Beispiel #1
0
func innerMu_h(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) - math.Sin(k[1])
	numer := sxy * sxy * math.Tanh(env.Beta*env.Xi_h(k)/2.0)
	denom := env.Mu_b + 2.0*env.Xi_h(k)
	//denom := env.Mu_b - 2.0*env.Be_field*env.A + 2.0*env.Xi_h(k)
	return numer / denom
}
Beispiel #2
0
func innerMu_h(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) - math.Sin(k[1])
	E := env.BogoEnergy(k)
	xi := env.Xi_h(k)
	delta := env.Delta_h(k)
	return sxy * sxy * math.Tanh(env.Beta*E/2.0) * (2.0*xi*xi + delta*delta) / (E * E * E)
}
Beispiel #3
0
// Calculate U_{1}/N = 1/N \sum_k \epsilon_h(k) f_h(\xi_h(k))
func HolonEnergy(env *tempAll.Environment) (float64, error) {
	inner := func(k vec.Vector) float64 {
		return env.Epsilon_h(k) * env.Fermi(env.Xi_h(k))
	}
	dim := 2
	avg := bzone.Avg(env.PointsPerSide, dim, inner)
	return avg, nil
}
Beispiel #4
0
// Evaluate the retarded pair Green's function Pi_R(k, omega)_{xx, xy, yy}.
// k must be a two-dimensional vector.
func Pi(env *tempAll.Environment, k vec.Vector, omega float64) vec.Vector {
	var piInner func(k vec.Vector, out *vec.Vector)
	// TODO: should this comparison be math.Abs(env.F0)? Not using that to
	// avoid going to finite F0 procedure when F0 < 0 (since F0 is
	// positive by choice of gauge). Also - would it be better to just
	// test if F0 == 0.0? Would prefer to avoid equality comparison
	// on float.
	if math.Abs(env.F0) < 1e-9 {
		piInner = func(q vec.Vector, out *vec.Vector) {
			// do vector operations on out to avoid allocation:
			// out = k/2 + q
			(*out)[0] = k[0]/2.0 + q[0]
			(*out)[1] = k[1]/2.0 + q[1]
			xp := env.Xi_h(*out)
			// out = k/2 - q
			(*out)[0] = k[0]/2.0 - q[0]
			(*out)[1] = k[1]/2.0 - q[1]
			xm := env.Xi_h(*out)

			tp := math.Tanh(env.Beta * xp / 2.0)
			tm := math.Tanh(env.Beta * xm / 2.0)
			common := -(tp + tm) / (omega - xp - xm)
			sx := math.Sin(q[0])
			sy := math.Sin(q[1])
			// out = result
			(*out)[0] = sx * sx * common
			(*out)[1] = sx * sy * common
			(*out)[2] = sy * sy * common
		}
	} else {
		piInner = func(q vec.Vector, out *vec.Vector) {
			// out = k/2 + q
			(*out)[0] = k[0]/2.0 + q[0]
			(*out)[1] = k[1]/2.0 + q[1]
			xi1 := env.Xi_h(*out)
			E1 := env.BogoEnergy(*out)
			// out = k/2 - q
			(*out)[0] = k[0]/2.0 - q[0]
			(*out)[1] = k[1]/2.0 - q[1]
			xi2 := env.Xi_h(*out)
			E2 := env.BogoEnergy(*out)

			A1 := 0.5 * (1.0 + xi1/E1)
			A2 := 0.5 * (1.0 + xi2/E2)
			B1 := 0.5 * (1.0 - xi1/E1)
			B2 := 0.5 * (1.0 - xi2/E2)
			t1 := math.Tanh(env.Beta * E1 / 2.0)
			t2 := math.Tanh(env.Beta * E2 / 2.0)
			common := -(t1+t2)*(A1*A2/(omega-E1-E2)-B1*B2/(omega+E1+E2)) - (t1-t2)*(A1*B2/(omega-E1+E2)-B1*A2/(omega+E1-E2))
			sx := math.Sin(q[0])
			sy := math.Sin(q[1])
			// out = result
			(*out)[0] = sx * sx * common
			(*out)[1] = sx * sy * common
			(*out)[2] = sy * sy * common
		}
	}
	return bzone.VectorAvg(env.PointsPerSide, 2, 3, piInner)
}
Beispiel #5
0
func innerX1(env *tempAll.Environment, k vec.Vector) float64 {
	return env.Fermi(env.Xi_h(k))
}
Beispiel #6
0
func innerBeta(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) - math.Sin(k[1])
	return sxy * sxy * math.Tanh(env.Beta*env.Xi_h(k)/2.0) / env.Xi_h(k)
}
Beispiel #7
0
func innerMu_hNoninteracting(env *tempAll.Environment, k vec.Vector) float64 {
	return env.Fermi(env.Xi_h(k))
}
Beispiel #8
0
func innerMu_h(env *tempAll.Environment, k vec.Vector) float64 {
	return (1.0 - env.Xi_h(k)/env.BogoEnergy(k)) / 2.0
}
Beispiel #9
0
func innerD1(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) * math.Sin(k[1])
	E := env.BogoEnergy(k)
	return sxy * (1.0 - env.Xi_h(k)*math.Tanh(env.Beta*E/2.0)/E)
}
Beispiel #10
0
func innerD1(env *tempAll.Environment, k vec.Vector) float64 {
	return math.Sin(k[0]) * math.Sin(k[1]) * env.Fermi(env.Xi_h(k))
}
Beispiel #11
0
func innerX1(env *tempAll.Environment, k vec.Vector) float64 {
	E := env.BogoEnergy(k)
	return 1.0 - env.Xi_h(k)*math.Tanh(env.Beta*E/2.0)/E
}
Beispiel #12
0
func innerD1Noninteracting(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) * math.Sin(k[1])
	return -sxy * env.Fermi(env.Xi_h(k))
}
Beispiel #13
0
func innerD1(env *tempAll.Environment, k vec.Vector) float64 {
	sxy := math.Sin(k[0]) * math.Sin(k[1])
	return -sxy * (1.0 - env.Xi_h(k)/env.BogoEnergy(k)) / 2.0
}