Beispiel #1
0
func BenchmarkMultiStreamGrow(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		Seq:       0,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	for i := 0; i < b.N; i++ {
		t.SrcPort = layers.TCPPort(i)
		a.Assemble(netFlow, &t)
		t.Seq += 10
	}
}
Beispiel #2
0
func BenchmarkSingleStreamLoss(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		SYN:       true,
		Seq:       1000,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	for i := 0; i < b.N; i++ {
		a.Assemble(netFlow, &t)
		t.SYN = false
		t.Seq += 11
	}
}
Beispiel #3
0
func BenchmarkMultiStreamConn(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		Seq:       0,
		SYN:       true,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	for i := 0; i < b.N; i++ {
		t.SrcPort = layers.TCPPort(i)
		a.Assemble(netFlow, &t)
		if i%65536 == 65535 {
			if t.SYN {
				t.SYN = false
				t.Seq += 1
			}
			t.Seq += 10
		}
	}
}
Beispiel #4
0
func BenchmarkSingleStreamSkips(b *testing.B) {
	t := layers.TCP{
		SrcPort:   1,
		DstPort:   2,
		SYN:       true,
		Seq:       1000,
		BaseLayer: layers.BaseLayer{Payload: []byte{1, 2, 3, 4, 5, 6, 7, 8, 9, 0}},
	}
	a := NewAssembler(NewStreamPool(&testFactory{}))
	skipped := false
	for i := 0; i < b.N; i++ {
		if i%10 == 9 {
			t.Seq += 10
			skipped = true
		} else if skipped {
			t.Seq -= 20
		}
		a.Assemble(netFlow, &t)
		if t.SYN {
			t.SYN = false
			t.Seq++
		}
		t.Seq += 10
		if skipped {
			t.Seq += 10
			skipped = false
		}
	}
}
Beispiel #5
0
func (tcp *Tcp) Process(id *flows.FlowID, tcphdr *layers.TCP, pkt *protos.Packet) {
	// This Recover should catch all exceptions in
	// protocol modules.
	defer logp.Recover("Process tcp exception")

	stream, created := tcp.getStream(pkt)
	if stream.conn == nil {
		return
	}

	conn := stream.conn
	if id != nil {
		id.AddConnectionID(uint64(conn.id))
	}

	if isDebug {
		debugf("tcp flow id: %p", id)
	}

	if len(pkt.Payload) == 0 && !tcphdr.FIN {
		// return early if packet is not interesting. Still need to find/create
		// stream first in order to update the TCP stream timer
		return
	}

	tcpStartSeq := tcphdr.Seq
	tcpSeq := tcpStartSeq + uint32(len(pkt.Payload))
	lastSeq := conn.lastSeq[stream.dir]
	if isDebug {
		debugf("pkt.start_seq=%v pkt.last_seq=%v stream.last_seq=%v (len=%d)",
			tcpStartSeq, tcpSeq, lastSeq, len(pkt.Payload))
	}

	if len(pkt.Payload) > 0 && lastSeq != 0 {
		if tcpSeqBeforeEq(tcpSeq, lastSeq) {
			if isDebug {
				debugf("Ignoring retransmitted segment. pkt.seq=%v len=%v stream.seq=%v",
					tcphdr.Seq, len(pkt.Payload), lastSeq)
			}
			return
		}

		switch tcpSeqCompare(lastSeq, tcpStartSeq) {
		case seqLT: // lastSeq < tcpStartSeq => Gap in tcp stream detected
			if created {
				break
			}

			gap := int(tcpStartSeq - lastSeq)
			debugf("Gap in tcp stream. last_seq: %d, seq: %d, gap: %d", lastSeq, tcpStartSeq, gap)
			drop := stream.gapInStream(gap)
			if drop {
				if isDebug {
					debugf("Dropping connection state because of gap")
				}
				droppedBecauseOfGaps.Add(1)

				// drop application layer connection state and
				// update stream_id for app layer analysers using stream_id for lookups
				conn.id = tcp.getId()
				conn.data = nil
			}

		case seqGT:
			// lastSeq > tcpStartSeq => overlapping TCP segment detected. shrink packet
			delta := lastSeq - tcpStartSeq

			if isDebug {
				debugf("Overlapping tcp segment. last_seq %d, seq: %d, delta: %d",
					lastSeq, tcpStartSeq, delta)
			}

			pkt.Payload = pkt.Payload[delta:]
			tcphdr.Seq += delta
		}
	}

	conn.lastSeq[stream.dir] = tcpSeq
	stream.addPacket(pkt, tcphdr)
}
Beispiel #6
0
// scan scans the dst IP address of this scanner.
func (s *scanner) scan() error {
	// First off, get the MAC address we should be sending packets to.
	hwaddr, err := s.getHwAddr()
	if err != nil {
		return err
	}
	// Construct all the network layers we need.
	eth := layers.Ethernet{
		SrcMAC:       s.iface.HardwareAddr,
		DstMAC:       hwaddr,
		EthernetType: layers.EthernetTypeIPv4,
	}
	ip4 := layers.IPv4{
		SrcIP:    s.src,
		DstIP:    s.dst,
		Version:  4,
		TTL:      64,
		Protocol: layers.IPProtocolTCP,
	}
	tcp := layers.TCP{
		SrcPort: 54321,
		DstPort: 0, // will be incremented during the scan
		SYN:     true,
	}
	tcp.SetNetworkLayerForChecksum(&ip4)

	// Create the flow we expect returning packets to have, so we can check
	// against it and discard useless packets.
	ipFlow := gopacket.NewFlow(layers.EndpointIPv4, s.dst, s.src)
	start := time.Now()
	for {
		// Send one packet per loop iteration until we've sent packets
		// to all of ports [1, 65535].
		if tcp.DstPort < 65535 {
			start = time.Now()
			tcp.DstPort++
			if err := s.send(&eth, &ip4, &tcp); err != nil {
				log.Printf("error sending to port %v: %v", tcp.DstPort, err)
			}
		}
		// Time out 5 seconds after the last packet we sent.
		if time.Since(start) > time.Second*5 {
			log.Printf("timed out for %v, assuming we've seen all we can", s.dst)
			return nil
		}

		// Read in the next packet.
		data, _, err := s.handle.ReadPacketData()
		if err == pcap.NextErrorTimeoutExpired {
			continue
		} else if err != nil {
			log.Printf("error reading packet: %v", err)
			continue
		}

		// Parse the packet.  We'd use DecodingLayerParser here if we
		// wanted to be really fast.
		packet := gopacket.NewPacket(data, layers.LayerTypeEthernet, gopacket.NoCopy)

		// Find the packets we care about, and print out logging
		// information about them.  All others are ignored.
		if net := packet.NetworkLayer(); net == nil {
			// log.Printf("packet has no network layer")
		} else if net.NetworkFlow() != ipFlow {
			// log.Printf("packet does not match our ip src/dst")
		} else if tcpLayer := packet.Layer(layers.LayerTypeTCP); tcpLayer == nil {
			// log.Printf("packet has not tcp layer")
		} else if tcp, ok := tcpLayer.(*layers.TCP); !ok {
			// We panic here because this is guaranteed to never
			// happen.
			panic("tcp layer is not tcp layer :-/")
		} else if tcp.DstPort != 54321 {
			// log.Printf("dst port %v does not match", tcp.DstPort)
		} else if tcp.RST {
			log.Printf("  port %v closed", tcp.SrcPort)
		} else if tcp.SYN && tcp.ACK {
			log.Printf("  port %v open", tcp.SrcPort)
		} else {
			// log.Printf("ignoring useless packet")
		}
	}
}
Beispiel #7
0
// AssembleWithTimestamp reassembles the given TCP packet into its appropriate
// stream.
//
// The timestamp passed in must be the timestamp the packet was seen.
// For packets read off the wire, time.Now() should be fine.  For packets read
// from PCAP files, CaptureInfo.Timestamp should be passed in.  This timestamp
// will affect which streams are flushed by a call to FlushOlderThan.
//
// Each Assemble call results in, in order:
//
//    zero or one calls to StreamFactory.New, creating a stream
//    zero or one calls to Reassembled on a single stream
//    zero or one calls to ReassemblyComplete on the same stream
func (a *Assembler) AssembleWithTimestamp(netFlow gopacket.Flow, t *layers.TCP, timestamp time.Time) {
	// Ignore empty TCP packets
	if !t.SYN && !t.FIN && !t.RST && len(t.LayerPayload()) == 0 {
		if *debugLog {
			log.Println("ignoring useless packet")
		}
		return
	}

	a.ret = a.ret[:0]
	key := key{netFlow, t.TransportFlow()}
	var conn *connection
	// This for loop handles a race condition where a connection will close, lock
	// the connection pool, and remove itself, but before it locked the connection
	// pool it's returned to another Assemble statement.  This should loop 0-1
	// times for the VAST majority of cases.
	for {
		conn = a.connPool.getConnection(
			key, !t.SYN && len(t.LayerPayload()) == 0, timestamp)
		if conn == nil {
			if *debugLog {
				log.Printf("%v got empty packet on otherwise empty connection", key)
			}
			return
		}
		conn.mu.Lock()
		if !conn.closed {
			break
		}
		conn.mu.Unlock()
	}
	if conn.lastSeen.Before(timestamp) {
		conn.lastSeen = timestamp
	}
	seq, bytes := Sequence(t.Seq), t.Payload
	if conn.nextSeq == invalidSequence {
		if t.SYN {
			if *debugLog {
				log.Printf("%v saw first SYN packet, returning immediately, seq=%v", key, seq)
			}
			a.ret = append(a.ret, Reassembly{
				Bytes: bytes,
				Skip:  0,
				Start: true,
				Seen:  timestamp,
			})
			conn.nextSeq = seq.Add(len(bytes) + 1)
		} else {
			if *debugLog {
				log.Printf("%v waiting for start, storing into connection", key)
			}
			a.insertIntoConn(t, conn, timestamp)
		}
	} else if diff := conn.nextSeq.Difference(seq); diff > 0 {
		if *debugLog {
			log.Printf("%v gap in sequence numbers (%v, %v) diff %v, storing into connection", key, conn.nextSeq, seq, diff)
		}
		a.insertIntoConn(t, conn, timestamp)
	} else {
		bytes, conn.nextSeq = byteSpan(conn.nextSeq, seq, bytes)
		if *debugLog {
			log.Printf("%v found contiguous data (%v, %v), returning immediately", key, seq, conn.nextSeq)
		}
		a.ret = append(a.ret, Reassembly{
			Bytes: bytes,
			Skip:  0,
			End:   t.RST || t.FIN,
			Seen:  timestamp,
		})
	}
	if len(a.ret) > 0 {
		a.sendToConnection(conn)
	}
	conn.mu.Unlock()
}