Beispiel #1
0
func (spec specParentDataset) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "dataset-gateway",
	}
	e.Props = e.Props.Set("name", system.Property{MsgSrc: mid, Value: spec.Name})

	// check for existing link - there can be only be one
	re := g.OutWith(src.ID, q.Qbe(system.EType("dataset-gateway")))
	if len(re) == 1 {
		success = true
		e = re[0]
		// TODO semantics should preclude this from being able to change, but doing it dirty means force-setting it anyway for now
	} else {

		// no existing link found; search for proc directly
		envid, _, _ := findEnv(g, src)
		rv := g.PredecessorsWith(envid, q.Qbv(system.VType("parent-dataset"), "name", spec.Name))
		if len(rv) != 0 { // >1 shouldn't be possible
			success = true
			e.Target = rv[0].ID
		}
	}

	return
}
Beispiel #2
0
func (spec specUnixDomainListener) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	// check for existing edge; this one is quite straightforward
	re := g.OutWith(src.ID, q.Qbe(system.EType("listening"), "type", "unix", "path", spec.Path))
	if len(re) == 1 {
		return re[0], true
	}

	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "listening",
	}

	e.Props = e.Props.Set("path", system.Property{MsgSrc: mid, Value: spec.Path})

	envid, _, hasenv := findEnv(g, src)
	if hasenv {
		rv := g.PredecessorsWith(envid, q.Qbv(system.VType("comm"), "type", "unix", "path", spec.Path))
		if len(rv) == 1 {
			success = true
			e.Target = rv[0].ID
		}
	}

	return
}
Beispiel #3
0
func (spec specGitCommitParent) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "parent-commit",
	}

	re := g.OutWith(src.ID, q.Qbe(system.EType("parent-commit"), "pnum", spec.ParentNum))
	if len(re) > 0 {
		success = true
		e.Target = re[0].Target
		e.Props = re[0].Props
		// FIXME evidence of a problem here - since we're using pnum as the deduping identifier, there's no
		// way it could also sensibly change its MsgSrc value. This is very much a product of the intensional/extensional
		// identity problem: what does it mean to have the identifying data change? is it now a new thing? was it the old thing,
		// and it underwent a transition into the new thing? or is there no distinction between the old and new thing?
		e.Props = e.Props.Set("sha1", system.Property{MsgSrc: mid, Value: spec.Sha1})
		e.ID = re[0].ID
	} else {
		rv := g.VerticesWith(q.Qbv(system.VType("commit"), "sha1", spec.Sha1))
		if len(rv) == 1 {
			success = true
			e.Target = rv[0].ID
			e.Props = e.Props.Set("pnum", system.Property{MsgSrc: mid, Value: spec.ParentNum})
			e.Props = e.Props.Set("sha1", system.Property{MsgSrc: mid, Value: spec.Sha1})
		}
	}

	return
}
Beispiel #4
0
func (spec specLocalLogic) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "logic-link",
	}

	// search for existing link
	re := g.OutWith(src.ID, q.Qbe(system.EType("logic-link"), "path", spec.Path))
	if len(re) == 1 {
		// TODO don't set the path prop again, it's the unique id...meh, same question here w/uniqueness as above
		success = true
		e = re[0]
		return
	}

	// no existing link found, search for proc directly
	envid, _, _ := findEnv(g, src)
	rv := g.PredecessorsWith(envid, q.Qbv(system.VType("logic-state"), "path", spec.Path))
	if len(rv) == 1 {
		success = true
		e.Target = rv[0].ID
	}

	return
}
Beispiel #5
0
func (spec specCommit) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "version",
	}
	e.Props = e.Props.Set("sha1", system.Property{MsgSrc: mid, Value: spec.Sha1})

	re := g.OutWith(src.ID, q.Qbe(system.EType("version")))
	if len(re) > 0 {
		sha1, _ := re[0].Props.Lookup("sha1")
		e.ID = re[0].ID // FIXME setting the id to non-0 AND failing is currently unhandled
		if sha1.(system.Property).Value == spec.Sha1 {
			success = true
			e.Target = re[0].Target
		} else {
			rv := g.VerticesWith(q.Qbv(system.VType("commit"), "sha1", spec.Sha1))
			if len(rv) == 1 {
				success = true
				e.Target = rv[0].ID
			}
		}
	} else {
		rv := g.VerticesWith(q.Qbv(system.VType("commit"), "sha1", spec.Sha1))
		if len(rv) == 1 {
			success = true
			e.Target = rv[0].ID
		}
	}

	return
}
Beispiel #6
0
func findMatchingEnvId(g system.CoreGraph, edge system.StdEdge, vtv system.VertexTupleVector) uint64 {
	for _, candidate := range vtv {
		for _, edge2 := range g.OutWith(candidate.ID, q.Qbe(system.EType("envlink"))) {
			if edge2.Target == edge.Target {
				return candidate.ID
			}
		}
	}

	return 0
}
Beispiel #7
0
// Searches the given vertex's out-edges to find its environment's vertex id.
//
// Also conveniently initializes a StandardEdge to the standard zero-state for an envlink.
func findEnv(g system.CoreGraph, vt system.VertexTuple) (vid uint64, edge system.StdEdge, success bool) {
	edge = system.StdEdge{
		Source: vt.ID,
		Props:  ps.NewMap(),
		EType:  "envlink",
	}

	if vt.ID != 0 {
		re := g.OutWith(vt.ID, q.Qbe(system.EType("envlink")))
		if len(re) == 1 {
			vid, edge, success = re[0].Target, re[0], true
		}
	}

	return
}
Beispiel #8
0
func (spec DataAlpha) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	// TODO this makes a loop...are we cool with that?
	success = true // impossible to fail here
	e = system.StdEdge{
		Source: src.ID,
		Target: src.ID,
		Props:  ps.NewMap(),
		EType:  "data-provenance",
	}

	re := g.OutWith(src.ID, q.Qbe(system.EType("data-provenance")))
	if len(re) == 1 {
		e = re[0]
	}

	return
}
Beispiel #9
0
func datasetUnify(g system.CoreGraph, u system.UnifyInstructionForm) uint64 {
	vtv := g.VerticesWith(q.Qbv(system.VType("dataset"), "name", u.Vertex().Properties()["name"]))
	if len(vtv) == 0 {
		return 0
	}

	spec := u.ScopingSpecs()[0].(specDatasetHierarchy)
	el, success := spec.Environment.Resolve(g, 0, emptyVT(u.Vertex()))
	// FIXME scoping edge resolution failure does not mean no match - there could be an orphan
	if success {
		for _, vt := range vtv {
			if id := findMatchingEnvId(g, el, g.SuccessorsWith(vt.ID, q.Qbe(system.EType("dataset-hierarchy")))); id != 0 {
				return vt.ID
			}
		}
	}

	return 0
}
Beispiel #10
0
func (spec DataProvenance) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	// FIXME this presents another weird case where "success" is not binary. We *could*
	// find an already-existing data-provenance edge, but then have some net-addr params
	// change which cause it to fail to resolve to an environment. If we call that successful,
	// then it won't try to resolve again later...though, hm, just call it unsuccessful and
	// then try again one more time. Maybe it is fine. THINK IT THROUGH.

	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "data-provenance",
	}
	e.Props = assignAddress(mid, spec.Address, e.Props, false)

	re := g.OutWith(src.ID, q.Qbe(system.EType("data-provenance")))
	if len(re) == 1 {
		reresolve := maputil.AnyMatch(e.Props, re[0].Props, "hostname", "ipv4", "ipv6")

		e = re[0]
		if spec.SnapTime != "" {
			e.Props = e.Props.Set("snap-time", system.Property{MsgSrc: mid, Value: spec.SnapTime})
		}

		if reresolve {
			e.Props = assignAddress(mid, spec.Address, e.Props, true)
		} else {
			return e, true
		}
	}

	envid, found := findEnvironment(g, e.Props)
	if !found {
		// TODO returning this already-modified edge necessitates that the core system
		// disregard 'failed' edges. which should be fine, that should be a guarantee
		return e, false
	}

	e.Target, success = findDataset(g, envid, spec.Dataset)
	return
}
Beispiel #11
0
func (spec DataLink) Resolve(g system.CoreGraph, mid uint64, src system.VertexTuple) (e system.StdEdge, success bool) {
	e = system.StdEdge{
		Source: src.ID,
		Props:  ps.NewMap(),
		EType:  "datalink",
	}

	// DataLinks have a 'name' field that is expected to be unique for the source, if present
	if spec.Name != "" {
		// TODO 'name' is a traditional unique key; a change in it inherently denotes a new edge. how to handle this?
		// FIXME this approach just always updates the mid, which is weird?
		e.Props = e.Props.Set("name", system.Property{MsgSrc: mid, Value: spec.Name})

		re := g.OutWith(src.ID, q.Qbe(system.EType("datalink"), "name", spec.Name))
		if len(re) == 1 {
			success = true
			e = re[0]
		}
	}

	if spec.Type != "" {
		e.Props = e.Props.Set("type", system.Property{MsgSrc: mid, Value: spec.Type})
	}
	if spec.Subset != "" {
		e.Props = e.Props.Set("subset", system.Property{MsgSrc: mid, Value: spec.Subset})
	}
	if spec.Interaction != "" {
		e.Props = e.Props.Set("interaction", system.Property{MsgSrc: mid, Value: spec.Interaction})
	}

	// Special bits: if we have ConnUnix data, eliminate ConnNet data, and vice-versa.
	var isLocal bool
	if spec.ConnUnix.Path != "" {
		isLocal = true
		e.Props = e.Props.Set("path", system.Property{MsgSrc: mid, Value: spec.ConnUnix.Path})
		e.Props = e.Props.Delete("hostname")
		e.Props = e.Props.Delete("ipv4")
		e.Props = e.Props.Delete("ipv6")
		e.Props = e.Props.Delete("port")
		e.Props = e.Props.Delete("proto")
	} else {
		e.Props = e.Props.Set("port", system.Property{MsgSrc: mid, Value: spec.ConnNet.Port})
		e.Props = e.Props.Set("proto", system.Property{MsgSrc: mid, Value: spec.ConnNet.Proto})

		// can only be one of hostname, ipv4 or ipv6
		if spec.ConnNet.Hostname != "" {
			e.Props = e.Props.Set("hostname", system.Property{MsgSrc: mid, Value: spec.ConnNet.Hostname})
		} else if spec.ConnNet.Ipv4 != "" {
			e.Props = e.Props.Set("ipv4", system.Property{MsgSrc: mid, Value: spec.ConnNet.Ipv4})
		} else {
			e.Props = e.Props.Set("ipv6", system.Property{MsgSrc: mid, Value: spec.ConnNet.Ipv6})
		}
	}

	if success {
		return
	}

	var sock system.VertexTuple
	var rv system.VertexTupleVector // just for reuse
	// If net, must scan; if local, a bit easier.
	if !isLocal {
		// First, find the environment vertex
		rv = g.VerticesWith(q.Qbv(system.VType("environment")))
		var envid uint64
		for _, vt := range rv {
			if maputil.AnyMatch(e.Props, vt.Vertex.Properties, "hostname", "ipv4", "ipv6") {
				envid = vt.ID
				break
			}
		}

		// No matching env found, bail out
		if envid == 0 {
			return
		}

		// Now, walk the environment's edges to find the vertex representing the port
		rv = g.PredecessorsWith(envid, q.Qbv(system.VType("comm"), "type", "port", "port", spec.ConnNet.Port).And(q.Qbe(system.EType("envlink"))))

		if len(rv) != 1 {
			return
		}
		sock = rv[0]

		// With sock in hand, now find its proc
		rv = g.PredecessorsWith(sock.ID, q.Qbe(system.EType("listening"), "proto", spec.ConnNet.Proto).And(q.Qbv(system.VType("process"))))
		if len(rv) != 1 {
			// TODO could/will we ever allow >1?
			return
		}
	} else {
		envid, _, exists := findEnv(g, src)

		if !exists {
			// this is would be a pretty weird case
			return
		}

		// Walk the graph to find the vertex representing the unix socket
		rv = g.PredecessorsWith(envid, q.Qbv(system.VType("comm"), "path", spec.ConnUnix.Path).And(q.Qbe(system.EType("envlink"))))
		if len(rv) != 1 {
			return
		}
		sock = rv[0]

		// With sock in hand, now find its proc
		rv = g.PredecessorsWith(sock.ID, q.Qbv(system.VType("process")).And(q.Qbe(system.EType("listening"))))
		if len(rv) != 1 {
			// TODO could/will we ever allow >1?
			return
		}
	}

	rv = g.SuccessorsWith(rv[0].ID, q.Qbv(system.VType("parent-dataset")))
	// FIXME this absolutely could be more than 1
	if len(rv) != 1 {
		return
	}
	dataset := rv[0]

	// if the spec indicates a subset, find it
	if spec.Subset != "" {
		rv = g.PredecessorsWith(rv[0].ID, q.Qbv(system.VType("dataset"), "name", spec.Subset).And(q.Qbe(system.EType("dataset-hierarchy"))))
		if len(rv) != 1 {
			return
		}
		dataset = rv[0]
	}

	// FIXME only recording the final target id is totally broken; see https://github.com/pipeviz/pipeviz/issues/37

	// Aaaand we found our target.
	success = true
	e.Target = dataset.ID
	return
}
Beispiel #12
0
// Tests adjacentWith(), which effectively tests SuccessorsWith() and PredecessorsWith()
func TestAdjacentWith(t *testing.T) {
	g := getGraphFixture()
	var result system.VertexTupleVector

	// basic, unfiltered tests first to ensure the right data is coming through
	// vtx 2 has just one in-edge
	result = g.adjacentWith(2, q.Qbv(), true)
	if len(result) != 1 {
		t.Errorf("Vertex 2 has one predecessor, but got %v vertices", len(result))
	}

	result = g.PredecessorsWith(2, q.Qbv())
	if len(result) != 1 {
		t.Errorf("Vertex 2 has one predecessor, but got %v vertices", len(result))
	}

	// vtx 1 has one out-edge and one in-edge
	result = g.adjacentWith(1, q.Qbv(), false)
	if len(result) != 1 {
		t.Errorf("Vertex 1 has one successor, but got %v vertices", len(result))
	}

	result = g.SuccessorsWith(1, q.Qbv())
	if len(result) != 1 {
		t.Errorf("Vertex 1 has one successor, but got %v vertices", len(result))
	}

	// vtx 5 is an isolate
	result = g.adjacentWith(5, q.Qbv(), true)
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no predecessors, but got %v vertices", len(result))
	}

	result = g.PredecessorsWith(5, q.Qbv())
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no predecessors, but got %v vertices", len(result))
	}

	result = g.adjacentWith(5, q.Qbv(), false)
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no successors, but got %v vertices", len(result))
	}

	result = g.SuccessorsWith(5, q.Qbv())
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no successors, but got %v vertices", len(result))
	}

	// qbe w/out args should be equivalent
	result = g.PredecessorsWith(2, q.Qbe())
	if len(result) != 1 {
		t.Errorf("Vertex 2 has one predecessor, but got %v vertices (qbe)", len(result))
	}

	result = g.SuccessorsWith(1, q.Qbe())
	if len(result) != 1 {
		t.Errorf("Vertex 1 has one successor, but got %v vertices (qbe)", len(result))
	}

	// deduping: vtx 4 has two in-edges and none out, but those edges are parallel so only one unique vtx
	result = g.PredecessorsWith(4, q.Qbv())
	if len(result) != 1 {
		t.Errorf("Vertex 4 has two in-edges, but only one unique predecessor; however, got %v vertices", len(result))
	}

	// vtx 3 is on the other side of vtx 4 - three out-edges, but only two uniques
	result = g.SuccessorsWith(3, q.Qbv())
	if len(result) != 2 {
		t.Errorf("Vertex 4 has three out-edges, but only two unique successors; however, got %v vertices", len(result))
	}

	// filter checks, beginning with edge and/or vertex typing
	result = g.SuccessorsWith(3, q.Qbv(system.VType("vt3")))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has only one unique successor of type \"vt3\"; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.EType("dummy-edge-type2")))
	if len(result) != 2 {
		t.Errorf("Vertex 4 has two out-edges of \"dummy-edge-type2\" and both point to different vertices, so expecting 2, but got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.EType("dummy-edge-type2")).And(q.Qbv(system.VType("env"))))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has two unique successors along \"dummy-edge-type2\" out-edges, but only one is vtype \"env\". However, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.EType("dummy-edge-type3")).And(q.Qbv(system.VType("env"))))
	if len(result) != 0 {
		t.Errorf("Vertex 4 has one unique successor along \"dummy-edge-type3\" out-edges, but it is not an \"env\" type. However, got %v vertices", len(result))
	}

	// prop-filtering checks
	result = g.SuccessorsWith(3, q.Qbv(system.VTypeNone, "prop2", 42))
	if len(result) != 2 {
		t.Errorf("Vertex 4 has only two unique successors with \"prop2\" at 42; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.ETypeNone, "eprop2", "bar"))
	if len(result) != 2 {
		t.Errorf("Vertex 4 has two unique successors connected by two out-edges with \"eprop2\" at \"bar\"; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbv(system.VTypeNone, "prop1", "baz", "prop2", 42))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has only one unique successor with \"prop1\" at \"baz\" and \"prop2\" at 42; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbv(system.VTypeNone, "prop3", "qux", "prop2", 42))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has only one unique successor with BOTH \"prop3\" at \"qux\" and \"prop2\" at 42; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.ETypeNone, "eprop2", "bar").And(q.Qbv(system.VTypeNone, "prop1", "baz")))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has only one unique successor with \"prop1\" at \"baz\" along an out-edge with \"eprop2\" at \"bar\"; however, got %v vertices", len(result))
	}

	result = g.SuccessorsWith(3, q.Qbe(system.ETypeNone, "eprop2", "bar").And(q.Qbv(system.VType("vt3"), "prop1", "baz")))
	if len(result) != 1 {
		t.Errorf("Vertex 4 has one unique successor of type \"vt3\" with \"prop1\" at \"baz\" along an out-edge with \"eprop2\" at \"bar\"; however, got %v vertices", len(result))
	}
}
Beispiel #13
0
// Tests arcWith(), which effectively tests both OutWith() and InWith().
func TestOutInArcWith(t *testing.T) {
	g := getGraphFixture()
	var result system.EdgeVector

	// first test zero-case - vtx 5 has no edges
	result = g.arcWith(5, q.Qbe(), false)
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no edges at all, but still got %v out-edge results", len(result))
	}

	result = g.arcWith(5, q.Qbe(), true)
	if len(result) != 0 {
		t.Errorf("Vertex 5 has no edges at all, but still got %v in-edge results", len(result))
	}

	// next test single case - vtx 1 has one in, one out
	result = g.arcWith(1, q.Qbe(), true)
	if len(result) != 1 {
		t.Errorf("Vertex 1 should have one in-edge, but got %v edges", len(result))
	}

	// ensure InWith behaves same as arcWith + arg
	result = g.InWith(1, q.Qbe())
	if len(result) != 1 {
		t.Errorf("Vertex 1 should have one in-edge, but got %v edges (InWith calls arcWith correctly)", len(result))
	}

	result = g.arcWith(1, q.Qbe(), false)
	if len(result) != 1 {
		t.Errorf("Vertex 1 should have one out-edge, but got %v edges", len(result))
	}

	result = g.OutWith(1, q.Qbe())
	if len(result) != 1 {
		t.Errorf("Vertex 1 should have one out-edge, but got %v edges (OutWith calls arcWith correctly)", len(result))
	}

	// last of basic tests - N>1 number of edges
	result = g.arcWith(4, q.Qbe(), true)
	if len(result) != 2 {
		t.Errorf("Vertex 4 has two in-edges, but got %v in-edge results", len(result))
	}

	result = g.InWith(4, q.Qbe())
	if len(result) != 2 {
		t.Errorf("Vertex 4 has two in-edges, but got %v in-edge results (InWith calls arcWith correctly)", len(result))
	}

	result = g.arcWith(3, q.Qbe(), false)
	if len(result) != 3 {
		t.Errorf("Vertex 3 should have three out-edges, but got %v edges", len(result))
	}

	result = g.OutWith(3, q.Qbe())
	if len(result) != 3 {
		t.Errorf("Vertex 3 should have three out-edges, but got %v edges (OutWith calls arcWith correctly)", len(result))
	}

	result = g.InWith(3, q.Qbe())
	if len(result) != 0 {
		t.Errorf("Vertex 3 has out-edges but no in-edge; still got %v in-edge results", len(result))
	}

	// now, tests that actually exercise the filter
	result = g.OutWith(3, q.Qbe(system.ETypeNone))
	if len(result) != 3 {
		t.Errorf("ETypeNone does not correctly matches all edge types - should've gotten 3 out-edges, but got %v edges", len(result))
	}

	// basic edge type filtering
	result = g.OutWith(3, q.Qbe(system.EType("dummy-edge-type2")))
	if len(result) != 2 {
		t.Errorf("Vertex 2 should have two \"dummy-edge-type2\"-typed out-edges, but got %v edges", len(result))
	}

	// nonexistent type means no results
	result = g.InWith(2, q.Qbe(system.EType("nonexistent-type")))
	if len(result) != 0 {
		t.Errorf("Vertex 2 should have no edges of a nonexistent type, but got %v edges", len(result))
	}

	// existing edge type, but not one this vt has
	result = g.InWith(3, q.Qbe(system.EType("dummy-edge-type1")))
	if len(result) != 0 {
		t.Errorf("Vertex 3 has none of the \"dummy-edge-type1\" edges (though it is a real type in the graph); however, got %v edges", len(result))
	}

	// test prop-checking
	result = g.OutWith(3, q.Qbe(system.ETypeNone, "eprop2", "baz"))
	if len(result) != 1 {
		t.Errorf("Vertex 3 should have one out-edge with \"eprop2\" at \"baz\", but got %v edges", len(result))
	}

	result = g.OutWith(3, q.Qbe(system.ETypeNone, "eprop2", "bar"))
	if len(result) != 2 {
		t.Errorf("Vertex 3 should have two out-edges with \"eprop2\" at \"bar\", but got %v edges", len(result))
	}

	// test multi-prop checking - ensure they\"re ANDed
	result = g.OutWith(3, q.Qbe(system.ETypeNone, "eprop2", "bar", "eprop3", 42))
	if len(result) != 1 {
		t.Errorf("Vertex 3 should have one out-edge with \"eprop2\" at \"bar\" AND \"eprop3\" at 42, but got %v edges", len(result))
	}

	result = g.OutWith(3, q.Qbe(system.ETypeNone, "eprop2", "baz", "eprop3", 42))
	if len(result) != 0 {
		// OR would\"ve here would produce 2 edges
		t.Errorf("Vertex 3 should have no out-edges with \"eprop2\" at \"baz\" AND \"eprop3\" at 42 , but got %v edges", len(result))
	}

	result = g.OutWith(3, q.Qbe(system.EType("dummy-edge-type2"), "eprop2", "bar"))
	if len(result) != 1 {
		t.Errorf("Vertex 3 should have one out-edges that is dummy type2 AND has \"eprop2\" at \"bar\", but got %v edges", len(result))
	}
}