes = p.Nodes[:0]
		}
	}
	return nil
}
Beispiel #3
0
// NewProgram returns a new JIT program
func NewProgram(code []byte) *Program {
	program := &Program{
		Id:           crypto.Sha3Hash(code),
		mapping:      make(map[uint64]uint64),
		destinations: make(map[uint64]struct{}),
		code:         code,
	}

	programs.Add(program.Id, program)
	return program
}
Beispiel #4
0
// NewNode creates a new node. It is mostly meant to be used for
// testing purposes.
func NewNode(id NodeID, ip net.IP, udpPort, tcpPort uint16) *Node {
	if ipv4 := ip.To4(); ipv4 != nil {
		ip = ipv4
	}
	return &Node{
		IP:  ip,
		UDP: udpPort,
		TCP: tcpPort,
		ID:  id,
		sha: crypto.Sha3Hash(id[:]),
	}
}
Beispiel #5
0
// node retrieves a node with a given id from the database.
func (db *nodeDB) node(id NodeID) *Node {
	blob, err := db.lvl.Get(makeKey(id, nodeDBDiscoverRoot), nil)
	if err != nil {
		glog.V(logger.Detail).Infof("failed to retrieve node %v: %v", id, err)
		return nil
	}
	node := new(Node)
	if err := rlp.DecodeBytes(blob, node); err != nil {
		glog.V(logger.Warn).Infof("failed to decode node RLP: %v", err)
		return nil
	}
	node.sha = crypto.Sha3Hash(node.ID[:])
	return node
}
Beispiel #6
0
func (self *HTTPClient) GetAuthContent(uri string, hash common.Hash) ([]byte, error) {
	// retrieve content
	content, err := self.Get(uri, "")
	if err != nil {
		return nil, err
	}

	// check hash to authenticate content
	chash := crypto.Sha3Hash(content)
	if chash != hash {
		return nil, fmt.Errorf("content hash mismatch %x != %x (exp)", hash[:], chash[:])
	}

	return content, nil

}
Beispiel #7
0
// DecodeRLP decodes an Envelope from an RLP data stream.
func (self *Envelope) DecodeRLP(s *rlp.Stream) error {
	raw, err := s.Raw()
	if err != nil {
		return err
	}
	// The decoding of Envelope uses the struct fields but also needs
	// to compute the hash of the whole RLP-encoded envelope. This
	// type has the same structure as Envelope but is not an
	// rlp.Decoder so we can reuse the Envelope struct definition.
	type rlpenv Envelope
	if err := rlp.DecodeBytes(raw, (*rlpenv)(self)); err != nil {
		return err
	}
	self.hash = crypto.Sha3Hash(raw)
	return nil
}
Beispiel #8
0
// Resolve searches for a specific node with the given ID.
// It returns nil if the node could not be found.
func (tab *Table) Resolve(targetID NodeID) *Node {
	// If the node is present in the local table, no
	// network interaction is required.
	hash := crypto.Sha3Hash(targetID[:])
	tab.mutex.Lock()
	cl := tab.closest(hash, 1)
	tab.mutex.Unlock()
	if len(cl.entries) > 0 && cl.entries[0].ID == targetID {
		return cl.entries[0]
	}
	// Otherwise, do a network lookup.
	result := tab.Lookup(targetID)
	for _, n := range result {
		if n.ID == targetID {
			return n
		}
	}
	return nil
}
Beispiel #9
0
// SetFallbackNodes sets the initial points of contact. These nodes
// are used to connect to the network if the table is empty and there
// are no known nodes in the database.
func (tab *Table) SetFallbackNodes(nodes []*Node) error {
	for _, n := range nodes {
		if err := n.validateComplete(); err != nil {
			return fmt.Errorf("bad bootstrap/fallback node %q (%v)", n, err)
		}
	}
	tab.mutex.Lock()
	tab.nursery = make([]*Node, 0, len(nodes))
	for _, n := range nodes {
		cpy := *n
		// Recompute cpy.sha because the node might not have been
		// created by NewNode or ParseNode.
		cpy.sha = crypto.Sha3Hash(n.ID[:])
		tab.nursery = append(tab.nursery, &cpy)
	}
	tab.mutex.Unlock()
	tab.refresh()
	return nil
}
Beispiel #10
0
	"github.com/gophergala2016/etherapis/etherapis/Godeps/_workspace/src/github.com/ethereum/go-ethereum/logger"
	"github.com/gophergala2016/etherapis/etherapis/Godeps/_workspace/src/github.com/ethereum/go-ethereum/logger/glog"
	"github.com/gophergala2016/etherapis/etherapis/Godeps/_workspace/src/github.com/ethereum/go-ethereum/rlp"
)

const defaultCacheCapacity = 800

var (
	// The global cache stores decoded trie nodes by hash as they get loaded.
	globalCache = newARC(defaultCacheCapacity)

	// This is the known root hash of an empty trie.
	emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421")

	// This is the known hash of an empty state trie entry.
	emptyState = crypto.Sha3Hash(nil)
)

// ClearGlobalCache clears the global trie cache
func ClearGlobalCache() {
	globalCache.Clear()
}

// Database must be implemented by backing stores for the trie.
type Database interface {
	DatabaseWriter
	// Get returns the value for key from the database.
	Get(key []byte) (value []byte, err error)
}

// DatabaseWriter wraps the Put method of a backing store for the trie.
Beispiel #11
0
// Run loops and evaluates the contract's code with the given input data
func (self *Vm) Run(contract *Contract, input []byte) (ret []byte, err error) {
	self.env.SetDepth(self.env.Depth() + 1)
	defer self.env.SetDepth(self.env.Depth() - 1)

	// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
	defer func() {
		if err != nil {
			// In case of a VM exception (known exceptions) all gas consumed (panics NOT included).
			contract.UseGas(contract.Gas)

			ret = contract.Return(nil)
		}
	}()

	if contract.CodeAddr != nil {
		if p := Precompiled[contract.CodeAddr.Str()]; p != nil {
			return self.RunPrecompiled(p, input, contract)
		}
	}

	// Don't bother with the execution if there's no code.
	if len(contract.Code) == 0 {
		return contract.Return(nil), nil
	}

	var (
		codehash = crypto.Sha3Hash(contract.Code) // codehash is used when doing jump dest caching
		program  *Program
	)
	if EnableJit {
		// If the JIT is enabled check the status of the JIT program,
		// if it doesn't exist compile a new program in a seperate
		// goroutine or wait for compilation to finish if the JIT is
		// forced.
		switch GetProgramStatus(codehash) {
		case progReady:
			return RunProgram(GetProgram(codehash), self.env, contract, input)
		case progUnknown:
			if ForceJit {
				// Create and compile program
				program = NewProgram(contract.Code)
				perr := CompileProgram(program)
				if perr == nil {
					return RunProgram(program, self.env, contract, input)
				}
				glog.V(logger.Info).Infoln("error compiling program", err)
			} else {
				// create and compile the program. Compilation
				// is done in a seperate goroutine
				program = NewProgram(contract.Code)
				go func() {
					err := CompileProgram(program)
					if err != nil {
						glog.V(logger.Info).Infoln("error compiling program", err)
						return
					}
				}()
			}
		}
	}

	var (
		caller     = contract.caller
		code       = contract.Code
		instrCount = 0

		op      OpCode          // current opcode
		mem     = NewMemory()   // bound memory
		stack   = newstack()    // local stack
		statedb = self.env.Db() // current state
		// For optimisation reason we're using uint64 as the program counter.
		// It's theoretically possible to go above 2^64. The YP defines the PC to be uint256. Pratically much less so feasible.
		pc = uint64(0) // program counter

		// jump evaluates and checks whether the given jump destination is a valid one
		// if valid move the `pc` otherwise return an error.
		jump = func(from uint64, to *big.Int) error {
			if !contract.jumpdests.has(codehash, code, to) {
				nop := contract.GetOp(to.Uint64())
				return fmt.Errorf("invalid jump destination (%v) %v", nop, to)
			}

			pc = to.Uint64()

			return nil
		}

		newMemSize *big.Int
		cost       *big.Int
	)
	contract.Input = input

	// User defer pattern to check for an error and, based on the error being nil or not, use all gas and return.
	defer func() {
		if err != nil {
			self.log(pc, op, contract.Gas, cost, mem, stack, contract, err)
		}
	}()

	if glog.V(logger.Debug) {
		glog.Infof("running byte VM %x\n", codehash[:4])
		tstart := time.Now()
		defer func() {
			glog.Infof("byte VM %x done. time: %v instrc: %v\n", codehash[:4], time.Since(tstart), instrCount)
		}()
	}

	for ; ; instrCount++ {
		/*
			if EnableJit && it%100 == 0 {
				if program != nil && progStatus(atomic.LoadInt32(&program.status)) == progReady {
					// move execution
					fmt.Println("moved", it)
					glog.V(logger.Info).Infoln("Moved execution to JIT")
					return runProgram(program, pc, mem, stack, self.env, contract, input)
				}
			}
		*/

		// Get the memory location of pc
		op = contract.GetOp(pc)

		// calculate the new memory size and gas price for the current executing opcode
		newMemSize, cost, err = calculateGasAndSize(self.env, contract, caller, op, statedb, mem, stack)
		if err != nil {
			return nil, err
		}

		// Use the calculated gas. When insufficient gas is present, use all gas and return an
		// Out Of Gas error
		if !contract.UseGas(cost) {
			return nil, OutOfGasError
		}

		// Resize the memory calculated previously
		mem.Resize(newMemSize.Uint64())
		// Add a log message
		self.log(pc, op, contract.Gas, cost, mem, stack, contract, nil)

		if opPtr := jumpTable[op]; opPtr.valid {
			if opPtr.fn != nil {
				opPtr.fn(instruction{}, &pc, self.env, contract, mem, stack)
			} else {
				switch op {
				case PC:
					opPc(instruction{data: new(big.Int).SetUint64(pc)}, &pc, self.env, contract, mem, stack)
				case JUMP:
					if err := jump(pc, stack.pop()); err != nil {
						return nil, err
					}

					continue
				case JUMPI:
					pos, cond := stack.pop(), stack.pop()

					if cond.Cmp(common.BigTrue) >= 0 {
						if err := jump(pc, pos); err != nil {
							return nil, err
						}

						continue
					}
				case RETURN:
					offset, size := stack.pop(), stack.pop()
					ret := mem.GetPtr(offset.Int64(), size.Int64())

					return contract.Return(ret), nil
				case SUICIDE:
					opSuicide(instruction{}, nil, self.env, contract, mem, stack)

					fallthrough
				case STOP: // Stop the contract
					return contract.Return(nil), nil
				}
			}
		} else {
			return nil, fmt.Errorf("Invalid opcode %x", op)
		}

		pc++

	}
}
Beispiel #12
0
func makeSeedHash(epoch uint64) (sh common.Hash) {
	for ; epoch > 0; epoch-- {
		sh = crypto.Sha3Hash(sh[:])
	}
	return sh
}
Beispiel #13
0
func (tab *Table) lookup(targetID NodeID, refreshIfEmpty bool) []*Node {
	var (
		target         = crypto.Sha3Hash(targetID[:])
		asked          = make(map[NodeID]bool)
		seen           = make(map[NodeID]bool)
		reply          = make(chan []*Node, alpha)
		pendingQueries = 0
		result         *nodesByDistance
	)
	// don't query further if we hit ourself.
	// unlikely to happen often in practice.
	asked[tab.self.ID] = true

	for {
		tab.mutex.Lock()
		// generate initial result set
		result = tab.closest(target, bucketSize)
		tab.mutex.Unlock()
		if len(result.entries) > 0 || !refreshIfEmpty {
			break
		}
		// The result set is empty, all nodes were dropped, refresh.
		// We actually wait for the refresh to complete here. The very
		// first query will hit this case and run the bootstrapping
		// logic.
		<-tab.refresh()
		refreshIfEmpty = false
	}

	for {
		// ask the alpha closest nodes that we haven't asked yet
		for i := 0; i < len(result.entries) && pendingQueries < alpha; i++ {
			n := result.entries[i]
			if !asked[n.ID] {
				asked[n.ID] = true
				pendingQueries++
				go func() {
					// Find potential neighbors to bond with
					r, err := tab.net.findnode(n.ID, n.addr(), targetID)
					if err != nil {
						// Bump the failure counter to detect and evacuate non-bonded entries
						fails := tab.db.findFails(n.ID) + 1
						tab.db.updateFindFails(n.ID, fails)
						glog.V(logger.Detail).Infof("Bumping failures for %x: %d", n.ID[:8], fails)

						if fails >= maxFindnodeFailures {
							glog.V(logger.Detail).Infof("Evacuating node %x: %d findnode failures", n.ID[:8], fails)
							tab.delete(n)
						}
					}
					reply <- tab.bondall(r)
				}()
			}
		}
		if pendingQueries == 0 {
			// we have asked all closest nodes, stop the search
			break
		}
		// wait for the next reply
		for _, n := range <-reply {
			if n != nil && !seen[n.ID] {
				seen[n.ID] = true
				result.push(n, bucketSize)
			}
		}
		pendingQueries--
	}
	return result.entries
}