Beispiel #1
0
// FindProvidersAsync returns a channel of providers for the given key
func (bsnet *impl) FindProvidersAsync(ctx context.Context, k key.Key, max int) <-chan peer.ID {

	// Since routing queries are expensive, give bitswap the peers to which we
	// have open connections. Note that this may cause issues if bitswap starts
	// precisely tracking which peers provide certain keys. This optimization
	// would be misleading. In the long run, this may not be the most
	// appropriate place for this optimization, but it won't cause any harm in
	// the short term.
	connectedPeers := bsnet.host.Network().Peers()
	out := make(chan peer.ID, len(connectedPeers)) // just enough buffer for these connectedPeers
	for _, id := range connectedPeers {
		if id == bsnet.host.ID() {
			continue // ignore self as provider
		}
		out <- id
	}

	go func() {
		defer close(out)
		providers := bsnet.routing.FindProvidersAsync(ctx, k, max)
		for info := range providers {
			if info.ID == bsnet.host.ID() {
				continue // ignore self as provider
			}
			bsnet.host.Peerstore().AddAddrs(info.ID, info.Addrs, peer.TempAddrTTL)
			select {
			case <-ctx.Done():
				return
			case out <- info.ID:
			}
		}
	}()
	return out
}
Beispiel #2
0
Datei: gc.go Projekt: rht/ipget
func GarbageCollectAsync(n *core.IpfsNode, ctx context.Context) (<-chan *KeyRemoved, error) {

	keychan, err := n.Blockstore.AllKeysChan(ctx)
	if err != nil {
		return nil, err
	}

	output := make(chan *KeyRemoved)
	go func() {
		defer close(output)
		for {
			select {
			case k, ok := <-keychan:
				if !ok {
					return
				}
				if !n.Pinning.IsPinned(k) {
					err := n.Blockstore.DeleteBlock(k)
					if err != nil {
						log.Debugf("Error removing key from blockstore: %s", err)
						continue
					}
					select {
					case output <- &KeyRemoved{k}:
					case <-ctx.Done():
					}
				}
			case <-ctx.Done():
				return
			}
		}
	}()
	return output, nil
}
Beispiel #3
0
// Subscribe returns a channel of blocks for the given |keys|. |blockChannel|
// is closed if the |ctx| times out or is cancelled, or after sending len(keys)
// blocks.
func (ps *impl) Subscribe(ctx context.Context, keys ...key.Key) <-chan *blocks.Block {

	blocksCh := make(chan *blocks.Block, len(keys))
	valuesCh := make(chan interface{}, len(keys)) // provide our own channel to control buffer, prevent blocking
	if len(keys) == 0 {
		close(blocksCh)
		return blocksCh
	}
	ps.wrapped.AddSubOnceEach(valuesCh, toStrings(keys)...)
	go func() {
		defer close(blocksCh)
		defer ps.wrapped.Unsub(valuesCh) // with a len(keys) buffer, this is an optimization
		for {
			select {
			case <-ctx.Done():
				return
			case val, ok := <-valuesCh:
				if !ok {
					return
				}
				block, ok := val.(*blocks.Block)
				if !ok {
					return
				}
				select {
				case <-ctx.Done():
					return
				case blocksCh <- block: // continue
				}
			}
		}
	}()

	return blocksCh
}
Beispiel #4
0
// connects to providers for the given keys
func (bs *Bitswap) providerConnector(parent context.Context) {
	defer log.Info("bitswap client worker shutting down...")

	for {
		log.Event(parent, "Bitswap.ProviderConnector.Loop")
		select {
		case req := <-bs.findKeys:
			keys := req.keys
			if len(keys) == 0 {
				log.Warning("Received batch request for zero blocks")
				continue
			}
			log.Event(parent, "Bitswap.ProviderConnector.Work", logging.LoggableMap{"Keys": keys})

			// NB: Optimization. Assumes that providers of key[0] are likely to
			// be able to provide for all keys. This currently holds true in most
			// every situation. Later, this assumption may not hold as true.
			child, cancel := context.WithTimeout(req.ctx, providerRequestTimeout)
			providers := bs.network.FindProvidersAsync(child, keys[0], maxProvidersPerRequest)
			for p := range providers {
				go bs.network.ConnectTo(req.ctx, p)
			}
			cancel()

		case <-parent.Done():
			return
		}
	}
}
Beispiel #5
0
// FetchGraph asynchronously fetches all nodes that are children of the given
// node, and returns a channel that may be waited upon for the fetch to complete
func FetchGraph(ctx context.Context, root *Node, serv DAGService) chan struct{} {
	log.Warning("Untested.")
	var wg sync.WaitGroup
	done := make(chan struct{})

	for _, l := range root.Links {
		wg.Add(1)
		go func(lnk *Link) {

			// Signal child is done on way out
			defer wg.Done()
			select {
			case <-ctx.Done():
				return
			}

			nd, err := lnk.GetNode(ctx, serv)
			if err != nil {
				log.Debug(err)
				return
			}

			// Wait for children to finish
			<-FetchGraph(ctx, nd, serv)
		}(l)
	}

	go func() {
		wg.Wait()
		done <- struct{}{}
	}()

	return done
}
Beispiel #6
0
func (e *offlineExchange) GetBlocks(ctx context.Context, ks []key.Key) (<-chan *blocks.Block, error) {
	out := make(chan *blocks.Block, 0)
	go func() {
		defer close(out)
		var misses []key.Key
		for _, k := range ks {
			hit, err := e.bs.Get(k)
			if err != nil {
				misses = append(misses, k)
				// a long line of misses should abort when context is cancelled.
				select {
				// TODO case send misses down channel
				case <-ctx.Done():
					return
				default:
					continue
				}
			}
			select {
			case out <- hit:
			case <-ctx.Done():
				return
			}
		}
	}()
	return out, nil
}
Beispiel #7
0
func (bs *Bitswap) rebroadcastWorker(parent context.Context) {
	ctx, cancel := context.WithCancel(parent)
	defer cancel()

	broadcastSignal := time.NewTicker(rebroadcastDelay.Get())
	defer broadcastSignal.Stop()

	tick := time.NewTicker(10 * time.Second)
	defer tick.Stop()

	for {
		log.Event(ctx, "Bitswap.Rebroadcast.idle")
		select {
		case <-tick.C:
			n := bs.wm.wl.Len()
			if n > 0 {
				log.Debug(n, "keys in bitswap wantlist")
			}
		case <-broadcastSignal.C: // resend unfulfilled wantlist keys
			log.Event(ctx, "Bitswap.Rebroadcast.active")
			entries := bs.wm.wl.Entries()
			if len(entries) > 0 {
				bs.connectToProviders(ctx, entries)
			}
		case <-parent.Done():
			return
		}
	}
}
Beispiel #8
0
Datei: ping.go Projekt: rht/ipget
func (ps *PingService) Ping(ctx context.Context, p peer.ID) (<-chan time.Duration, error) {
	s, err := ps.Host.NewStream(ID, p)
	if err != nil {
		return nil, err
	}

	out := make(chan time.Duration)
	go func() {
		defer close(out)
		for {
			select {
			case <-ctx.Done():
				return
			default:
				t, err := ping(s)
				if err != nil {
					log.Debugf("ping error: %s", err)
					return
				}

				select {
				case out <- t:
				case <-ctx.Done():
					return
				}
			}
		}
	}()

	return out, nil
}
Beispiel #9
0
Datei: sync.go Projekt: rht/ipget
func (cq *ChanQueue) process(ctx context.Context) {
	// construct the channels here to be able to use them bidirectionally
	enqChan := make(chan peer.ID)
	deqChan := make(chan peer.ID)

	cq.EnqChan = enqChan
	cq.DeqChan = deqChan

	go func() {
		log.Debug("processing")
		defer log.Debug("closed")
		defer close(deqChan)

		var next peer.ID
		var item peer.ID
		var more bool

		for {
			if cq.Queue.Len() == 0 {
				// log.Debug("wait for enqueue")
				select {
				case next, more = <-enqChan:
					if !more {
						return
					}
					// log.Debug("got", next)

				case <-ctx.Done():
					return
				}

			} else {
				next = cq.Queue.Dequeue()
				// log.Debug("peek", next)
			}

			select {
			case item, more = <-enqChan:
				if !more {
					if cq.Queue.Len() > 0 {
						return // we're done done.
					}
					enqChan = nil // closed, so no use.
				}
				// log.Debug("got", item)
				cq.Queue.Enqueue(item)
				cq.Queue.Enqueue(next) // order may have changed.
				next = ""

			case deqChan <- next:
				// log.Debug("dequeued", next)
				next = ""

			case <-ctx.Done():
				return
			}
		}

	}()
}
Beispiel #10
0
// Run is the main republisher loop
func (np *Republisher) Run(ctx context.Context) {
	for {
		select {
		case <-np.Publish:
			quick := time.After(np.TimeoutShort)
			longer := time.After(np.TimeoutLong)

		wait:
			select {
			case <-ctx.Done():
				return
			case <-np.Publish:
				quick = time.After(np.TimeoutShort)
				goto wait
			case <-quick:
			case <-longer:
			}

			log.Info("Publishing Changes!")
			err := np.root.Publish(ctx)
			if err != nil {
				log.Error("republishRoot error: %s", err)
			}

		case <-ctx.Done():
			return
		}
	}
}
Beispiel #11
0
Datei: ping.go Projekt: rht/ipget
func pingPeer(ctx context.Context, n *core.IpfsNode, pid peer.ID, numPings int) <-chan interface{} {
	outChan := make(chan interface{})
	go func() {
		defer close(outChan)

		if len(n.Peerstore.Addrs(pid)) == 0 {
			// Make sure we can find the node in question
			outChan <- &PingResult{
				Text: fmt.Sprintf("Looking up peer %s", pid.Pretty()),
			}

			ctx, cancel := context.WithTimeout(ctx, kPingTimeout)
			defer cancel()
			p, err := n.Routing.FindPeer(ctx, pid)
			if err != nil {
				outChan <- &PingResult{Text: fmt.Sprintf("Peer lookup error: %s", err)}
				return
			}
			n.Peerstore.AddAddrs(p.ID, p.Addrs, peer.TempAddrTTL)
		}

		outChan <- &PingResult{Text: fmt.Sprintf("PING %s.", pid.Pretty())}

		ctx, cancel := context.WithTimeout(ctx, kPingTimeout*time.Duration(numPings))
		defer cancel()
		pings, err := n.Ping.Ping(ctx, pid)
		if err != nil {
			log.Debugf("Ping error: %s", err)
			outChan <- &PingResult{Text: fmt.Sprintf("Ping error: %s", err)}
			return
		}

		var done bool
		var total time.Duration
		for i := 0; i < numPings && !done; i++ {
			select {
			case <-ctx.Done():
				done = true
				break
			case t, ok := <-pings:
				if !ok {
					done = true
					break
				}

				outChan <- &PingResult{
					Success: true,
					Time:    t,
				}
				total += t
				time.Sleep(time.Second)
			}
		}
		averagems := total.Seconds() * 1000 / float64(numPings)
		outChan <- &PingResult{
			Text: fmt.Sprintf("Average latency: %.2fms", averagems),
		}
	}()
	return outChan
}
Beispiel #12
0
func (bs *Bitswap) taskWorker(ctx context.Context, id int) {
	idmap := logging.LoggableMap{"ID": id}
	defer log.Info("bitswap task worker shutting down...")
	for {
		log.Event(ctx, "Bitswap.TaskWorker.Loop", idmap)
		select {
		case nextEnvelope := <-bs.engine.Outbox():
			select {
			case envelope, ok := <-nextEnvelope:
				if !ok {
					continue
				}
				log.Event(ctx, "Bitswap.TaskWorker.Work", logging.LoggableMap{
					"ID":     id,
					"Target": envelope.Peer.Pretty(),
					"Block":  envelope.Block.Multihash.B58String(),
				})

				bs.wm.SendBlock(ctx, envelope)
			case <-ctx.Done():
				return
			}
		case <-ctx.Done():
			return
		}
	}
}
Beispiel #13
0
// GetBlocks returns a channel where the caller may receive blocks that
// correspond to the provided |keys|. Returns an error if BitSwap is unable to
// begin this request within the deadline enforced by the context.
//
// NB: Your request remains open until the context expires. To conserve
// resources, provide a context with a reasonably short deadline (ie. not one
// that lasts throughout the lifetime of the server)
func (bs *Bitswap) GetBlocks(ctx context.Context, keys []key.Key) (<-chan *blocks.Block, error) {
	select {
	case <-bs.process.Closing():
		return nil, errors.New("bitswap is closed")
	default:
	}
	promise := bs.notifications.Subscribe(ctx, keys...)

	for _, k := range keys {
		log.Event(ctx, "Bitswap.GetBlockRequest.Start", &k)
	}

	bs.wm.WantBlocks(keys)

	req := &blockRequest{
		keys: keys,
		ctx:  ctx,
	}
	select {
	case bs.findKeys <- req:
		return promise, nil
	case <-ctx.Done():
		return nil, ctx.Err()
	}
}
Beispiel #14
0
func (bs *Bitswap) provideCollector(ctx context.Context) {
	defer close(bs.provideKeys)
	var toProvide []key.Key
	var nextKey key.Key
	var keysOut chan key.Key

	for {
		select {
		case blk, ok := <-bs.newBlocks:
			if !ok {
				log.Debug("newBlocks channel closed")
				return
			}
			if keysOut == nil {
				nextKey = blk.Key()
				keysOut = bs.provideKeys
			} else {
				toProvide = append(toProvide, blk.Key())
			}
		case keysOut <- nextKey:
			if len(toProvide) > 0 {
				nextKey = toProvide[0]
				toProvide = toProvide[1:]
			} else {
				keysOut = nil
			}
		case <-ctx.Done():
			return
		}
	}
}
Beispiel #15
0
// GetBlocks gets a list of blocks asynchronously and returns through
// the returned channel.
// NB: No guarantees are made about order.
func (s *BlockService) GetBlocks(ctx context.Context, ks []key.Key) <-chan *blocks.Block {
	out := make(chan *blocks.Block, 0)
	go func() {
		defer close(out)
		var misses []key.Key
		for _, k := range ks {
			hit, err := s.Blockstore.Get(k)
			if err != nil {
				misses = append(misses, k)
				continue
			}
			log.Debug("Blockservice: Got data in datastore.")
			select {
			case out <- hit:
			case <-ctx.Done():
				return
			}
		}

		rblocks, err := s.Exchange.GetBlocks(ctx, misses)
		if err != nil {
			log.Debugf("Error with GetBlocks: %s", err)
			return
		}

		for b := range rblocks {
			select {
			case out <- b:
			case <-ctx.Done():
				return
			}
		}
	}()
	return out
}
Beispiel #16
0
// LogError logs the error to the owner of the context.
//
// If this context was created with ContextWithErrorLog, then this method
// passes the error to context creator over an unbuffered channel.
//
// If this context was created by other means, this method is a no-op.
func LogError(ctx context.Context, err error) {
	v := ctx.Value(errLogKey)
	errs, ok := v.(privateChanType)
	if !ok {
		return
	}
	errs <- err
}
Beispiel #17
0
func (pm *ProviderManager) AddProvider(ctx context.Context, k key.Key, val peer.ID) {
	prov := &addProv{
		k:   k,
		val: val,
	}
	select {
	case pm.newprovs <- prov:
	case <-ctx.Done():
	}
}
Beispiel #18
0
Datei: diag.go Projekt: rht/ipget
func (d *Diagnostics) getDiagnosticFromPeer(ctx context.Context, p peer.ID, pmes *pb.Message) (<-chan *DiagInfo, error) {
	s, err := d.host.NewStream(ProtocolDiag, p)
	if err != nil {
		return nil, err
	}

	cr := ctxio.NewReader(ctx, s) // ok to use. we defer close stream in this func
	cw := ctxio.NewWriter(ctx, s) // ok to use. we defer close stream in this func
	r := ggio.NewDelimitedReader(cr, inet.MessageSizeMax)
	w := ggio.NewDelimitedWriter(cw)

	start := time.Now()

	if err := w.WriteMsg(pmes); err != nil {
		return nil, err
	}

	out := make(chan *DiagInfo)
	go func() {

		defer func() {
			close(out)
			s.Close()
			rtt := time.Since(start)
			log.Infof("diagnostic request took: %s", rtt.String())
		}()

		for {
			rpmes := new(pb.Message)
			if err := r.ReadMsg(rpmes); err != nil {
				log.Debugf("Error reading diagnostic from stream: %s", err)
				return
			}
			if rpmes == nil {
				log.Debug("Got no response back from diag request.")
				return
			}

			di, err := decodeDiagJson(rpmes.GetData())
			if err != nil {
				log.Debug(err)
				return
			}

			select {
			case out <- di:
			case <-ctx.Done():
				return
			}
		}

	}()

	return out, nil
}
Beispiel #19
0
func (mq *msgQueue) runQueue(ctx context.Context) {
	for {
		select {
		case <-mq.work: // there is work to be done
			mq.doWork(ctx)
		case <-mq.done:
			return
		case <-ctx.Done():
			return
		}
	}
}
Beispiel #20
0
// Run runs the query at hand. pass in a list of peers to use first.
func (q *dhtQuery) Run(ctx context.Context, peers []peer.ID) (*dhtQueryResult, error) {
	select {
	case <-ctx.Done():
		return nil, ctx.Err()
	default:
	}

	ctx, cancel := context.WithCancel(ctx)
	defer cancel()

	runner := newQueryRunner(q)
	return runner.Run(ctx, peers)
}
Beispiel #21
0
func (np *nodePromise) Get(ctx context.Context) (*Node, error) {
	if np.cache != nil {
		return np.cache, nil
	}

	select {
	case blk := <-np.recv:
		np.cache = blk
	case <-np.ctx.Done():
		return nil, np.ctx.Err()
	case <-ctx.Done():
		return nil, ctx.Err()
	}
	return np.cache, nil
}
Beispiel #22
0
// WithDeadlineFraction returns a Context with a fraction of the
// original context's timeout. This is useful in sequential pipelines
// of work, where one might try options and fall back to others
// depending on the time available, or failure to respond. For example:
//
//  // getPicture returns a picture from our encrypted database
//  // we have a pipeline of multiple steps. we need to:
//  // - get the data from a database
//  // - decrypt it
//  // - apply many transforms
//  //
//  // we **know** that each step takes increasingly more time.
//  // The transforms are much more expensive than decryption, and
//  // decryption is more expensive than the database lookup.
//  // If our database takes too long (i.e. >0.2 of available time),
//  // there's no use in continuing.
//  func getPicture(ctx context.Context, key string) ([]byte, error) {
//    // fractional timeout contexts to the rescue!
//
//    // try the database with 0.2 of remaining time.
//    ctx1, _ := ctxext.WithDeadlineFraction(ctx, 0.2)
//    val, err := db.Get(ctx1, key)
//    if err != nil {
//      return nil, err
//    }
//
//    // try decryption with 0.3 of remaining time.
//    ctx2, _ := ctxext.WithDeadlineFraction(ctx, 0.3)
//    if val, err = decryptor.Decrypt(ctx2, val); err != nil {
//      return nil, err
//    }
//
//    // try transforms with all remaining time. hopefully it's enough!
//    return transformer.Transform(ctx, val)
//  }
//
//
func WithDeadlineFraction(ctx context.Context, fraction float64) (
	context.Context, context.CancelFunc) {

	d, found := ctx.Deadline()
	if !found { // no deadline
		return context.WithCancel(ctx)
	}

	left := d.Sub(time.Now())
	if left < 0 { // already passed...
		return context.WithCancel(ctx)
	}

	left = time.Duration(float64(left) * fraction)
	return context.WithTimeout(ctx, left)
}
Beispiel #23
0
func (pm *ProviderManager) GetProviders(ctx context.Context, k key.Key) []peer.ID {
	gp := &getProv{
		k:    k,
		resp: make(chan []peer.ID, 1), // buffered to prevent sender from blocking
	}
	select {
	case <-ctx.Done():
		return nil
	case pm.getprovs <- gp:
	}
	select {
	case <-ctx.Done():
		return nil
	case peers := <-gp.resp:
		return peers
	}
}
Beispiel #24
0
func (c *client) FindProvidersAsync(ctx context.Context, k key.Key, max int) <-chan peer.PeerInfo {
	out := make(chan peer.PeerInfo)
	go func() {
		defer close(out)
		for i, p := range c.server.Providers(k) {
			if max <= i {
				return
			}
			select {
			case out <- p:
			case <-ctx.Done():
				return
			}
		}
	}()
	return out
}
Beispiel #25
0
// GetNodes returns an array of 'NodeGetter' promises, with each corresponding
// to the key with the same index as the passed in keys
func (ds *dagService) GetNodes(ctx context.Context, keys []key.Key) []NodeGetter {

	// Early out if no work to do
	if len(keys) == 0 {
		return nil
	}

	promises := make([]NodeGetter, len(keys))
	sendChans := make([]chan<- *Node, len(keys))
	for i := range keys {
		promises[i], sendChans[i] = newNodePromise(ctx)
	}

	dedupedKeys := dedupeKeys(keys)
	go func() {
		ctx, cancel := context.WithCancel(ctx)
		defer cancel()

		blkchan := ds.Blocks.GetBlocks(ctx, dedupedKeys)

		for count := 0; count < len(keys); {
			select {
			case blk, ok := <-blkchan:
				if !ok {
					return
				}

				nd, err := Decoded(blk.Data)
				if err != nil {
					// NB: can happen with improperly formatted input data
					log.Debug("Got back bad block!")
					return
				}
				is := FindLinks(keys, blk.Key(), 0)
				for _, i := range is {
					count++
					sendChans[i] <- nd
				}
			case <-ctx.Done():
				return
			}
		}
	}()
	return promises
}
Beispiel #26
0
// Bootstrap ensures the dht routing table remains healthy as peers come and go.
// it builds up a list of peers by requesting random peer IDs. The Bootstrap
// process will run a number of queries each time, and run every time signal fires.
// These parameters are configurable.
//
// As opposed to BootstrapWithConfig, Bootstrap satisfies the routing interface
func (dht *IpfsDHT) Bootstrap(ctx context.Context) error {
	proc, err := dht.BootstrapWithConfig(DefaultBootstrapConfig)
	if err != nil {
		return err
	}

	// wait till ctx or dht.Context exits.
	// we have to do it this way to satisfy the Routing interface (contexts)
	go func() {
		defer proc.Close()
		select {
		case <-ctx.Done():
		case <-dht.Context().Done():
		}
	}()

	return nil
}
Beispiel #27
0
// CloseAfterContext schedules the process to close after the given
// context is done. It is the equivalent of:
//
//   func CloseAfterContext(p goprocess.Process, ctx context.Context) {
//     go func() {
//       <-ctx.Done()
//       p.Close()
//     }()
//   }
//
func CloseAfterContext(p goprocess.Process, ctx context.Context) {
	if p == nil {
		panic("nil Process")
	}
	if ctx == nil {
		panic("nil Context")
	}

	// context.Background(). if ctx.Done() is nil, it will never be done.
	// we check for this to avoid wasting a goroutine forever.
	if ctx.Done() == nil {
		return
	}

	go func() {
		<-ctx.Done()
		p.Close()
	}()
}
Beispiel #28
0
// FindProvidersAsync returns a channel of providers for the given key
func (nc *networkClient) FindProvidersAsync(ctx context.Context, k key.Key, max int) <-chan peer.ID {

	// NB: this function duplicates the PeerInfo -> ID transformation in the
	// bitswap network adapter. Not to worry. This network client will be
	// deprecated once the ipfsnet.Mock is added. The code below is only
	// temporary.

	out := make(chan peer.ID)
	go func() {
		defer close(out)
		providers := nc.routing.FindProvidersAsync(ctx, k, max)
		for info := range providers {
			select {
			case <-ctx.Done():
			case out <- info.ID:
			}
		}
	}()
	return out
}
Beispiel #29
0
func (e *Engine) taskWorker(ctx context.Context) {
	defer close(e.outbox) // because taskWorker uses the channel exclusively
	for {
		oneTimeUse := make(chan *Envelope, 1) // buffer to prevent blocking
		select {
		case <-ctx.Done():
			return
		case e.outbox <- oneTimeUse:
		}
		// receiver is ready for an outoing envelope. let's prepare one. first,
		// we must acquire a task from the PQ...
		envelope, err := e.nextEnvelope(ctx)
		if err != nil {
			close(oneTimeUse)
			return // ctx cancelled
		}
		oneTimeUse <- envelope // buffered. won't block
		close(oneTimeUse)
	}
}
Beispiel #30
0
Datei: rw.go Projekt: rht/ipget
func readMsgCtx(ctx context.Context, r msgio.Reader, p proto.Message) ([]byte, error) {
	var msg []byte

	// read in a goroutine so we can exit when our context is cancelled.
	done := make(chan error)
	go func() {
		var err error
		msg, err = r.ReadMsg()
		select {
		case done <- err:
		case <-ctx.Done():
		}
	}()

	select {
	case <-ctx.Done():
		return nil, ctx.Err()
	case e := <-done:
		if e != nil {
			return nil, e
		}
	}

	return msg, proto.Unmarshal(msg, p)
}