Beispiel #1
0
// makeUtxoView creates a mock unspent transaction output view by using the
// transaction index in order to look up all inputs referenced by the
// transactions in the block.  This is sometimes needed when catching indexes up
// because many of the txouts could actually already be spent however the
// associated scripts are still required to index them.
func makeUtxoView(dbTx database.Tx, block *btcutil.Block) (*blockchain.UtxoViewpoint, error) {
	view := blockchain.NewUtxoViewpoint()
	for txIdx, tx := range block.Transactions() {
		// Coinbases do not reference any inputs.  Since the block is
		// required to have already gone through full validation, it has
		// already been proven on the first transaction in the block is
		// a coinbase.
		if txIdx == 0 {
			continue
		}

		// Use the transaction index to load all of the referenced
		// inputs and add their outputs to the view.
		for _, txIn := range tx.MsgTx().TxIn {
			originOut := &txIn.PreviousOutPoint
			originTx, err := dbFetchTx(dbTx, &originOut.Hash)
			if err != nil {
				return nil, err
			}

			view.AddTxOuts(btcutil.NewTx(originTx), 0)
		}
	}

	return view, nil
}
Beispiel #2
0
// createCoinbaseTx returns a coinbase transaction paying an appropriate subsidy
// based on the passed block height to the provided address.  When the address
// is nil, the coinbase transaction will instead be redeemable by anyone.
//
// See the comment for NewBlockTemplate for more information about why the nil
// address handling is useful.
func createCoinbaseTx(params *chaincfg.Params, coinbaseScript []byte, nextBlockHeight int32, addr btcutil.Address) (*btcutil.Tx, error) {
	// Create the script to pay to the provided payment address if one was
	// specified.  Otherwise create a script that allows the coinbase to be
	// redeemable by anyone.
	var pkScript []byte
	if addr != nil {
		var err error
		pkScript, err = txscript.PayToAddrScript(addr)
		if err != nil {
			return nil, err
		}
	} else {
		var err error
		scriptBuilder := txscript.NewScriptBuilder()
		pkScript, err = scriptBuilder.AddOp(txscript.OP_TRUE).Script()
		if err != nil {
			return nil, err
		}
	}

	tx := wire.NewMsgTx(wire.TxVersion)
	tx.AddTxIn(&wire.TxIn{
		// Coinbase transactions have no inputs, so previous outpoint is
		// zero hash and max index.
		PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
			wire.MaxPrevOutIndex),
		SignatureScript: coinbaseScript,
		Sequence:        wire.MaxTxInSequenceNum,
	})
	tx.AddTxOut(&wire.TxOut{
		Value:    blockchain.CalcBlockSubsidy(nextBlockHeight, params),
		PkScript: pkScript,
	})
	return btcutil.NewTx(tx), nil
}
Beispiel #3
0
// newUtxoViewpoint returns a new utxo view populated with outputs of the
// provided source transactions as if there were available at the respective
// block height specified in the heights slice.  The length of the source txns
// and source tx heights must match or it will panic.
func newUtxoViewpoint(sourceTxns []*wire.MsgTx, sourceTxHeights []int32) *blockchain.UtxoViewpoint {
	if len(sourceTxns) != len(sourceTxHeights) {
		panic("each transaction must have its block height specified")
	}

	view := blockchain.NewUtxoViewpoint()
	for i, tx := range sourceTxns {
		view.AddTxOuts(btcutil.NewTx(tx), sourceTxHeights[i])
	}
	return view
}
Beispiel #4
0
// TxHandler takes in transaction messages that come in from either a request
// after an inv message or after a merkle block message.
func (s *SPVCon) TxHandler(m *wire.MsgTx) {
	s.TS.OKMutex.Lock()
	height, ok := s.TS.OKTxids[m.TxSha()]
	s.TS.OKMutex.Unlock()
	if !ok {
		log.Printf("Tx %s unknown, will not ingest\n", m.TxSha().String())
		return
	}

	// check for double spends
	//	allTxs, err := s.TS.GetAllTxs()
	//	if err != nil {
	//		log.Printf("Can't get txs from db: %s", err.Error())
	//		return
	//	}
	//	dubs, err := CheckDoubleSpends(m, allTxs)
	//	if err != nil {
	//		log.Printf("CheckDoubleSpends error: %s", err.Error())
	//		return
	//	}
	//	if len(dubs) > 0 {
	//		for i, dub := range dubs {
	//			fmt.Printf("dub %d known tx %s and new tx %s are exclusive!!!\n",
	//				i, dub.String(), m.TxSha().String())
	//		}
	//	}
	utilTx := btcutil.NewTx(m)
	if !s.HardMode || s.TS.localFilter.MatchTxAndUpdate(utilTx) {
		hits, err := s.TS.Ingest(m, height)
		if err != nil {
			log.Printf("Incoming Tx error: %s\n", err.Error())
			return
		}
		if hits == 0 && !s.HardMode {
			log.Printf("tx %s had no hits, filter false positive.",
				m.TxSha().String())
			s.fPositives <- 1 // add one false positive to chan
			return
		}
		log.Printf("tx %s ingested and matches %d utxo/adrs.",
			m.TxSha().String(), hits)
	}
}
Beispiel #5
0
// TxToString prints out some info about a transaction. for testing / debugging
func TxToString(tx *wire.MsgTx) string {
	str := fmt.Sprintf("size %d vsize %d wsize %d locktime %d txid %s\n",
		tx.SerializeSize(), blockchain.GetTxVirtualSize(btcutil.NewTx(tx)),
		tx.SerializeSize(), tx.LockTime, tx.TxSha().String())
	for i, in := range tx.TxIn {
		str += fmt.Sprintf("Input %d spends %s\n", i, in.PreviousOutPoint.String())
		str += fmt.Sprintf("\tSigScript: %x\n", in.SignatureScript)
		for j, wit := range in.Witness {
			str += fmt.Sprintf("\twitness %d: %x\n", j, wit)
		}
	}
	for i, out := range tx.TxOut {
		if out != nil {
			str += fmt.Sprintf("output %d script: %x amt: %d\n",
				i, out.PkScript, out.Value)
		} else {
			str += fmt.Sprintf("output %d nil (WARNING)\n", i)
		}
	}
	return str
}
Beispiel #6
0
// EstFee gives a fee estimate based on a tx and a sat/Byte target.
// The TX should have all outputs, including the change address already
// populated (with potentially 0 amount.  Also it should have all inputs
// populated, but inputs don't need to have sigscripts or witnesses
// (it'll guess the sizes of sigs/wits that arent' filled in).
func EstFee(otx *wire.MsgTx, spB int64) int64 {
	mtsig := make([]byte, 72)
	mtpub := make([]byte, 33)

	tx := otx.Copy()

	// iterate through txins, replacing subscript sigscripts with noise
	// sigs or witnesses
	for _, txin := range tx.TxIn {
		// check wpkh
		if len(txin.SignatureScript) == 22 &&
			txin.SignatureScript[0] == 0x00 && txin.SignatureScript[1] == 0x14 {
			txin.SignatureScript = nil
			txin.Witness = make([][]byte, 2)
			txin.Witness[0] = mtsig
			txin.Witness[1] = mtpub
		} else if len(txin.SignatureScript) == 34 &&
			txin.SignatureScript[0] == 0x00 && txin.SignatureScript[1] == 0x20 {
			// p2wsh -- sig lenght is a total guess!
			txin.SignatureScript = nil
			txin.Witness = make([][]byte, 3)
			// 3 sigs? totally guessing here
			txin.Witness[0] = mtsig
			txin.Witness[1] = mtsig
			txin.Witness[2] = mtsig
		} else {
			// assume everything else is p2pkh.  Even though it's not
			txin.Witness = nil
			txin.SignatureScript = make([]byte, 105) // len of p2pkh sigscript
		}
	}
	fmt.Printf(TxToString(tx))
	size := int64(blockchain.GetTxVirtualSize(btcutil.NewTx(tx)))
	fmt.Printf("%d spB, est vsize %d, fee %d\n", spB, size, size*spB)
	return size * spB
}
Beispiel #7
0
// createCoinbaseTx returns a coinbase transaction paying an appropriate
// subsidy based on the passed block height to the provided address.
func createCoinbaseTx(coinbaseScript []byte, nextBlockHeight int32,
	addr btcutil.Address, net *chaincfg.Params) (*btcutil.Tx, error) {

	// Create the script to pay to the provided payment address.
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		return nil, err
	}

	tx := wire.NewMsgTx(wire.TxVersion)
	tx.AddTxIn(&wire.TxIn{
		// Coinbase transactions have no inputs, so previous outpoint is
		// zero hash and max index.
		PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
			wire.MaxPrevOutIndex),
		SignatureScript: coinbaseScript,
		Sequence:        wire.MaxTxInSequenceNum,
	})
	tx.AddTxOut(&wire.TxOut{
		Value:    blockchain.CalcBlockSubsidy(nextBlockHeight, net),
		PkScript: pkScript,
	})
	return btcutil.NewTx(tx), nil
}
Beispiel #8
0
// TestCheckSerializedHeight tests the checkSerializedHeight function with
// various serialized heights and also does negative tests to ensure errors
// and handled properly.
func TestCheckSerializedHeight(t *testing.T) {
	// Create an empty coinbase template to be used in the tests below.
	coinbaseOutpoint := wire.NewOutPoint(&chainhash.Hash{}, math.MaxUint32)
	coinbaseTx := wire.NewMsgTx(1)
	coinbaseTx.AddTxIn(wire.NewTxIn(coinbaseOutpoint, nil, nil))

	// Expected rule errors.
	missingHeightError := blockchain.RuleError{
		ErrorCode: blockchain.ErrMissingCoinbaseHeight,
	}
	badHeightError := blockchain.RuleError{
		ErrorCode: blockchain.ErrBadCoinbaseHeight,
	}

	tests := []struct {
		sigScript  []byte // Serialized data
		wantHeight int32  // Expected height
		err        error  // Expected error type
	}{
		// No serialized height length.
		{[]byte{}, 0, missingHeightError},
		// Serialized height length with no height bytes.
		{[]byte{0x02}, 0, missingHeightError},
		// Serialized height length with too few height bytes.
		{[]byte{0x02, 0x4a}, 0, missingHeightError},
		// Serialized height that needs 2 bytes to encode.
		{[]byte{0x02, 0x4a, 0x52}, 21066, nil},
		// Serialized height that needs 2 bytes to encode, but backwards
		// endianness.
		{[]byte{0x02, 0x4a, 0x52}, 19026, badHeightError},
		// Serialized height that needs 3 bytes to encode.
		{[]byte{0x03, 0x40, 0x0d, 0x03}, 200000, nil},
		// Serialized height that needs 3 bytes to encode, but backwards
		// endianness.
		{[]byte{0x03, 0x40, 0x0d, 0x03}, 1074594560, badHeightError},
	}

	t.Logf("Running %d tests", len(tests))
	for i, test := range tests {
		msgTx := coinbaseTx.Copy()
		msgTx.TxIn[0].SignatureScript = test.sigScript
		tx := btcutil.NewTx(msgTx)

		err := blockchain.TstCheckSerializedHeight(tx, test.wantHeight)
		if reflect.TypeOf(err) != reflect.TypeOf(test.err) {
			t.Errorf("checkSerializedHeight #%d wrong error type "+
				"got: %v <%T>, want: %T", i, err, err, test.err)
			continue
		}

		if rerr, ok := err.(blockchain.RuleError); ok {
			trerr := test.err.(blockchain.RuleError)
			if rerr.ErrorCode != trerr.ErrorCode {
				t.Errorf("checkSerializedHeight #%d wrong "+
					"error code got: %v, want: %v", i,
					rerr.ErrorCode, trerr.ErrorCode)
				continue
			}
		}
	}
}
Beispiel #9
0
// Ingest puts a tx into the DB atomically.  This can result in a
// gain, a loss, or no result.  Gain or loss in satoshis is returned.
func (ts *TxStore) Ingest(tx *wire.MsgTx, height int32) (uint32, error) {
	var hits uint32
	var err error
	var nUtxoBytes [][]byte

	// tx has been OK'd by SPV; check tx sanity
	utilTx := btcutil.NewTx(tx) // convert for validation
	// checks basic stuff like there are inputs and ouputs
	err = blockchain.CheckTransactionSanity(utilTx)
	if err != nil {
		return hits, err
	}
	// note that you can't check signatures; this is SPV.
	// 0 conf SPV means pretty much nothing.  Anyone can say anything.

	spentOPs := make([][]byte, len(tx.TxIn))
	// before entering into db, serialize all inputs of the ingested tx
	for i, txin := range tx.TxIn {
		spentOPs[i], err = outPointToBytes(&txin.PreviousOutPoint)
		if err != nil {
			return hits, err
		}
	}

	// go through txouts, and then go through addresses to match

	// generate PKscripts for all addresses
	wPKscripts := make([][]byte, len(ts.Adrs))
	aPKscripts := make([][]byte, len(ts.Adrs))

	for i, _ := range ts.Adrs {
		// iterate through all our addresses
		// convert regular address to witness address.  (split adrs later)
		wa, err := btcutil.NewAddressWitnessPubKeyHash(
			ts.Adrs[i].PkhAdr.ScriptAddress(), ts.Param)
		if err != nil {
			return hits, err
		}

		wPKscripts[i], err = txscript.PayToAddrScript(wa)
		if err != nil {
			return hits, err
		}
		aPKscripts[i], err = txscript.PayToAddrScript(ts.Adrs[i].PkhAdr)
		if err != nil {
			return hits, err
		}
	}

	cachedSha := tx.TxSha()
	// iterate through all outputs of this tx, see if we gain
	for i, out := range tx.TxOut {
		for j, ascr := range aPKscripts {
			// detect p2wpkh
			witBool := false
			if bytes.Equal(out.PkScript, wPKscripts[j]) {
				witBool = true
			}
			if bytes.Equal(out.PkScript, ascr) || witBool { // new utxo found
				var newu Utxo // create new utxo and copy into it
				newu.AtHeight = height
				newu.KeyIdx = ts.Adrs[j].KeyIdx
				newu.Value = out.Value
				newu.IsWit = witBool // copy witness version from pkscript
				var newop wire.OutPoint
				newop.Hash = cachedSha
				newop.Index = uint32(i)
				newu.Op = newop
				b, err := newu.ToBytes()
				if err != nil {
					return hits, err
				}
				nUtxoBytes = append(nUtxoBytes, b)
				hits++
				break // txos can match only 1 script
			}
		}
	}

	err = ts.StateDB.Update(func(btx *bolt.Tx) error {
		// get all 4 buckets
		duf := btx.Bucket(BKTUtxos)
		//		sta := btx.Bucket(BKTState)
		old := btx.Bucket(BKTStxos)
		txns := btx.Bucket(BKTTxns)
		if duf == nil || old == nil || txns == nil {
			return fmt.Errorf("error: db not initialized")
		}

		// iterate through duffel bag and look for matches
		// this makes us lose money, which is regrettable, but we need to know.
		for _, nOP := range spentOPs {
			v := duf.Get(nOP)
			if v != nil {
				hits++
				// do all this just to figure out value we lost
				x := make([]byte, len(nOP)+len(v))
				copy(x, nOP)
				copy(x[len(nOP):], v)
				lostTxo, err := UtxoFromBytes(x)
				if err != nil {
					return err
				}

				// after marking for deletion, save stxo to old bucket
				var st Stxo               // generate spent txo
				st.Utxo = lostTxo         // assign outpoint
				st.SpendHeight = height   // spent at height
				st.SpendTxid = cachedSha  // spent by txid
				stxb, err := st.ToBytes() // serialize
				if err != nil {
					return err
				}
				err = old.Put(nOP, stxb) // write nOP:v outpoint:stxo bytes
				if err != nil {
					return err
				}

				err = duf.Delete(nOP)
				if err != nil {
					return err
				}
			}
		}

		// done losing utxos, next gain utxos
		// next add all new utxos to db, this is quick as the work is above
		for _, ub := range nUtxoBytes {
			err = duf.Put(ub[:36], ub[36:])
			if err != nil {
				return err
			}
		}

		// if hits is nonzero it's a relevant tx and we should store it
		var buf bytes.Buffer
		tx.Serialize(&buf)
		err = txns.Put(cachedSha.Bytes(), buf.Bytes())
		if err != nil {
			return err
		}

		return nil
	})
	return hits, err
}
Beispiel #10
0
// IngestBlock is like IngestMerkleBlock but aralphic
// different enough that it's better to have 2 separate functions
func (s *SPVCon) IngestBlock(m *wire.MsgBlock) {
	var err error
	//	var buf bytes.Buffer
	//	m.SerializeWitness(&buf)
	//	fmt.Printf("block hex %x\n", buf.Bytes())
	//	for _, tx := range m.Transactions {
	//		fmt.Printf("wtxid: %s\n", tx.WTxSha())
	//		fmt.Printf(" txid: %s\n", tx.TxSha())
	//		fmt.Printf("%d %s", i, TxToString(tx))
	//	}
	ok := BlockOK(*m) // check block self-consistency
	if !ok {
		fmt.Printf("block %s not OK!!11\n", m.BlockSha().String())
		return
	}

	var hah HashAndHeight
	select { // select here so we don't block on an unrequested mblock
	case hah = <-s.blockQueue: // pop height off mblock queue
		break
	default:
		log.Printf("Unrequested full block")
		return
	}

	newBlockSha := m.Header.BlockSha()
	if !hah.blockhash.IsEqual(&newBlockSha) {
		log.Printf("full block out of order error")
		return
	}

	fPositive := 0 // local filter false positives
	reFilter := 10 // after that many false positives, regenerate filter.
	// 10?  Making it up.  False positives have disk i/o cost, and regenning
	// the filter also has costs.  With a large local filter, false positives
	// should be rare.

	// iterate through all txs in the block, looking for matches.
	// use a local bloom filter to ignore txs that don't affect us
	for _, tx := range m.Transactions {
		utilTx := btcutil.NewTx(tx)
		if s.TS.localFilter.MatchTxAndUpdate(utilTx) {
			hits, err := s.TS.Ingest(tx, hah.height)
			if err != nil {
				log.Printf("Incoming Tx error: %s\n", err.Error())
				return
			}
			if hits > 0 {
				// log.Printf("block %d tx %d %s ingested and matches %d utxo/adrs.",
				//	hah.height, i, tx.TxSha().String(), hits)
			} else {
				fPositive++ // matched filter but no hits
			}
		}
	}

	if fPositive > reFilter {
		fmt.Printf("%d filter false positives in this block\n", fPositive)
		err = s.TS.Refilter()
		if err != nil {
			log.Printf("Refilter error: %s\n", err.Error())
			return
		}
	}
	// write to db that we've sync'd to the height indicated in the
	// merkle block.  This isn't QUITE true since we haven't actually gotten
	// the txs yet but if there are problems with the txs we should backtrack.
	err = s.TS.SetDBSyncHeight(hah.height)
	if err != nil {
		log.Printf("full block sync error: %s\n", err.Error())
		return
	}

	fmt.Printf("ingested full block %s height %d OK\n",
		m.Header.BlockSha().String(), hah.height)

	if hah.final { // check sync end
		// don't set waitstate; instead, ask for headers again!
		// this way the only thing that triggers waitstate is asking for headers,
		// getting 0, calling AskForMerkBlocks(), and seeing you don't need any.
		// that way you are pretty sure you're synced up.
		err = s.AskForHeaders()
		if err != nil {
			log.Printf("Merkle block error: %s\n", err.Error())
			return
		}
	}
	return
}
Beispiel #11
0
// TestCheckTransactionStandard tests the checkTransactionStandard API.
func TestCheckTransactionStandard(t *testing.T) {
	// Create some dummy, but otherwise standard, data for transactions.
	prevOutHash, err := chainhash.NewHashFromStr("01")
	if err != nil {
		t.Fatalf("NewShaHashFromStr: unexpected error: %v", err)
	}
	dummyPrevOut := wire.OutPoint{Hash: *prevOutHash, Index: 1}
	dummySigScript := bytes.Repeat([]byte{0x00}, 65)
	dummyTxIn := wire.TxIn{
		PreviousOutPoint: dummyPrevOut,
		SignatureScript:  dummySigScript,
		Sequence:         wire.MaxTxInSequenceNum,
	}
	addrHash := [20]byte{0x01}
	addr, err := btcutil.NewAddressPubKeyHash(addrHash[:],
		&chaincfg.TestNet3Params)
	if err != nil {
		t.Fatalf("NewAddressPubKeyHash: unexpected error: %v", err)
	}
	dummyPkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatalf("PayToAddrScript: unexpected error: %v", err)
	}
	dummyTxOut := wire.TxOut{
		Value:    100000000, // 1 BTC
		PkScript: dummyPkScript,
	}

	tests := []struct {
		name       string
		tx         wire.MsgTx
		height     int32
		isStandard bool
		code       wire.RejectCode
	}{
		{
			name: "Typical pay-to-pubkey-hash transaction",
			tx: wire.MsgTx{
				Version:  1,
				TxIn:     []*wire.TxIn{&dummyTxIn},
				TxOut:    []*wire.TxOut{&dummyTxOut},
				LockTime: 0,
			},
			height:     300000,
			isStandard: true,
		},
		{
			name: "Transaction version too high",
			tx: wire.MsgTx{
				Version:  wire.TxVersion + 1,
				TxIn:     []*wire.TxIn{&dummyTxIn},
				TxOut:    []*wire.TxOut{&dummyTxOut},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Transaction is not finalized",
			tx: wire.MsgTx{
				Version: 1,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: dummyPrevOut,
					SignatureScript:  dummySigScript,
					Sequence:         0,
				}},
				TxOut:    []*wire.TxOut{&dummyTxOut},
				LockTime: 300001,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Transaction size is too large",
			tx: wire.MsgTx{
				Version: 1,
				TxIn:    []*wire.TxIn{&dummyTxIn},
				TxOut: []*wire.TxOut{{
					Value: 0,
					PkScript: bytes.Repeat([]byte{0x00},
						MaxStandardTxSize+1),
				}},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Signature script size is too large",
			tx: wire.MsgTx{
				Version: 1,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: dummyPrevOut,
					SignatureScript: bytes.Repeat([]byte{0x00},
						maxStandardSigScriptSize+1),
					Sequence: wire.MaxTxInSequenceNum,
				}},
				TxOut:    []*wire.TxOut{&dummyTxOut},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Signature script that does more than push data",
			tx: wire.MsgTx{
				Version: 1,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: dummyPrevOut,
					SignatureScript: []byte{
						txscript.OP_CHECKSIGVERIFY},
					Sequence: wire.MaxTxInSequenceNum,
				}},
				TxOut:    []*wire.TxOut{&dummyTxOut},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Valid but non standard public key script",
			tx: wire.MsgTx{
				Version: 1,
				TxIn:    []*wire.TxIn{&dummyTxIn},
				TxOut: []*wire.TxOut{{
					Value:    100000000,
					PkScript: []byte{txscript.OP_TRUE},
				}},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "More than one nulldata output",
			tx: wire.MsgTx{
				Version: 1,
				TxIn:    []*wire.TxIn{&dummyTxIn},
				TxOut: []*wire.TxOut{{
					Value:    0,
					PkScript: []byte{txscript.OP_RETURN},
				}, {
					Value:    0,
					PkScript: []byte{txscript.OP_RETURN},
				}},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectNonstandard,
		},
		{
			name: "Dust output",
			tx: wire.MsgTx{
				Version: 1,
				TxIn:    []*wire.TxIn{&dummyTxIn},
				TxOut: []*wire.TxOut{{
					Value:    0,
					PkScript: dummyPkScript,
				}},
				LockTime: 0,
			},
			height:     300000,
			isStandard: false,
			code:       wire.RejectDust,
		},
		{
			name: "One nulldata output with 0 amount (standard)",
			tx: wire.MsgTx{
				Version: 1,
				TxIn:    []*wire.TxIn{&dummyTxIn},
				TxOut: []*wire.TxOut{{
					Value:    0,
					PkScript: []byte{txscript.OP_RETURN},
				}},
				LockTime: 0,
			},
			height:     300000,
			isStandard: true,
		},
	}

	pastMedianTime := time.Now()
	for _, test := range tests {
		// Ensure standardness is as expected.
		err := checkTransactionStandard(btcutil.NewTx(&test.tx),
			test.height, pastMedianTime, DefaultMinRelayTxFee, 1)
		if err == nil && test.isStandard {
			// Test passes since function returned standard for a
			// transaction which is intended to be standard.
			continue
		}
		if err == nil && !test.isStandard {
			t.Errorf("checkTransactionStandard (%s): standard when "+
				"it should not be", test.name)
			continue
		}
		if err != nil && test.isStandard {
			t.Errorf("checkTransactionStandard (%s): nonstandard "+
				"when it should not be: %v", test.name, err)
			continue
		}

		// Ensure error type is a TxRuleError inside of a RuleError.
		rerr, ok := err.(RuleError)
		if !ok {
			t.Errorf("checkTransactionStandard (%s): unexpected "+
				"error type - got %T", test.name, err)
			continue
		}
		txrerr, ok := rerr.Err.(TxRuleError)
		if !ok {
			t.Errorf("checkTransactionStandard (%s): unexpected "+
				"error type - got %T", test.name, rerr.Err)
			continue
		}

		// Ensure the reject code is the expected one.
		if txrerr.RejectCode != test.code {
			t.Errorf("checkTransactionStandard (%s): unexpected "+
				"error code - got %v, want %v", test.name,
				txrerr.RejectCode, test.code)
			continue
		}
	}
}
Beispiel #12
0
func testGenerateAndSubmitBlock(r *Harness, t *testing.T) {
	// Generate a few test spend transactions.
	addr, err := r.NewAddress()
	if err != nil {
		t.Fatalf("unable to generate new address: %v", err)
	}
	pkScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatalf("unable to create script: %v", err)
	}
	output := wire.NewTxOut(btcutil.SatoshiPerBitcoin, pkScript)

	const numTxns = 5
	txns := make([]*btcutil.Tx, 0, numTxns)
	for i := 0; i < numTxns; i++ {
		tx, err := r.CreateTransaction([]*wire.TxOut{output}, 10)
		if err != nil {
			t.Fatalf("unable to create tx: %v", err)
		}

		txns = append(txns, btcutil.NewTx(tx))
	}

	// Now generate a block with the default block version, and a zero'd
	// out time.
	block, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Ensure that all created transactions were included, and that the
	// block version was properly set to the default.
	numBlocksTxns := len(block.Transactions())
	if numBlocksTxns != numTxns+1 {
		t.Fatalf("block did not include all transactions: "+
			"expected %v, got %v", numTxns+1, numBlocksTxns)
	}
	blockVersion := block.MsgBlock().Header.Version
	if blockVersion != BlockVersion {
		t.Fatalf("block version is not default: expected %v, got %v",
			BlockVersion, blockVersion)
	}

	// Next generate a block with a "non-standard" block version along with
	// time stamp a minute after the previous block's timestamp.
	timestamp := block.MsgBlock().Header.Timestamp.Add(time.Minute)
	targetBlockVersion := int32(1337)
	block, err = r.GenerateAndSubmitBlock(nil, targetBlockVersion, timestamp)
	if err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Finally ensure that the desired block version and timestamp were set
	// properly.
	header := block.MsgBlock().Header
	blockVersion = header.Version
	if blockVersion != targetBlockVersion {
		t.Fatalf("block version mismatch: expected %v, got %v",
			targetBlockVersion, blockVersion)
	}
	if !timestamp.Equal(header.Timestamp) {
		t.Fatalf("header time stamp mismatch: expected %v, got %v",
			timestamp, header.Timestamp)
	}
}
Beispiel #13
0
// TestCalcSequenceLock tests the LockTimeToSequence function, and the
// CalcSequenceLock method of a Chain instance. The tests exercise several
// combinations of inputs to the CalcSequenceLock function in order to ensure
// the returned SequenceLocks are correct for each test instance.
func TestCalcSequenceLock(t *testing.T) {
	netParams := &chaincfg.SimNetParams

	// Create a new database and chain instance to run tests against.
	chain, teardownFunc, err := chainSetup("calcseqlock", netParams)
	if err != nil {
		t.Errorf("Failed to setup chain instance: %v", err)
		return
	}
	defer teardownFunc()

	// Since we're not dealing with the real block chain, disable
	// checkpoints and set the coinbase maturity to 1.
	chain.DisableCheckpoints(true)
	chain.TstSetCoinbaseMaturity(1)

	// Create a test mining address to use for the blocks we'll generate
	// shortly below.
	k := bytes.Repeat([]byte{1}, 32)
	_, miningPub := btcec.PrivKeyFromBytes(btcec.S256(), k)
	miningAddr, err := btcutil.NewAddressPubKey(miningPub.SerializeCompressed(),
		netParams)
	if err != nil {
		t.Fatalf("unable to generate mining addr: %v", err)
	}

	// We'll keep track of the previous block for back pointers in blocks
	// we generated, and also the generated blocks along with the MTP from
	// their PoV to aide with our relative time lock calculations.
	var prevBlock *btcutil.Block
	var blocksWithMTP []struct {
		block *btcutil.Block
		mtp   time.Time
	}

	// We need to activate CSV in order to test the processing logic, so
	// manually craft the block version that's used to signal the soft-fork
	// activation.
	csvBit := netParams.Deployments[chaincfg.DeploymentCSV].BitNumber
	blockVersion := int32(0x20000000 | (uint32(1) << csvBit))

	// Generate enough blocks to activate CSV, collecting each of the
	// blocks into a slice for later use.
	numBlocksToActivate := (netParams.MinerConfirmationWindow * 3)
	for i := uint32(0); i < numBlocksToActivate; i++ {
		block, err := rpctest.CreateBlock(prevBlock, nil, blockVersion,
			time.Time{}, miningAddr, netParams)
		if err != nil {
			t.Fatalf("unable to generate block: %v", err)
		}

		mtp := chain.BestSnapshot().MedianTime

		_, isOrphan, err := chain.ProcessBlock(block, blockchain.BFNone)
		if err != nil {
			t.Fatalf("ProcessBlock fail on block %v: %v\n", i, err)
		}
		if isOrphan {
			t.Fatalf("ProcessBlock incorrectly returned block %v "+
				"is an orphan\n", i)
		}

		blocksWithMTP = append(blocksWithMTP, struct {
			block *btcutil.Block
			mtp   time.Time
		}{
			block: block,
			mtp:   mtp,
		})

		prevBlock = block
	}

	// Create a utxo view with all the utxos within the blocks created
	// above.
	utxoView := blockchain.NewUtxoViewpoint()
	for blockHeight, blockWithMTP := range blocksWithMTP {
		for _, tx := range blockWithMTP.block.Transactions() {
			utxoView.AddTxOuts(tx, int32(blockHeight))
		}
	}
	utxoView.SetBestHash(blocksWithMTP[len(blocksWithMTP)-1].block.Hash())

	// The median time calculated from the PoV of the best block in our
	// test chain. For unconfirmed inputs, this value will be used since
	// the MTP will be calculated from the PoV of the yet-to-be-mined
	// block.
	nextMedianTime := int64(1401292712)

	// We'll refer to this utxo within each input in the transactions
	// created below. This utxo has an age of 4 blocks and was mined within
	// block 297
	targetTx := blocksWithMTP[len(blocksWithMTP)-4].block.Transactions()[0]
	utxo := wire.OutPoint{
		Hash:  *targetTx.Hash(),
		Index: 0,
	}

	// Obtain the median time past from the PoV of the input created above.
	// The MTP for the input is the MTP from the PoV of the block *prior*
	// to the one that included it.
	medianTime := blocksWithMTP[len(blocksWithMTP)-5].mtp.Unix()

	// Add an additional transaction which will serve as our unconfirmed
	// output.
	var fakeScript []byte
	unConfTx := &wire.MsgTx{
		TxOut: []*wire.TxOut{{
			PkScript: fakeScript,
			Value:    5,
		}},
	}
	unConfUtxo := wire.OutPoint{
		Hash:  unConfTx.TxHash(),
		Index: 0,
	}

	// Adding a utxo with a height of 0x7fffffff indicates that the output
	// is currently unmined.
	utxoView.AddTxOuts(btcutil.NewTx(unConfTx), 0x7fffffff)

	tests := []struct {
		tx      *btcutil.Tx
		view    *blockchain.UtxoViewpoint
		want    *blockchain.SequenceLock
		mempool bool
	}{
		// A transaction of version one should disable sequence locks
		// as the new sequence number semantics only apply to
		// transactions version 2 or higher.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 1,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input, that a max int sequence
		// number. This sequence number has the high bit set, so
		// sequence locks should be disabled.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         wire.MaxTxInSequenceNum,
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input whose lock time is
		// expressed in seconds. However, the specified lock time is
		// below the required floor for time based lock times since
		// they have time granularity of 512 seconds. As a result, the
		// seconds lock-time should be just before the median time of
		// the targeted block.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime - 1,
				BlockHeight: -1,
			},
		},
		// A transaction with a single input whose lock time is
		// expressed in seconds. The number of seconds should be 1023
		// seconds after the median past time of the last block in the
		// chain.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 1024),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + 1023,
				BlockHeight: -1,
			},
		},
		// A transaction with multiple inputs. The first input has a
		// sequence lock in blocks with a value of 4. The last input
		// has a sequence number with a value of 5, but has the disable
		// bit set. So the first lock should be selected as it's the
		// target lock as its the furthest in the future lock that
		// isn't disabled.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}, {
					PreviousOutPoint: utxo,
					Sequence: blockchain.LockTimeToSequence(false, 5) |
						wire.SequenceLockTimeDisabled,
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 4),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (5 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: 299,
			},
		},
		// Transaction has a single input spending the genesis block
		// transaction. The input's sequence number is encodes a
		// relative lock-time in blocks (3 blocks). The sequence lock
		// should have a value of -1 for seconds, but a block height of
		// 298 meaning it can be included at height 299.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 298,
			},
		},
		// A transaction with two inputs with lock times expressed in
		// seconds. The selected sequence lock value for seconds should
		// be the time further in the future.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 5120),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (10 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: -1,
			},
		},
		// A transaction with two inputs with lock times expressed in
		// seconds. The selected sequence lock value for blocks should
		// be the height further in the future. The converted absolute
		// block height should be 302, meaning it can be included in
		// block 303.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 1),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 7),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 302,
			},
		},
		// A transaction with multiple inputs. Two inputs are time
		// based, and the other two are input maturity based. The lock
		// lying further into the future for both inputs should be
		// chosen.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 2560),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(true, 6656),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 3),
				}, {
					PreviousOutPoint: utxo,
					Sequence:         blockchain.LockTimeToSequence(false, 9),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     medianTime + (13 << wire.SequenceLockTimeGranularity) - 1,
				BlockHeight: 304,
			},
		},
		// A transaction with a single unconfirmed input. As the input
		// is confirmed, the height of the input should be interpreted
		// as the height of the *next* block. The current block height
		// is 300, so the lock time should be calculated using height
		// 301 as a base. A 2 block relative lock means the transaction
		// can be included after block 302, so in 303.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: unConfUtxo,
					Sequence:         blockchain.LockTimeToSequence(false, 2),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     -1,
				BlockHeight: 302,
			},
		},
		// A transaction with a single unconfirmed input. The input has
		// a time based lock, so the lock time should be based off the
		// MTP of the *next* block.
		{
			tx: btcutil.NewTx(&wire.MsgTx{
				Version: 2,
				TxIn: []*wire.TxIn{{
					PreviousOutPoint: unConfUtxo,
					Sequence:         blockchain.LockTimeToSequence(true, 1024),
				}},
			}),
			view: utxoView,
			want: &blockchain.SequenceLock{
				Seconds:     nextMedianTime + 1023,
				BlockHeight: -1,
			},
		},
	}

	t.Logf("Running %v SequenceLock tests", len(tests))
	for i, test := range tests {
		seqLock, err := chain.CalcSequenceLock(test.tx, test.view, test.mempool)
		if err != nil {
			t.Fatalf("test #%d, unable to calc sequence lock: %v", i, err)
		}

		if seqLock.Seconds != test.want.Seconds {
			t.Fatalf("test #%d got %v seconds want %v seconds",
				i, seqLock.Seconds, test.want.Seconds)
		}
		if seqLock.BlockHeight != test.want.BlockHeight {
			t.Fatalf("test #%d got height of %v want height of %v ",
				i, seqLock.BlockHeight, test.want.BlockHeight)
		}
	}
}
Beispiel #14
0
func TestInsertsCreditsDebitsRollbacks(t *testing.T) {
	t.Parallel()

	// Create a double spend of the received blockchain transaction.
	dupRecvTx, _ := btcutil.NewTxFromBytes(TstRecvSerializedTx)
	// Switch txout amount to 1 BTC.  Transaction store doesn't
	// validate txs, so this is fine for testing a double spend
	// removal.
	TstDupRecvAmount := int64(1e8)
	newDupMsgTx := dupRecvTx.MsgTx()
	newDupMsgTx.TxOut[0].Value = TstDupRecvAmount
	TstDoubleSpendTx := btcutil.NewTx(newDupMsgTx)
	TstDoubleSpendSerializedTx := serializeTx(TstDoubleSpendTx)

	// Create a "signed" (with invalid sigs) tx that spends output 0 of
	// the double spend.
	spendingTx := wire.NewMsgTx()
	spendingTxIn := wire.NewTxIn(wire.NewOutPoint(TstDoubleSpendTx.Sha(), 0), []byte{0, 1, 2, 3, 4})
	spendingTx.AddTxIn(spendingTxIn)
	spendingTxOut1 := wire.NewTxOut(1e7, []byte{5, 6, 7, 8, 9})
	spendingTxOut2 := wire.NewTxOut(9e7, []byte{10, 11, 12, 13, 14})
	spendingTx.AddTxOut(spendingTxOut1)
	spendingTx.AddTxOut(spendingTxOut2)
	TstSpendingTx := btcutil.NewTx(spendingTx)
	TstSpendingSerializedTx := serializeTx(TstSpendingTx)
	var _ = TstSpendingTx

	tests := []struct {
		name     string
		f        func(*Store) (*Store, error)
		bal, unc btcutil.Amount
		unspents map[wire.OutPoint]struct{}
		unmined  map[wire.ShaHash]struct{}
	}{
		{
			name: "new store",
			f: func(s *Store) (*Store, error) {
				return s, nil
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined:  map[wire.ShaHash]struct{}{},
		},
		{
			name: "txout insert",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, false)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstRecvTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "insert duplicate unconfirmed",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, false)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstRecvTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "confirmed txout insert",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstRecvTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
		{
			name: "insert duplicate confirmed",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstRecvTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
		{
			name: "rollback confirmed credit",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstRecvTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstRecvTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstRecvTx.Sha(): {},
			},
		},
		{
			name: "insert confirmed double spend",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: btcutil.Amount(TstDoubleSpendTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstDoubleSpendTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
		{
			name: "insert unconfirmed debit",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				return s, err
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined: map[wire.ShaHash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert unconfirmed debit again",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstDoubleSpendSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				return s, err
			},
			bal:      0,
			unc:      0,
			unspents: map[wire.OutPoint]struct{}{},
			unmined: map[wire.ShaHash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert change (index 0)",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}

				err = s.AddCredit(rec, nil, 0, true)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 0,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "insert output back to this own wallet (index 1)",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, nil)
				if err != nil {
					return nil, err
				}
				err = s.AddCredit(rec, nil, 1, true)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 0,
				}: {},
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 1,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "confirm signed tx",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstSpendingSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstSignedTxBlockDetails)
				return s, err
			},
			bal: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 0,
				}: {},
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 1,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
		{
			name: "rollback after spending tx",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstSignedTxBlockDetails.Height + 1)
				return s, err
			},
			bal: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 0,
				}: {},
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 1,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
		{
			name: "rollback spending tx block",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstSignedTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 0,
				}: {},
				wire.OutPoint{
					Hash:  *TstSpendingTx.Sha(),
					Index: 1,
				}: {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstSpendingTx.Sha(): {},
			},
		},
		{
			name: "rollback double spend tx block",
			f: func(s *Store) (*Store, error) {
				err := s.Rollback(TstRecvTxBlockDetails.Height)
				return s, err
			},
			bal: 0,
			unc: btcutil.Amount(TstSpendingTx.MsgTx().TxOut[0].Value + TstSpendingTx.MsgTx().TxOut[1].Value),
			unspents: map[wire.OutPoint]struct{}{
				*wire.NewOutPoint(TstSpendingTx.Sha(), 0): {},
				*wire.NewOutPoint(TstSpendingTx.Sha(), 1): {},
			},
			unmined: map[wire.ShaHash]struct{}{
				*TstDoubleSpendTx.Sha(): {},
				*TstSpendingTx.Sha():    {},
			},
		},
		{
			name: "insert original recv txout",
			f: func(s *Store) (*Store, error) {
				rec, err := NewTxRecord(TstRecvSerializedTx, time.Now())
				if err != nil {
					return nil, err
				}
				err = s.InsertTx(rec, TstRecvTxBlockDetails)
				if err != nil {
					return nil, err
				}
				err = s.AddCredit(rec, TstRecvTxBlockDetails, 0, false)
				return s, err
			},
			bal: btcutil.Amount(TstRecvTx.MsgTx().TxOut[0].Value),
			unc: 0,
			unspents: map[wire.OutPoint]struct{}{
				*wire.NewOutPoint(TstRecvTx.Sha(), 0): {},
			},
			unmined: map[wire.ShaHash]struct{}{},
		},
	}

	s, teardown, err := testStore()
	defer teardown()
	if err != nil {
		t.Fatal(err)
	}

	for _, test := range tests {
		tmpStore, err := test.f(s)
		if err != nil {
			t.Fatalf("%s: got error: %v", test.name, err)
		}
		s = tmpStore
		bal, err := s.Balance(1, TstRecvCurrentHeight)
		if err != nil {
			t.Fatalf("%s: Confirmed Balance failed: %v", test.name, err)
		}
		if bal != test.bal {
			t.Fatalf("%s: balance mismatch: expected: %d, got: %d", test.name, test.bal, bal)
		}
		unc, err := s.Balance(0, TstRecvCurrentHeight)
		if err != nil {
			t.Fatalf("%s: Unconfirmed Balance failed: %v", test.name, err)
		}
		unc -= bal
		if unc != test.unc {
			t.Fatalf("%s: unconfirmed balance mismatch: expected %d, got %d", test.name, test.unc, unc)
		}

		// Check that unspent outputs match expected.
		unspent, err := s.UnspentOutputs()
		if err != nil {
			t.Fatalf("%s: failed to fetch unspent outputs: %v", test.name, err)
		}
		for _, cred := range unspent {
			if _, ok := test.unspents[cred.OutPoint]; !ok {
				t.Errorf("%s: unexpected unspent output: %v", test.name, cred.OutPoint)
			}
			delete(test.unspents, cred.OutPoint)
		}
		if len(test.unspents) != 0 {
			t.Fatalf("%s: missing expected unspent output(s)", test.name)
		}

		// Check that unmined txs match expected.
		unmined, err := s.UnminedTxs()
		if err != nil {
			t.Fatalf("%s: cannot load unmined transactions: %v", test.name, err)
		}
		for _, tx := range unmined {
			txHash := tx.TxSha()
			if _, ok := test.unmined[txHash]; !ok {
				t.Fatalf("%s: unexpected unmined tx: %v", test.name, txHash)
			}
			delete(test.unmined, txHash)
		}
		if len(test.unmined) != 0 {
			t.Fatalf("%s: missing expected unmined tx(s)", test.name)
		}

	}
}
Beispiel #15
0
// TestBIP0068AndBIP0112Activation tests for the proper adherence to the BIP
// 112 and BIP 68 rule-set after the activation of the CSV-package soft-fork.
//
// Overview:
//  - Pre soft-fork:
//    - A transaction spending a CSV output validly should be rejected from the
//    mempool, but accepted in a valid generated block including the
//    transaction.
//  - Post soft-fork:
//    - See the cases exercised within the table driven tests towards the end
//    of this test.
func TestBIP0068AndBIP0112Activation(t *testing.T) {
	t.Parallel()

	// We'd like the test proper evaluation and validation of the BIP 68
	// (sequence locks) and BIP 112 rule-sets which add input-age based
	// relative lock times.

	btcdCfg := []string{"--rejectnonstd"}
	r, err := rpctest.New(&chaincfg.SimNetParams, nil, btcdCfg)
	if err != nil {
		t.Fatal("unable to create primary harness: ", err)
	}
	if err := r.SetUp(true, 1); err != nil {
		t.Fatalf("unable to setup test chain: %v", err)
	}
	defer r.TearDown()

	assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdStarted)

	harnessAddr, err := r.NewAddress()
	if err != nil {
		t.Fatalf("unable to obtain harness address: %v", err)
	}
	harnessScript, err := txscript.PayToAddrScript(harnessAddr)
	if err != nil {
		t.Fatalf("unable to generate pkScript: %v", err)
	}

	const (
		outputAmt         = btcutil.SatoshiPerBitcoin
		relativeBlockLock = 10
	)

	sweepOutput := &wire.TxOut{
		Value:    outputAmt - 5000,
		PkScript: harnessScript,
	}

	// As the soft-fork hasn't yet activated _any_ transaction version
	// which uses the CSV opcode should be accepted. Since at this point,
	// CSV doesn't actually exist, it's just a NOP.
	for txVersion := int32(0); txVersion < 3; txVersion++ {
		// Create a trivially spendable output with a CSV lock-time of
		// 10 relative blocks.
		redeemScript, testUTXO, tx, err := createCSVOutput(r, t, outputAmt,
			relativeBlockLock, false)
		if err != nil {
			t.Fatalf("unable to create CSV encumbered output: %v", err)
		}

		// As the transaction is p2sh it should be accepted into the
		// mempool and found within the next generated block.
		if _, err := r.Node.SendRawTransaction(tx, true); err != nil {
			t.Fatalf("unable to broadcast tx: %v", err)
		}
		blocks, err := r.Node.Generate(1)
		if err != nil {
			t.Fatalf("unable to generate blocks: %v", err)
		}
		txid := tx.TxHash()
		assertTxInBlock(r, t, blocks[0], &txid)

		// Generate a custom transaction which spends the CSV output.
		sequenceNum := blockchain.LockTimeToSequence(false, 10)
		spendingTx, err := spendCSVOutput(redeemScript, testUTXO,
			sequenceNum, sweepOutput, txVersion)
		if err != nil {
			t.Fatalf("unable to spend csv output: %v", err)
		}

		// This transaction should be rejected from the mempool since
		// CSV validation is already mempool policy pre-fork.
		_, err = r.Node.SendRawTransaction(spendingTx, true)
		if err == nil {
			t.Fatalf("transaction should have been rejected, but was " +
				"instead accepted")
		}

		// However, this transaction should be accepted in a custom
		// generated block as CSV validation for scripts within blocks
		// shouldn't yet be active.
		txns := []*btcutil.Tx{btcutil.NewTx(spendingTx)}
		block, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
		if err != nil {
			t.Fatalf("unable to submit block: %v", err)
		}
		txid = spendingTx.TxHash()
		assertTxInBlock(r, t, block.Hash(), &txid)
	}

	// At this point, the block height should be 107: we started at height
	// 101, then generated 2 blocks in each loop iteration above.
	assertChainHeight(r, t, 107)

	// With the height at 107 we need 200 blocks to be mined after the
	// genesis target period, so we mine 192 blocks. This'll put us at
	// height 299. The getblockchaininfo call checks the state for the
	// block AFTER the current height.
	numBlocks := (r.ActiveNet.MinerConfirmationWindow * 2) - 8
	if _, err := r.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	assertChainHeight(r, t, 299)
	assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdActive)

	// Knowing the number of outputs needed for the tests below, create a
	// fresh output for use within each of the test-cases below.
	const relativeTimeLock = 512
	const numTests = 8
	type csvOutput struct {
		RedeemScript []byte
		Utxo         *wire.OutPoint
		Timelock     int32
	}
	var spendableInputs [numTests]csvOutput

	// Create three outputs which have a block-based sequence locks, and
	// three outputs which use the above time based sequence lock.
	for i := 0; i < numTests; i++ {
		timeLock := relativeTimeLock
		isSeconds := true
		if i < 7 {
			timeLock = relativeBlockLock
			isSeconds = false
		}

		redeemScript, utxo, tx, err := createCSVOutput(r, t, outputAmt,
			int32(timeLock), isSeconds)
		if err != nil {
			t.Fatalf("unable to create CSV output: %v", err)
		}

		if _, err := r.Node.SendRawTransaction(tx, true); err != nil {
			t.Fatalf("unable to broadcast transaction: %v", err)
		}

		spendableInputs[i] = csvOutput{
			RedeemScript: redeemScript,
			Utxo:         utxo,
			Timelock:     int32(timeLock),
		}
	}

	// Mine a single block including all the transactions generated above.
	if _, err := r.Node.Generate(1); err != nil {
		t.Fatalf("unable to generate block: %v", err)
	}

	// Now mine 10 additional blocks giving the inputs generated above a
	// age of 11. Space out each block 10 minutes after the previous block.
	prevBlockHash, err := r.Node.GetBestBlockHash()
	if err != nil {
		t.Fatalf("unable to get prior block hash: %v", err)
	}
	prevBlock, err := r.Node.GetBlock(prevBlockHash)
	if err != nil {
		t.Fatalf("unable to get block: %v", err)
	}
	for i := 0; i < relativeBlockLock; i++ {
		timeStamp := prevBlock.Header.Timestamp.Add(time.Minute * 10)
		b, err := r.GenerateAndSubmitBlock(nil, -1, timeStamp)
		if err != nil {
			t.Fatalf("unable to generate block: %v", err)
		}

		prevBlock = b.MsgBlock()
	}

	// A helper function to create fully signed transactions in-line during
	// the array initialization below.
	var inputIndex uint32
	makeTxCase := func(sequenceNum uint32, txVersion int32) *wire.MsgTx {
		csvInput := spendableInputs[inputIndex]

		tx, err := spendCSVOutput(csvInput.RedeemScript, csvInput.Utxo,
			sequenceNum, sweepOutput, txVersion)
		if err != nil {
			t.Fatalf("unable to spend CSV output: %v", err)
		}

		inputIndex++
		return tx
	}

	tests := [numTests]struct {
		tx     *wire.MsgTx
		accept bool
	}{
		// A valid transaction with a single input a sequence number
		// creating a 100 block relative time-lock. This transaction
		// should be rejected as its version number is 1, and only tx
		// of version > 2 will trigger the CSV behavior.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(false, 100), 1),
			accept: false,
		},
		// A transaction of version 2 spending a single input. The
		// input has a relative time-lock of 1 block, but the disable
		// bit it set. The transaction should be rejected as a result.
		{
			tx: makeTxCase(
				blockchain.LockTimeToSequence(false, 1)|wire.SequenceLockTimeDisabled,
				2,
			),
			accept: false,
		},
		// A v2 transaction with a single input having a 9 block
		// relative time lock. The referenced input is 11 blocks old,
		// but the CSV output requires a 10 block relative lock-time.
		// Therefore, the transaction should be rejected.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(false, 9), 2),
			accept: false,
		},
		// A v2 transaction with a single input having a 10 block
		// relative time lock. The referenced input is 11 blocks old so
		// the transaction should be accepted.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(false, 10), 2),
			accept: true,
		},
		// A v2 transaction with a single input having a 11 block
		// relative time lock. The input referenced has an input age of
		// 11 and the CSV op-code requires 10 blocks to have passed, so
		// this transaction should be accepted.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(false, 11), 2),
			accept: true,
		},
		// A v2 transaction whose input has a 1000 blck relative time
		// lock.  This should be rejected as the input's age is only 11
		// blocks.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(false, 1000), 2),
			accept: false,
		},
		// A v2 transaction with a single input having a 512,000 second
		// relative time-lock. This transaction should be rejected as 6
		// days worth of blocks haven't yet been mined. The referenced
		// input doesn't have sufficient age.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(true, 512000), 2),
			accept: false,
		},
		// A v2 transaction whose single input has a 512 second
		// relative time-lock. This transaction should be accepted as
		// finalized.
		{
			tx:     makeTxCase(blockchain.LockTimeToSequence(true, 512), 2),
			accept: true,
		},
	}

	for i, test := range tests {
		txid, err := r.Node.SendRawTransaction(test.tx, true)
		switch {
		// Test case passes, nothing further to report.
		case test.accept && err == nil:

		// Transaction should have been accepted but we have a non-nil
		// error.
		case test.accept && err != nil:
			t.Fatalf("test #%d, transaction should be accepted, "+
				"but was rejected: %v", i, err)

		// Transaction should have been rejected, but it was accepted.
		case !test.accept && err == nil:
			t.Fatalf("test #%d, transaction should be rejected, "+
				"but was accepted", i)

		// Transaction was rejected as wanted, nothing more to do.
		case !test.accept && err != nil:
		}

		// If the transaction should be rejected, manually mine a block
		// with the non-final transaction. It should be rejected.
		if !test.accept {
			txns := []*btcutil.Tx{btcutil.NewTx(test.tx)}
			_, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
			if err == nil {
				t.Fatalf("test #%d, invalid block accepted", i)
			}

			continue
		}

		// Generate a block, the transaction should be included within
		// the newly mined block.
		blockHashes, err := r.Node.Generate(1)
		if err != nil {
			t.Fatalf("unable to mine block: %v", err)
		}
		assertTxInBlock(r, t, blockHashes[0], txid)
	}
}
Beispiel #16
0
// TestBIP0113Activation tests for proper adherance of the BIP 113 rule
// constraint which requires all transaction finality tests to use the MTP of
// the last 11 blocks, rather than the timestamp of the block which includes
// them.
//
// Overview:
//  - Pre soft-fork:
//    - Transactions with non-final lock-times from the PoV of MTP should be
//      rejected from the mempool.
//    - Transactions within non-final MTP based lock-times should be accepted
//      in valid blocks.
//
//  - Post soft-fork:
//    - Transactions with non-final lock-times from the PoV of MTP should be
//      rejected from the mempool and when found within otherwise valid blocks.
//    - Transactions with final lock-times from the PoV of MTP should be
//      accepted to the mempool and mined in future block.
func TestBIP0113Activation(t *testing.T) {
	t.Parallel()

	btcdCfg := []string{"--rejectnonstd"}
	r, err := rpctest.New(&chaincfg.SimNetParams, nil, btcdCfg)
	if err != nil {
		t.Fatal("unable to create primary harness: ", err)
	}
	if err := r.SetUp(true, 1); err != nil {
		t.Fatalf("unable to setup test chain: %v", err)
	}
	defer r.TearDown()

	// Create a fresh output for usage within the test below.
	const outputValue = btcutil.SatoshiPerBitcoin
	outputKey, testOutput, testPkScript, err := makeTestOutput(r, t,
		outputValue)
	if err != nil {
		t.Fatalf("unable to create test output: %v", err)
	}

	// Fetch a fresh address from the harness, we'll use this address to
	// send funds back into the Harness.
	addr, err := r.NewAddress()
	if err != nil {
		t.Fatalf("unable to generate address: %v", err)
	}
	addrScript, err := txscript.PayToAddrScript(addr)
	if err != nil {
		t.Fatalf("unable to generate addr script: %v", err)
	}

	// Now create a transaction with a lock time which is "final" according
	// to the latest block, but not according to the current median time
	// past.
	tx := wire.NewMsgTx(1)
	tx.AddTxIn(&wire.TxIn{
		PreviousOutPoint: *testOutput,
	})
	tx.AddTxOut(&wire.TxOut{
		PkScript: addrScript,
		Value:    outputValue - 1000,
	})

	// We set the lock-time of the transaction to just one minute after the
	// current MTP of the chain.
	chainInfo, err := r.Node.GetBlockChainInfo()
	if err != nil {
		t.Fatalf("unable to query for chain info: %v", err)
	}
	tx.LockTime = uint32(chainInfo.MedianTime) + 1

	sigScript, err := txscript.SignatureScript(tx, 0, testPkScript,
		txscript.SigHashAll, outputKey, true)
	if err != nil {
		t.Fatalf("unable to generate sig: %v", err)
	}
	tx.TxIn[0].SignatureScript = sigScript

	// This transaction should be rejected from the mempool as using MTP
	// for transactions finality is now a policy rule. Additionally, the
	// exact error should be the rejection of a non-final transaction.
	_, err = r.Node.SendRawTransaction(tx, true)
	if err == nil {
		t.Fatalf("transaction accepted, but should be non-final")
	} else if !strings.Contains(err.Error(), "not finalized") {
		t.Fatalf("transaction should be rejected due to being "+
			"non-final, instead: %v", err)
	}

	// However, since the block validation consensus rules haven't yet
	// activated, a block including the transaction should be accepted.
	txns := []*btcutil.Tx{btcutil.NewTx(tx)}
	block, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
	if err != nil {
		t.Fatalf("unable to submit block: %v", err)
	}
	txid := tx.TxHash()
	assertTxInBlock(r, t, block.Hash(), &txid)

	// At this point, the block height should be 103: we mined 101 blocks
	// to create a single mature output, then an additional block to create
	// a new output, and then mined a single block above to include our
	// transation.
	assertChainHeight(r, t, 103)

	// Next, mine enough blocks to ensure that the soft-fork becomes
	// activated. Assert that the block version of the second-to-last block
	// in the final range is active.

	// Next, mine ensure blocks to ensure that the soft-fork becomes
	// active. We're at height 103 and we need 200 blocks to be mined after
	// the genesis target period, so we mine 196 blocks. This'll put us at
	// height 299. The getblockchaininfo call checks the state for the
	// block AFTER the current height.
	numBlocks := (r.ActiveNet.MinerConfirmationWindow * 2) - 4
	if _, err := r.Node.Generate(numBlocks); err != nil {
		t.Fatalf("unable to generate blocks: %v", err)
	}

	assertChainHeight(r, t, 299)
	assertSoftForkStatus(r, t, csvKey, blockchain.ThresholdActive)

	// The timeLockDeltas slice represents a series of deviations from the
	// current MTP which will be used to test border conditions w.r.t
	// transaction finality. -1 indicates 1 second prior to the MTP, 0
	// indicates the current MTP, and 1 indicates 1 second after the
	// current MTP.
	//
	// This time, all transactions which are final according to the MTP
	// *should* be accepted to both the mempool and within a valid block.
	// While transactions with lock-times *after* the current MTP should be
	// rejected.
	timeLockDeltas := []int64{-1, 0, 1}
	for _, timeLockDelta := range timeLockDeltas {
		chainInfo, err = r.Node.GetBlockChainInfo()
		if err != nil {
			t.Fatalf("unable to query for chain info: %v", err)
		}
		medianTimePast := chainInfo.MedianTime

		// Create another test output to be spent shortly below.
		outputKey, testOutput, testPkScript, err = makeTestOutput(r, t,
			outputValue)
		if err != nil {
			t.Fatalf("unable to create test output: %v", err)
		}

		// Create a new transaction with a lock-time past the current known
		// MTP.
		tx = wire.NewMsgTx(1)
		tx.AddTxIn(&wire.TxIn{
			PreviousOutPoint: *testOutput,
		})
		tx.AddTxOut(&wire.TxOut{
			PkScript: addrScript,
			Value:    outputValue - 1000,
		})
		tx.LockTime = uint32(medianTimePast + timeLockDelta)
		sigScript, err = txscript.SignatureScript(tx, 0, testPkScript,
			txscript.SigHashAll, outputKey, true)
		if err != nil {
			t.Fatalf("unable to generate sig: %v", err)
		}
		tx.TxIn[0].SignatureScript = sigScript

		// If the time-lock delta is greater than -1, then the
		// transaction should be rejected from the mempool and when
		// included within a block. A time-lock delta of -1 should be
		// accepted as it has a lock-time of one
		// second _before_ the current MTP.

		_, err = r.Node.SendRawTransaction(tx, true)
		if err == nil && timeLockDelta >= 0 {
			t.Fatal("transaction was accepted into the mempool " +
				"but should be rejected!")
		} else if err != nil && !strings.Contains(err.Error(), "not finalized") {
			t.Fatalf("transaction should be rejected from mempool "+
				"due to being  non-final, instead: %v", err)
		}

		txns = []*btcutil.Tx{btcutil.NewTx(tx)}
		_, err := r.GenerateAndSubmitBlock(txns, -1, time.Time{})
		if err == nil && timeLockDelta >= 0 {
			t.Fatal("block should be rejected due to non-final " +
				"txn, but was accepted")
		} else if err != nil && !strings.Contains(err.Error(), "unfinalized") {
			t.Fatalf("block should be rejected due to non-final "+
				"tx, instead: %v", err)
		}
	}
}