Beispiel #1
0
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) {
	if signer.PrivateKey == nil {
		return errors.InvalidArgumentError("signing key doesn't have a private key")
	}
	if signer.PrivateKey.Encrypted {
		return errors.InvalidArgumentError("signing key is encrypted")
	}

	sig := new(packet.Signature)
	sig.SigType = sigType
	sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo
	sig.Hash = config.Hash()
	sig.CreationTime = config.Now()
	sig.IssuerKeyId = &signer.PrivateKey.KeyId

	h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType)
	if err != nil {
		return
	}
	io.Copy(wrappedHash, message)

	err = sig.Sign(h, signer.PrivateKey, config)
	if err != nil {
		return
	}

	return sig.Serialize(w)
}
Beispiel #2
0
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase.
// The resulting WriteCloser must be closed after the contents of the file have
// been written.
// If config is nil, sensible defaults will be used.
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	if hints == nil {
		hints = &FileHints{}
	}

	key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config)
	if err != nil {
		return
	}
	w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config)
	if err != nil {
		return
	}

	literaldata := w
	if algo := config.Compression(); algo != packet.CompressionNone {
		var compConfig *packet.CompressionConfig
		if config != nil {
			compConfig = config.CompressionConfig
		}
		literaldata, err = packet.SerializeCompressed(w, algo, compConfig)
		if err != nil {
			return
		}
	}

	var epochSeconds uint32
	if !hints.ModTime.IsZero() {
		epochSeconds = uint32(hints.ModTime.Unix())
	}
	return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds)
}
Beispiel #3
0
// SignIdentity adds a signature to e, from signer, attesting that identity is
// associated with e. The provided identity must already be an element of
// e.Identities and the private key of signer must have been decrypted if
// necessary.
// If config is nil, sensible defaults will be used.
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error {
	if signer.PrivateKey == nil {
		return errors.InvalidArgumentError("signing Entity must have a private key")
	}
	if signer.PrivateKey.Encrypted {
		return errors.InvalidArgumentError("signing Entity's private key must be decrypted")
	}
	ident, ok := e.Identities[identity]
	if !ok {
		return errors.InvalidArgumentError("given identity string not found in Entity")
	}

	sig := &packet.Signature{
		SigType:      packet.SigTypeGenericCert,
		PubKeyAlgo:   signer.PrivateKey.PubKeyAlgo,
		Hash:         config.Hash(),
		CreationTime: config.Now(),
		IssuerKeyId:  &signer.PrivateKey.KeyId,
	}
	if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil {
		return err
	}
	ident.Signatures = append(ident.Signatures, sig)
	return nil
}
Beispiel #4
0
// Encode returns a WriteCloser which will clear-sign a message with privateKey
// and write it to w. If config is nil, sensible defaults are used.
func Encode(w io.Writer, privateKey *packet.PrivateKey, config *packet.Config) (plaintext io.WriteCloser, err error) {
	if privateKey.Encrypted {
		return nil, errors.InvalidArgumentError("signing key is encrypted")
	}

	hashType := config.Hash()
	name := nameOfHash(hashType)
	if len(name) == 0 {
		return nil, errors.UnsupportedError("unknown hash type: " + strconv.Itoa(int(hashType)))
	}

	if !hashType.Available() {
		return nil, errors.UnsupportedError("unsupported hash type: " + strconv.Itoa(int(hashType)))
	}
	h := hashType.New()

	buffered := bufio.NewWriter(w)
	// start has a \n at the beginning that we don't want here.
	if _, err = buffered.Write(start[1:]); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}
	if _, err = buffered.WriteString("Hash: "); err != nil {
		return
	}
	if _, err = buffered.WriteString(name); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}
	if err = buffered.WriteByte(lf); err != nil {
		return
	}

	plaintext = &dashEscaper{
		buffered: buffered,
		h:        h,
		hashType: hashType,

		atBeginningOfLine: true,
		isFirstLine:       true,

		byteBuf: make([]byte, 1),

		privateKey: privateKey,
		config:     config,
	}

	return
}
Beispiel #5
0
// Encrypt encrypts a message to a number of recipients and, optionally, signs
// it. hints contains optional information, that is also encrypted, that aids
// the recipients in processing the message. The resulting WriteCloser must
// be closed after the contents of the file have been written.
// If config is nil, sensible defaults will be used.
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) {
	var signer *packet.PrivateKey
	if signed != nil {
		signKey, ok := signed.signingKey(config.Now())
		if !ok {
			return nil, errors.InvalidArgumentError("no valid signing keys")
		}
		signer = signKey.PrivateKey
		if signer == nil {
			return nil, errors.InvalidArgumentError("no private key in signing key")
		}
		if signer.Encrypted {
			return nil, errors.InvalidArgumentError("signing key must be decrypted")
		}
	}

	// These are the possible ciphers that we'll use for the message.
	candidateCiphers := []uint8{
		uint8(packet.CipherAES128),
		uint8(packet.CipherAES256),
		uint8(packet.CipherCAST5),
	}
	// These are the possible hash functions that we'll use for the signature.
	candidateHashes := []uint8{
		hashToHashId(crypto.SHA256),
		hashToHashId(crypto.SHA512),
		hashToHashId(crypto.SHA1),
		hashToHashId(crypto.RIPEMD160),
	}
	// In the event that a recipient doesn't specify any supported ciphers
	// or hash functions, these are the ones that we assume that every
	// implementation supports.
	defaultCiphers := candidateCiphers[len(candidateCiphers)-1:]
	defaultHashes := candidateHashes[len(candidateHashes)-1:]

	encryptKeys := make([]Key, len(to))
	for i := range to {
		var ok bool
		encryptKeys[i], ok = to[i].encryptionKey(config.Now())
		if !ok {
			return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys")
		}

		sig := to[i].primaryIdentity().SelfSignature

		preferredSymmetric := sig.PreferredSymmetric
		if len(preferredSymmetric) == 0 {
			preferredSymmetric = defaultCiphers
		}
		preferredHashes := sig.PreferredHash
		if len(preferredHashes) == 0 {
			preferredHashes = defaultHashes
		}
		candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric)
		candidateHashes = intersectPreferences(candidateHashes, preferredHashes)
	}

	if len(candidateCiphers) == 0 || len(candidateHashes) == 0 {
		return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms")
	}

	cipher := packet.CipherFunction(candidateCiphers[0])
	// If the cipher specifed by config is a candidate, we'll use that.
	configuredCipher := config.Cipher()
	for _, c := range candidateCiphers {
		cipherFunc := packet.CipherFunction(c)
		if cipherFunc == configuredCipher {
			cipher = cipherFunc
			break
		}
	}

	var hash crypto.Hash
	for _, hashId := range candidateHashes {
		if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() {
			hash = h
			break
		}
	}

	// If the hash specified by config is a candidate, we'll use that.
	if configuredHash := config.Hash(); configuredHash.Available() {
		for _, hashId := range candidateHashes {
			if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash {
				hash = h
				break
			}
		}
	}

	if hash == 0 {
		hashId := candidateHashes[0]
		name, ok := s2k.HashIdToString(hashId)
		if !ok {
			name = "#" + strconv.Itoa(int(hashId))
		}
		return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)")
	}

	symKey := make([]byte, cipher.KeySize())
	if _, err := io.ReadFull(config.Random(), symKey); err != nil {
		return nil, err
	}

	for _, key := range encryptKeys {
		if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil {
			return nil, err
		}
	}

	encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config)
	if err != nil {
		return
	}

	if signer != nil {
		ops := &packet.OnePassSignature{
			SigType:    packet.SigTypeBinary,
			Hash:       hash,
			PubKeyAlgo: signer.PubKeyAlgo,
			KeyId:      signer.KeyId,
			IsLast:     true,
		}
		if err := ops.Serialize(encryptedData); err != nil {
			return nil, err
		}
	}

	if hints == nil {
		hints = &FileHints{}
	}

	w := encryptedData
	if signer != nil {
		// If we need to write a signature packet after the literal
		// data then we need to stop literalData from closing
		// encryptedData.
		w = noOpCloser{encryptedData}

	}
	var epochSeconds uint32
	if !hints.ModTime.IsZero() {
		epochSeconds = uint32(hints.ModTime.Unix())
	}
	literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds)
	if err != nil {
		return nil, err
	}

	if signer != nil {
		return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil
	}
	return literalData, nil
}
Beispiel #6
0
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a
// single identity composed of the given full name, comment and email, any of
// which may be empty but must not contain any of "()<>\x00".
// If config is nil, sensible defaults will be used.
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) {
	currentTime := config.Now()

	bits := defaultRSAKeyBits
	if config != nil && config.RSABits != 0 {
		bits = config.RSABits
	}

	uid := packet.NewUserId(name, comment, email)
	if uid == nil {
		return nil, errors.InvalidArgumentError("user id field contained invalid characters")
	}
	signingPriv, err := rsa.GenerateKey(config.Random(), bits)
	if err != nil {
		return nil, err
	}
	encryptingPriv, err := rsa.GenerateKey(config.Random(), bits)
	if err != nil {
		return nil, err
	}

	e := &Entity{
		PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey),
		PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv),
		Identities: make(map[string]*Identity),
	}
	isPrimaryId := true
	e.Identities[uid.Id] = &Identity{
		Name:   uid.Name,
		UserId: uid,
		SelfSignature: &packet.Signature{
			CreationTime: currentTime,
			SigType:      packet.SigTypePositiveCert,
			PubKeyAlgo:   packet.PubKeyAlgoRSA,
			Hash:         config.Hash(),
			IsPrimaryId:  &isPrimaryId,
			FlagsValid:   true,
			FlagSign:     true,
			FlagCertify:  true,
			IssuerKeyId:  &e.PrimaryKey.KeyId,
		},
	}

	e.Subkeys = make([]Subkey, 1)
	e.Subkeys[0] = Subkey{
		PublicKey:  packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey),
		PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv),
		Sig: &packet.Signature{
			CreationTime:              currentTime,
			SigType:                   packet.SigTypeSubkeyBinding,
			PubKeyAlgo:                packet.PubKeyAlgoRSA,
			Hash:                      config.Hash(),
			FlagsValid:                true,
			FlagEncryptStorage:        true,
			FlagEncryptCommunications: true,
			IssuerKeyId:               &e.PrimaryKey.KeyId,
		},
	}
	e.Subkeys[0].PublicKey.IsSubkey = true
	e.Subkeys[0].PrivateKey.IsSubkey = true

	return e, nil
}