Beispiel #1
0
// isHTTPFuncOrMethodOnClient checks whether the given call expression is on
// either a function of the net/http package or a method of http.Client that
// returns (*http.Response, error).
func isHTTPFuncOrMethodOnClient(f *File, expr *ast.CallExpr) bool {
	fun, _ := expr.Fun.(*ast.SelectorExpr)
	sig, _ := f.pkg.types[fun].Type.(*types.Signature)
	if sig == nil {
		return false // the call is not on of the form x.f()
	}

	res := sig.Results()
	if res.Len() != 2 {
		return false // the function called does not return two values.
	}
	if ptr, ok := res.At(0).Type().(*types.Pointer); !ok || !types.Identical(ptr.Elem(), httpResponseType) {
		return false // the first return type is not *http.Response.
	}
	if !types.Identical(res.At(1).Type().Underlying(), errorType) {
		return false // the second return type is not error
	}

	typ := f.pkg.types[fun.X].Type
	if typ == nil {
		id, ok := fun.X.(*ast.Ident)
		return ok && id.Name == "http" // function in net/http package.
	}

	if types.Identical(typ, httpClientType) {
		return true // method on http.Client.
	}
	ptr, ok := typ.(*types.Pointer)
	return ok && types.Identical(ptr.Elem(), httpClientType) // method on *http.Client.
}
Beispiel #2
0
// containsAllIdsOf reports whether the method identifiers of T are a
// superset of those in U.  If U belongs to an interface type, the
// result is equal to types.Assignable(T, U), but is cheaper to compute.
//
// TODO(gri): make this a method of *types.MethodSet.
//
func containsAllIdsOf(T, U *types.MethodSet) bool {
	t, tlen := 0, T.Len()
	u, ulen := 0, U.Len()
	for t < tlen && u < ulen {
		tMeth := T.At(t).Obj()
		uMeth := U.At(u).Obj()
		tId := tMeth.Id()
		uId := uMeth.Id()
		if tId > uId {
			// U has a method T lacks: fail.
			return false
		}
		if tId < uId {
			// T has a method U lacks: ignore it.
			t++
			continue
		}
		// U and T both have a method of this Id.  Check types.
		if !types.Identical(tMeth.Type(), uMeth.Type()) {
			return false // type mismatch
		}
		u++
		t++
	}
	return u == ulen
}
Beispiel #3
0
func visitTypeAssert(inst *ssa.TypeAssert, fr *frame) {
	if iface, ok := inst.AssertedType.(*types.Interface); ok {
		if meth, _ := types.MissingMethod(inst.X.Type(), iface, true); meth == nil { // No missing methods
			switch vd, kind := fr.get(inst.X); kind {
			case Struct, LocalStruct, Array, LocalArray, Chan:
				fr.tuples[inst] = make(Tuples, 2)
				fr.tuples[inst][0] = vd
				fmt.Fprintf(os.Stderr, "   %s = %s.(type assert %s) iface\n", reg(inst), reg(inst.X), inst.AssertedType.String())
				fmt.Fprintf(os.Stderr, "    ^ defined as %s\n", vd.String())

			default:
				fmt.Fprintf(os.Stderr, "   %s = %s.(type assert %s)\n", red(reg(inst)), reg(inst.X), inst.AssertedType.String())
				fmt.Fprintf(os.Stderr, "    ^ untracked/unknown\n")
			}
			return
		}
	} else { // Concrete type
		if types.Identical(inst.AssertedType.Underlying(), inst.X.Type().Underlying()) {
			switch vd, kind := fr.get(inst.X); kind {
			case Struct, LocalStruct, Array, LocalArray, Chan:
				fr.tuples[inst] = make(Tuples, 2)
				fr.tuples[inst][0] = vd
				fmt.Fprintf(os.Stderr, "   %s = %s.(type assert %s) concrete\n", reg(inst), reg(inst.X), inst.AssertedType.String())
				fmt.Fprintf(os.Stderr, "    ^ defined as %s\n", vd.String())

			default:
				fmt.Fprintf(os.Stderr, "   %s = %s.(type assert %s)\n", red(reg(inst)), reg(inst.X), inst.AssertedType.String())
				fmt.Fprintf(os.Stderr, "    ^ untracked/unknown\n")
			}
			return
		}
	}
	fmt.Fprintf(os.Stderr, "   # %s = %s.(%s) impossible type assertion\n", red(reg(inst)), reg(inst.X), inst.AssertedType.String())
}
Beispiel #4
0
// typeAssert checks whether dynamic type of itf is instr.AssertedType.
// It returns the extracted value on success, and panics on failure,
// unless instr.CommaOk, in which case it always returns a "value,ok" tuple.
//
func typeAssert(i *interpreter, instr *ssa.TypeAssert, itf iface) value {
	var v value
	err := ""
	if itf.t == nil {
		err = fmt.Sprintf("interface conversion: interface is nil, not %s", instr.AssertedType)

	} else if idst, ok := instr.AssertedType.Underlying().(*types.Interface); ok {
		v = itf
		err = checkInterface(i, idst, itf)

	} else if types.Identical(itf.t, instr.AssertedType) {
		v = itf.v // extract value

	} else {
		err = fmt.Sprintf("interface conversion: interface is %s, not %s", itf.t, instr.AssertedType)
	}

	if err != "" {
		if !instr.CommaOk {
			panic(err)
		}
		return tuple{zero(instr.AssertedType), false}
	}
	if instr.CommaOk {
		return tuple{v, true}
	}
	return v
}
Beispiel #5
0
func (c *funcContext) translateImplicitConversion(expr ast.Expr, desiredType types.Type) *expression {
	if desiredType == nil {
		return c.translateExpr(expr)
	}

	exprType := c.p.TypeOf(expr)
	if types.Identical(exprType, desiredType) {
		return c.translateExpr(expr)
	}

	basicExprType, isBasicExpr := exprType.Underlying().(*types.Basic)
	if isBasicExpr && basicExprType.Kind() == types.UntypedNil {
		return c.formatExpr("%e", c.zeroValue(desiredType))
	}

	switch desiredType.Underlying().(type) {
	case *types.Slice:
		return c.formatExpr("$subslice(new %1s(%2e.$array), %2e.$offset, %2e.$offset + %2e.$length)", c.typeName(desiredType), expr)

	case *types.Interface:
		if typesutil.IsJsObject(exprType) {
			// wrap JS object into js.Object struct when converting to interface
			return c.formatExpr("new $jsObjectPtr(%e)", expr)
		}
		if isWrapped(exprType) {
			return c.formatExpr("new %s(%e)", c.typeName(exprType), expr)
		}
		if _, isStruct := exprType.Underlying().(*types.Struct); isStruct {
			return c.formatExpr("new %1e.constructor.elem(%1e)", expr)
		}
	}

	return c.translateExpr(expr)
}
Beispiel #6
0
// Set sets the map entry for key to val,
// and returns the previous entry, if any.
func (m *Map) Set(key types.Type, value interface{}) (prev interface{}) {
	if m.table != nil {
		hash := m.hasher.Hash(key)
		bucket := m.table[hash]
		var hole *entry
		for i, e := range bucket {
			if e.key == nil {
				hole = &bucket[i]
			} else if types.Identical(key, e.key) {
				prev = e.value
				bucket[i].value = value
				return
			}
		}

		if hole != nil {
			*hole = entry{key, value} // overwrite deleted entry
		} else {
			m.table[hash] = append(bucket, entry{key, value})
		}
	} else {
		if m.hasher.memo == nil {
			m.hasher = MakeHasher()
		}
		hash := m.hasher.Hash(key)
		m.table = map[uint32][]entry{hash: {entry{key, value}}}
	}

	m.length++
	return
}
Beispiel #7
0
// computeTrackBits sets a.track to the necessary 'track' bits for the pointer queries.
func (a *analysis) computeTrackBits() {
	var queryTypes []types.Type
	for v := range a.config.Queries {
		queryTypes = append(queryTypes, v.Type())
	}
	for v := range a.config.IndirectQueries {
		queryTypes = append(queryTypes, mustDeref(v.Type()))
	}
	for _, t := range queryTypes {
		switch t.Underlying().(type) {
		case *types.Chan:
			a.track |= trackChan
		case *types.Map:
			a.track |= trackMap
		case *types.Pointer:
			a.track |= trackPtr
		case *types.Slice:
			a.track |= trackSlice
		case *types.Interface:
			a.track = trackAll
			return
		}
		if rVObj := a.reflectValueObj; rVObj != nil && types.Identical(t, rVObj.Type()) {
			a.track = trackAll
			return
		}
	}
}
Beispiel #8
0
func checkEqualButNotIdentical(t *testing.T, x, y types.Type, comment string) {
	if !types.Identical(x, y) {
		t.Errorf("%s: not equal: %s, %s", comment, x, y)
	}
	if x == y {
		t.Errorf("%s: identical: %v, %v", comment, x, y)
	}
}
Beispiel #9
0
// At returns the map entry for the given key.
// The result is nil if the entry is not present.
//
func (m *Map) At(key types.Type) interface{} {
	if m != nil && m.table != nil {
		for _, e := range m.table[m.hasher.Hash(key)] {
			if e.key != nil && types.Identical(key, e.key) {
				return e.value
			}
		}
	}
	return nil
}
Beispiel #10
0
// purgeChanOps removes channels that are of different type as queryOp, i.e.
// channel we are looking for.
func purgeChanOps(ops []ChanOp, ch ssa.Value) []ChanOp {
	i := 0
	for _, op := range ops {
		if types.Identical(op.Value.Type().Underlying().(*types.Chan).Elem(), ch.Type().Underlying().(*types.Chan).Elem()) {
			ops[i] = op
			i++
		}
	}
	ops = ops[:i]
	return ops
}
Beispiel #11
0
// FindTests returns the Test, Benchmark, and Example functions
// (as defined by "go test") defined in the specified package,
// and its TestMain function, if any.
func FindTests(pkg *Package) (tests, benchmarks, examples []*Function, main *Function) {
	prog := pkg.Prog

	// The first two of these may be nil: if the program doesn't import "testing",
	// it can't contain any tests, but it may yet contain Examples.
	var testSig *types.Signature                              // func(*testing.T)
	var benchmarkSig *types.Signature                         // func(*testing.B)
	var exampleSig = types.NewSignature(nil, nil, nil, false) // func()

	// Obtain the types from the parameters of testing.MainStart.
	if testingPkg := prog.ImportedPackage("testing"); testingPkg != nil {
		mainStart := testingPkg.Func("MainStart")
		params := mainStart.Signature.Params()
		testSig = funcField(params.At(1).Type())
		benchmarkSig = funcField(params.At(2).Type())

		// Does the package define this function?
		//   func TestMain(*testing.M)
		if f := pkg.Func("TestMain"); f != nil {
			sig := f.Type().(*types.Signature)
			starM := mainStart.Signature.Results().At(0).Type() // *testing.M
			if sig.Results().Len() == 0 &&
				sig.Params().Len() == 1 &&
				types.Identical(sig.Params().At(0).Type(), starM) {
				main = f
			}
		}
	}

	// TODO(adonovan): use a stable order, e.g. lexical.
	for _, mem := range pkg.Members {
		if f, ok := mem.(*Function); ok &&
			ast.IsExported(f.Name()) &&
			strings.HasSuffix(prog.Fset.Position(f.Pos()).Filename, "_test.go") {

			switch {
			case testSig != nil && isTestSig(f, "Test", testSig):
				tests = append(tests, f)
			case benchmarkSig != nil && isTestSig(f, "Benchmark", benchmarkSig):
				benchmarks = append(benchmarks, f)
			case isTestSig(f, "Example", exampleSig):
				examples = append(examples, f)
			default:
				continue
			}
		}
	}
	return
}
Beispiel #12
0
func (c *funcContext) translateResults(results []ast.Expr) string {
	tuple := c.sig.Results()
	switch tuple.Len() {
	case 0:
		return ""
	case 1:
		result := c.zeroValue(tuple.At(0).Type())
		if results != nil {
			result = results[0]
		}
		v := c.translateImplicitConversion(result, tuple.At(0).Type())
		c.delayedOutput = nil
		return " " + v.String()
	default:
		if len(results) == 1 {
			resultTuple := c.p.TypeOf(results[0]).(*types.Tuple)

			if resultTuple.Len() != tuple.Len() {
				panic("invalid tuple return assignment")
			}

			resultExpr := c.translateExpr(results[0]).String()

			if types.Identical(resultTuple, tuple) {
				return " " + resultExpr
			}

			tmpVar := c.newVariable("_returncast")
			c.Printf("%s = %s;", tmpVar, resultExpr)

			// Not all the return types matched, map everything out for implicit casting
			results = make([]ast.Expr, resultTuple.Len())
			for i := range results {
				results[i] = c.newIdent(fmt.Sprintf("%s[%d]", tmpVar, i), resultTuple.At(i).Type())
			}
		}
		values := make([]string, tuple.Len())
		for i := range values {
			result := c.zeroValue(tuple.At(i).Type())
			if results != nil {
				result = results[i]
			}
			values[i] = c.translateImplicitConversion(result, tuple.At(i).Type()).String()
		}
		c.delayedOutput = nil
		return " [" + strings.Join(values, ", ") + "]"
	}
}
Beispiel #13
0
// Delete removes the entry with the given key, if any.
// It returns true if the entry was found.
//
func (m *Map) Delete(key types.Type) bool {
	if m != nil && m.table != nil {
		hash := m.hasher.Hash(key)
		bucket := m.table[hash]
		for i, e := range bucket {
			if e.key != nil && types.Identical(key, e.key) {
				// We can't compact the bucket as it
				// would disturb iterators.
				bucket[i] = entry{}
				m.length--
				return true
			}
		}
	}
	return false
}
Beispiel #14
0
// isErrorMethodCall reports whether the call is of a method with signature
//	func Error() string
// where "string" is the universe's string type. We know the method is called "Error".
func (f *File) isErrorMethodCall(call *ast.CallExpr) bool {
	typ := f.pkg.types[call].Type
	if typ != nil {
		// We know it's called "Error", so just check the function signature
		// (stringerType has exactly one method, String).
		if stringerType != nil && stringerType.NumMethods() == 1 {
			return types.Identical(f.pkg.types[call.Fun].Type, stringerType.Method(0).Type())
		}
	}
	// Without types, we can still check by hand.
	// Is it a selector expression? Otherwise it's a function call, not a method call.
	sel, ok := call.Fun.(*ast.SelectorExpr)
	if !ok {
		return false
	}
	// The package is type-checked, so if there are no arguments, we're done.
	if len(call.Args) > 0 {
		return false
	}
	// Check the type of the method declaration
	typ = f.pkg.types[sel].Type
	if typ == nil {
		return false
	}
	// The type must be a signature, but be sure for safety.
	sig, ok := typ.(*types.Signature)
	if !ok {
		return false
	}
	// There must be a receiver for it to be a method call. Otherwise it is
	// a function, not something that satisfies the error interface.
	if sig.Recv() == nil {
		return false
	}
	// There must be no arguments. Already verified by type checking, but be thorough.
	if sig.Params().Len() > 0 {
		return false
	}
	// Finally the real questions.
	// There must be one result.
	if sig.Results().Len() != 1 {
		return false
	}
	// It must have return type "string" from the universe.
	return sig.Results().At(0).Type() == types.Typ[types.String]
}
Beispiel #15
0
// assign records pairs of distinct types that are related by
// assignability, where the left-hand side is an interface and both
// sides have methods.
//
// It should be called for all assignability checks, type assertions,
// explicit conversions and comparisons between two types, unless the
// types are uninteresting (e.g. lhs is a concrete type, or the empty
// interface; rhs has no methods).
//
func (f *Finder) assign(lhs, rhs types.Type) {
	if types.Identical(lhs, rhs) {
		return
	}
	if !isInterface(lhs) {
		return
	}

	if f.msetcache.MethodSet(lhs).Len() == 0 {
		return
	}
	if f.msetcache.MethodSet(rhs).Len() == 0 {
		return
	}
	// record the pair
	f.Result[Constraint{lhs, rhs}] = true
}
Beispiel #16
0
func checkFuncValue(t *testing.T, prog *ssa.Program, obj *types.Func) {
	fn := prog.FuncValue(obj)
	// fmt.Printf("FuncValue(%s) = %s\n", obj, fn) // debugging
	if fn == nil {
		if obj.Name() != "interfaceMethod" {
			t.Errorf("FuncValue(%s) == nil", obj)
		}
		return
	}
	if fnobj := fn.Object(); fnobj != obj {
		t.Errorf("FuncValue(%s).Object() == %s; value was %s",
			obj, fnobj, fn.Name())
		return
	}
	if !types.Identical(fn.Type(), obj.Type()) {
		t.Errorf("FuncValue(%s).Type() == %s", obj, fn.Type())
		return
	}
}
Beispiel #17
0
func checkConstValue(t *testing.T, prog *ssa.Program, obj *types.Const) {
	c := prog.ConstValue(obj)
	// fmt.Printf("ConstValue(%s) = %s\n", obj, c) // debugging
	if c == nil {
		t.Errorf("ConstValue(%s) == nil", obj)
		return
	}
	if !types.Identical(c.Type(), obj.Type()) {
		t.Errorf("ConstValue(%s).Type() == %s", obj, c.Type())
		return
	}
	if obj.Name() != "nil" {
		if !exact.Compare(c.Value, token.EQL, obj.Val()) {
			t.Errorf("ConstValue(%s).Value (%s) != %s",
				obj, c.Value, obj.Val())
			return
		}
	}
}
Beispiel #18
0
// isValuePreserving returns true if a conversion from ut_src to
// ut_dst is value-preserving, i.e. just a change of type.
// Precondition: neither argument is a named type.
//
func isValuePreserving(ut_src, ut_dst types.Type) bool {
	// Identical underlying types?
	if types.Identical(ut_dst, ut_src) {
		return true
	}

	switch ut_dst.(type) {
	case *types.Chan:
		// Conversion between channel types?
		_, ok := ut_src.(*types.Chan)
		return ok

	case *types.Pointer:
		// Conversion between pointers with identical base types?
		_, ok := ut_src.(*types.Pointer)
		return ok
	}
	return false
}
Beispiel #19
0
// checkShadowing checks whether the identifier shadows an identifier in an outer scope.
func checkShadowing(f *File, ident *ast.Ident) {
	if ident.Name == "_" {
		// Can't shadow the blank identifier.
		return
	}
	obj := f.pkg.defs[ident]
	if obj == nil {
		return
	}
	// obj.Parent.Parent is the surrounding scope. If we can find another declaration
	// starting from there, we have a shadowed identifier.
	_, shadowed := obj.Parent().Parent().LookupParent(obj.Name(), obj.Pos())
	if shadowed == nil {
		return
	}
	// Don't complain if it's shadowing a universe-declared identifier; that's fine.
	if shadowed.Parent() == types.Universe {
		return
	}
	if *strictShadowing {
		// The shadowed identifier must appear before this one to be an instance of shadowing.
		if shadowed.Pos() > ident.Pos() {
			return
		}
	} else {
		// Don't complain if the span of validity of the shadowed identifier doesn't include
		// the shadowing identifier.
		span, ok := f.pkg.spans[shadowed]
		if !ok {
			f.Badf(ident.Pos(), "internal error: no range for %q", ident.Name)
			return
		}
		if !span.contains(ident.Pos()) {
			return
		}
	}
	// Don't complain if the types differ: that implies the programmer really wants two different things.
	if types.Identical(obj.Type(), shadowed.Type()) {
		f.Badf(ident.Pos(), "declaration of %q shadows declaration at %s", obj.Name(), f.loc(shadowed.Pos()))
	}
}
Beispiel #20
0
// findVisibleErrs returns a mapping from each package-level variable of type "error" to nil.
func findVisibleErrs(prog *ssa.Program, qpos *queryPos) map[*ssa.Global]ssa.Value {
	globals := make(map[*ssa.Global]ssa.Value)
	for _, pkg := range prog.AllPackages() {
		for _, mem := range pkg.Members {
			gbl, ok := mem.(*ssa.Global)
			if !ok {
				continue
			}
			gbltype := gbl.Type()
			// globals are always pointers
			if !types.Identical(deref(gbltype), builtinErrorType) {
				continue
			}
			if !isAccessibleFrom(gbl.Object(), qpos.info.Pkg) {
				continue
			}
			globals[gbl] = nil
		}
	}
	return globals
}
Beispiel #21
0
// emitCompare emits to f code compute the boolean result of
// comparison comparison 'x op y'.
//
func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value {
	xt := x.Type().Underlying()
	yt := y.Type().Underlying()

	// Special case to optimise a tagless SwitchStmt so that
	// these are equivalent
	//   switch { case e: ...}
	//   switch true { case e: ... }
	//   if e==true { ... }
	// even in the case when e's type is an interface.
	// TODO(adonovan): opt: generalise to x==true, false!=y, etc.
	if x == vTrue && op == token.EQL {
		if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
			return y
		}
	}

	if types.Identical(xt, yt) {
		// no conversion necessary
	} else if _, ok := xt.(*types.Interface); ok {
		y = emitConv(f, y, x.Type())
	} else if _, ok := yt.(*types.Interface); ok {
		x = emitConv(f, x, y.Type())
	} else if _, ok := x.(*Const); ok {
		x = emitConv(f, x, y.Type())
	} else if _, ok := y.(*Const); ok {
		y = emitConv(f, y, x.Type())
	} else {
		// other cases, e.g. channels.  No-op.
	}

	v := &BinOp{
		Op: op,
		X:  x,
		Y:  y,
	}
	v.setPos(pos)
	v.setType(tBool)
	return f.emit(v)
}
Beispiel #22
0
func checkVarValue(t *testing.T, prog *ssa.Program, pkg *ssa.Package, ref []ast.Node, obj *types.Var, expKind string, wantAddr bool) {
	// The prefix of all assertions messages.
	prefix := fmt.Sprintf("VarValue(%s @ L%d)",
		obj, prog.Fset.Position(ref[0].Pos()).Line)

	v, gotAddr := prog.VarValue(obj, pkg, ref)

	// Kind is the concrete type of the ssa Value.
	gotKind := "nil"
	if v != nil {
		gotKind = fmt.Sprintf("%T", v)[len("*ssa."):]
	}

	// fmt.Printf("%s = %v (kind %q; expect %q) wantAddr=%t gotAddr=%t\n", prefix, v, gotKind, expKind, wantAddr, gotAddr) // debugging

	// Check the kinds match.
	// "nil" indicates expected failure (e.g. optimized away).
	if expKind != gotKind {
		t.Errorf("%s concrete type == %s, want %s", prefix, gotKind, expKind)
	}

	// Check the types match.
	// If wantAddr, the expected type is the object's address.
	if v != nil {
		expType := obj.Type()
		if wantAddr {
			expType = types.NewPointer(expType)
			if !gotAddr {
				t.Errorf("%s: got value, want address", prefix)
			}
		} else if gotAddr {
			t.Errorf("%s: got address, want value", prefix)
		}
		if !types.Identical(v.Type(), expType) {
			t.Errorf("%s.Type() == %s, want %s", prefix, v.Type(), expType)
		}
	}
}
Beispiel #23
0
func checkUnusedResult(f *File, n ast.Node) {
	call, ok := unparen(n.(*ast.ExprStmt).X).(*ast.CallExpr)
	if !ok {
		return // not a call statement
	}
	fun := unparen(call.Fun)

	if f.pkg.types[fun].IsType() {
		return // a conversion, not a call
	}

	selector, ok := fun.(*ast.SelectorExpr)
	if !ok {
		return // neither a method call nor a qualified ident
	}

	sel, ok := f.pkg.selectors[selector]
	if ok && sel.Kind() == types.MethodVal {
		// method (e.g. foo.String())
		obj := sel.Obj().(*types.Func)
		sig := sel.Type().(*types.Signature)
		if types.Identical(sig, sigNoArgsStringResult) {
			if unusedStringMethods[obj.Name()] {
				f.Badf(call.Lparen, "result of (%s).%s call not used",
					sig.Recv().Type(), obj.Name())
			}
		}
	} else if !ok {
		// package-qualified function (e.g. fmt.Errorf)
		obj, _ := f.pkg.uses[selector.Sel]
		if obj, ok := obj.(*types.Func); ok {
			qname := obj.Pkg().Path() + "." + obj.Name()
			if unusedFuncs[qname] {
				f.Badf(call.Lparen, "result of %v call not used", qname)
			}
		}
	}
}
Beispiel #24
0
// matchArgTypeInternal is the internal version of matchArgType. It carries a map
// remembering what types are in progress so we don't recur when faced with recursive
// types or mutually recursive types.
func (f *File) matchArgTypeInternal(t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool {
	// %v, %T accept any argument type.
	if t == anyType {
		return true
	}
	if typ == nil {
		// external call
		typ = f.pkg.types[arg].Type
		if typ == nil {
			return true // probably a type check problem
		}
	}
	// If the type implements fmt.Formatter, we have nothing to check.
	if f.isFormatter(typ) {
		return true
	}
	// If we can use a string, might arg (dynamically) implement the Stringer or Error interface?
	if t&argString != 0 {
		if types.AssertableTo(errorType, typ) || stringerType != nil && types.AssertableTo(stringerType, typ) {
			return true
		}
	}

	typ = typ.Underlying()
	if inProgress[typ] {
		// We're already looking at this type. The call that started it will take care of it.
		return true
	}
	inProgress[typ] = true

	switch typ := typ.(type) {
	case *types.Signature:
		return t&argPointer != 0

	case *types.Map:
		// Recur: map[int]int matches %d.
		return t&argPointer != 0 ||
			(f.matchArgTypeInternal(t, typ.Key(), arg, inProgress) && f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress))

	case *types.Chan:
		return t&argPointer != 0

	case *types.Array:
		// Same as slice.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		// Recur: []int matches %d.
		return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem().Underlying(), arg, inProgress)

	case *types.Slice:
		// Same as array.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		// Recur: []int matches %d. But watch out for
		//	type T []T
		// If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below.
		return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress)

	case *types.Pointer:
		// Ugly, but dealing with an edge case: a known pointer to an invalid type,
		// probably something from a failed import.
		if typ.Elem().String() == "invalid type" {
			if *verbose {
				f.Warnf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", f.gofmt(arg))
			}
			return true // special case
		}
		// If it's actually a pointer with %p, it prints as one.
		if t == argPointer {
			return true
		}
		// If it's pointer to struct, that's equivalent in our analysis to whether we can print the struct.
		if str, ok := typ.Elem().Underlying().(*types.Struct); ok {
			return f.matchStructArgType(t, str, arg, inProgress)
		}
		// The rest can print with %p as pointers, or as integers with %x etc.
		return t&(argInt|argPointer) != 0

	case *types.Struct:
		return f.matchStructArgType(t, typ, arg, inProgress)

	case *types.Interface:
		// There's little we can do.
		// Whether any particular verb is valid depends on the argument.
		// The user may have reasonable prior knowledge of the contents of the interface.
		return true

	case *types.Basic:
		switch typ.Kind() {
		case types.UntypedBool,
			types.Bool:
			return t&argBool != 0

		case types.UntypedInt,
			types.Int,
			types.Int8,
			types.Int16,
			types.Int32,
			types.Int64,
			types.Uint,
			types.Uint8,
			types.Uint16,
			types.Uint32,
			types.Uint64,
			types.Uintptr:
			return t&argInt != 0

		case types.UntypedFloat,
			types.Float32,
			types.Float64:
			return t&argFloat != 0

		case types.UntypedComplex,
			types.Complex64,
			types.Complex128:
			return t&argComplex != 0

		case types.UntypedString,
			types.String:
			return t&argString != 0

		case types.UnsafePointer:
			return t&(argPointer|argInt) != 0

		case types.UntypedRune:
			return t&(argInt|argRune) != 0

		case types.UntypedNil:
			return t&argPointer != 0 // TODO?

		case types.Invalid:
			if *verbose {
				f.Warnf(arg.Pos(), "printf argument %v has invalid or unknown type", f.gofmt(arg))
			}
			return true // Probably a type check problem.
		}
		panic("unreachable")
	}

	return false
}
Beispiel #25
0
func (c *funcContext) translateConversion(expr ast.Expr, desiredType types.Type) *expression {
	exprType := c.p.TypeOf(expr)
	if types.Identical(exprType, desiredType) {
		return c.translateExpr(expr)
	}

	if c.p.Pkg.Path() == "reflect" {
		if call, isCall := expr.(*ast.CallExpr); isCall && types.Identical(c.p.TypeOf(call.Fun), types.Typ[types.UnsafePointer]) {
			if ptr, isPtr := desiredType.(*types.Pointer); isPtr {
				if named, isNamed := ptr.Elem().(*types.Named); isNamed {
					switch named.Obj().Name() {
					case "arrayType", "chanType", "funcType", "interfaceType", "mapType", "ptrType", "sliceType", "structType":
						return c.formatExpr("%e.kindType", call.Args[0]) // unsafe conversion
					default:
						return c.translateExpr(expr)
					}
				}
			}
		}
	}

	switch t := desiredType.Underlying().(type) {
	case *types.Basic:
		switch {
		case isInteger(t):
			basicExprType := exprType.Underlying().(*types.Basic)
			switch {
			case is64Bit(t):
				if !is64Bit(basicExprType) {
					if basicExprType.Kind() == types.Uintptr { // this might be an Object returned from reflect.Value.Pointer()
						return c.formatExpr("new %1s(0, %2e.constructor === Number ? %2e : 1)", c.typeName(desiredType), expr)
					}
					return c.formatExpr("new %s(0, %e)", c.typeName(desiredType), expr)
				}
				return c.formatExpr("new %1s(%2h, %2l)", c.typeName(desiredType), expr)
			case is64Bit(basicExprType):
				if !isUnsigned(t) && !isUnsigned(basicExprType) {
					return c.fixNumber(c.formatParenExpr("%1l + ((%1h >> 31) * 4294967296)", expr), t)
				}
				return c.fixNumber(c.formatExpr("%s.$low", c.translateExpr(expr)), t)
			case isFloat(basicExprType):
				return c.formatParenExpr("%e >> 0", expr)
			case types.Identical(exprType, types.Typ[types.UnsafePointer]):
				return c.translateExpr(expr)
			default:
				return c.fixNumber(c.translateExpr(expr), t)
			}
		case isFloat(t):
			if t.Kind() == types.Float32 && exprType.Underlying().(*types.Basic).Kind() == types.Float64 {
				return c.formatExpr("$fround(%e)", expr)
			}
			return c.formatExpr("%f", expr)
		case isComplex(t):
			return c.formatExpr("new %1s(%2r, %2i)", c.typeName(desiredType), expr)
		case isString(t):
			value := c.translateExpr(expr)
			switch et := exprType.Underlying().(type) {
			case *types.Basic:
				if is64Bit(et) {
					value = c.formatExpr("%s.$low", value)
				}
				if isNumeric(et) {
					return c.formatExpr("$encodeRune(%s)", value)
				}
				return value
			case *types.Slice:
				if types.Identical(et.Elem().Underlying(), types.Typ[types.Rune]) {
					return c.formatExpr("$runesToString(%s)", value)
				}
				return c.formatExpr("$bytesToString(%s)", value)
			default:
				panic(fmt.Sprintf("Unhandled conversion: %v\n", et))
			}
		case t.Kind() == types.UnsafePointer:
			if unary, isUnary := expr.(*ast.UnaryExpr); isUnary && unary.Op == token.AND {
				if indexExpr, isIndexExpr := unary.X.(*ast.IndexExpr); isIndexExpr {
					return c.formatExpr("$sliceToArray(%s)", c.translateConversionToSlice(indexExpr.X, types.NewSlice(types.Typ[types.Uint8])))
				}
				if ident, isIdent := unary.X.(*ast.Ident); isIdent && ident.Name == "_zero" {
					return c.formatExpr("new Uint8Array(0)")
				}
			}
			if ptr, isPtr := c.p.TypeOf(expr).(*types.Pointer); c.p.Pkg.Path() == "syscall" && isPtr {
				if s, isStruct := ptr.Elem().Underlying().(*types.Struct); isStruct {
					array := c.newVariable("_array")
					target := c.newVariable("_struct")
					c.Printf("%s = new Uint8Array(%d);", array, sizes32.Sizeof(s))
					c.Delayed(func() {
						c.Printf("%s = %s, %s;", target, c.translateExpr(expr), c.loadStruct(array, target, s))
					})
					return c.formatExpr("%s", array)
				}
			}
			if call, ok := expr.(*ast.CallExpr); ok {
				if id, ok := call.Fun.(*ast.Ident); ok && id.Name == "new" {
					return c.formatExpr("new Uint8Array(%d)", int(sizes32.Sizeof(c.p.TypeOf(call.Args[0]))))
				}
			}
		}

	case *types.Slice:
		switch et := exprType.Underlying().(type) {
		case *types.Basic:
			if isString(et) {
				if types.Identical(t.Elem().Underlying(), types.Typ[types.Rune]) {
					return c.formatExpr("new %s($stringToRunes(%e))", c.typeName(desiredType), expr)
				}
				return c.formatExpr("new %s($stringToBytes(%e))", c.typeName(desiredType), expr)
			}
		case *types.Array, *types.Pointer:
			return c.formatExpr("new %s(%e)", c.typeName(desiredType), expr)
		}

	case *types.Pointer:
		switch u := t.Elem().Underlying().(type) {
		case *types.Array:
			return c.translateExpr(expr)
		case *types.Struct:
			if c.p.Pkg.Path() == "syscall" && types.Identical(exprType, types.Typ[types.UnsafePointer]) {
				array := c.newVariable("_array")
				target := c.newVariable("_struct")
				return c.formatExpr("(%s = %e, %s = %e, %s, %s)", array, expr, target, c.zeroValue(t.Elem()), c.loadStruct(array, target, u), target)
			}
			return c.formatExpr("$pointerOfStructConversion(%e, %s)", expr, c.typeName(t))
		}

		if !types.Identical(exprType, types.Typ[types.UnsafePointer]) {
			exprTypeElem := exprType.Underlying().(*types.Pointer).Elem()
			ptrVar := c.newVariable("_ptr")
			getterConv := c.translateConversion(c.setType(&ast.StarExpr{X: c.newIdent(ptrVar, exprType)}, exprTypeElem), t.Elem())
			setterConv := c.translateConversion(c.newIdent("$v", t.Elem()), exprTypeElem)
			return c.formatExpr("(%1s = %2e, new %3s(function() { return %4s; }, function($v) { %1s.$set(%5s); }, %1s.$target))", ptrVar, expr, c.typeName(desiredType), getterConv, setterConv)
		}

	case *types.Interface:
		if types.Identical(exprType, types.Typ[types.UnsafePointer]) {
			return c.translateExpr(expr)
		}
	}

	return c.translateImplicitConversionWithCloning(expr, desiredType)
}
Beispiel #26
0
func (c *funcContext) translateBuiltin(name string, sig *types.Signature, args []ast.Expr, ellipsis bool) *expression {
	switch name {
	case "new":
		t := sig.Results().At(0).Type().(*types.Pointer)
		if c.p.Pkg.Path() == "syscall" && types.Identical(t.Elem().Underlying(), types.Typ[types.Uintptr]) {
			return c.formatExpr("new Uint8Array(8)")
		}
		switch t.Elem().Underlying().(type) {
		case *types.Struct, *types.Array:
			return c.formatExpr("%e", c.zeroValue(t.Elem()))
		default:
			return c.formatExpr("$newDataPointer(%e, %s)", c.zeroValue(t.Elem()), c.typeName(t))
		}
	case "make":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Slice:
			t := c.typeName(c.p.TypeOf(args[0]))
			if len(args) == 3 {
				return c.formatExpr("$makeSlice(%s, %f, %f)", t, args[1], args[2])
			}
			return c.formatExpr("$makeSlice(%s, %f)", t, args[1])
		case *types.Map:
			if len(args) == 2 && c.p.Types[args[1]].Value == nil {
				return c.formatExpr(`((%1f < 0 || %1f > 2147483647) ? $throwRuntimeError("makemap: size out of range") : {})`, args[1])
			}
			return c.formatExpr("{}")
		case *types.Chan:
			length := "0"
			if len(args) == 2 {
				length = c.formatExpr("%f", args[1]).String()
			}
			return c.formatExpr("new $Chan(%s, %s)", c.typeName(c.p.TypeOf(args[0]).Underlying().(*types.Chan).Elem()), length)
		default:
			panic(fmt.Sprintf("Unhandled make type: %T\n", argType))
		}
	case "len":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Basic:
			return c.formatExpr("%e.length", args[0])
		case *types.Slice:
			return c.formatExpr("%e.$length", args[0])
		case *types.Pointer:
			return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len())
		case *types.Map:
			return c.formatExpr("$keys(%e).length", args[0])
		case *types.Chan:
			return c.formatExpr("%e.$buffer.length", args[0])
		// length of array is constant
		default:
			panic(fmt.Sprintf("Unhandled len type: %T\n", argType))
		}
	case "cap":
		switch argType := c.p.TypeOf(args[0]).Underlying().(type) {
		case *types.Slice, *types.Chan:
			return c.formatExpr("%e.$capacity", args[0])
		case *types.Pointer:
			return c.formatExpr("(%e, %d)", args[0], argType.Elem().(*types.Array).Len())
		// capacity of array is constant
		default:
			panic(fmt.Sprintf("Unhandled cap type: %T\n", argType))
		}
	case "panic":
		return c.formatExpr("$panic(%s)", c.translateImplicitConversion(args[0], types.NewInterface(nil, nil)))
	case "append":
		if ellipsis || len(args) == 1 {
			argStr := c.translateArgs(sig, args, ellipsis, false)
			return c.formatExpr("$appendSlice(%s, %s)", argStr[0], argStr[1])
		}
		sliceType := sig.Results().At(0).Type().Underlying().(*types.Slice)
		return c.formatExpr("$append(%e, %s)", args[0], strings.Join(c.translateExprSlice(args[1:], sliceType.Elem()), ", "))
	case "delete":
		keyType := c.p.TypeOf(args[0]).Underlying().(*types.Map).Key()
		return c.formatExpr(`delete %e[%s.keyFor(%s)]`, args[0], c.typeName(keyType), c.translateImplicitConversion(args[1], keyType))
	case "copy":
		if basic, isBasic := c.p.TypeOf(args[1]).Underlying().(*types.Basic); isBasic && isString(basic) {
			return c.formatExpr("$copyString(%e, %e)", args[0], args[1])
		}
		return c.formatExpr("$copySlice(%e, %e)", args[0], args[1])
	case "print", "println":
		return c.formatExpr("console.log(%s)", strings.Join(c.translateExprSlice(args, nil), ", "))
	case "complex":
		argStr := c.translateArgs(sig, args, ellipsis, false)
		return c.formatExpr("new %s(%s, %s)", c.typeName(sig.Results().At(0).Type()), argStr[0], argStr[1])
	case "real":
		return c.formatExpr("%e.$real", args[0])
	case "imag":
		return c.formatExpr("%e.$imag", args[0])
	case "recover":
		return c.formatExpr("$recover()")
	case "close":
		return c.formatExpr(`$close(%e)`, args[0])
	default:
		panic(fmt.Sprintf("Unhandled builtin: %s\n", name))
	}
}
Beispiel #27
0
func (c *funcContext) translateExpr(expr ast.Expr) *expression {
	exprType := c.p.TypeOf(expr)
	if value := c.p.Types[expr].Value; value != nil {
		basic := exprType.Underlying().(*types.Basic)
		switch {
		case isBoolean(basic):
			return c.formatExpr("%s", strconv.FormatBool(constant.BoolVal(value)))
		case isInteger(basic):
			if is64Bit(basic) {
				if basic.Kind() == types.Int64 {
					d, ok := constant.Int64Val(constant.ToInt(value))
					if !ok {
						panic("could not get exact uint")
					}
					return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatInt(d>>32, 10), strconv.FormatUint(uint64(d)&(1<<32-1), 10))
				}
				d, ok := constant.Uint64Val(constant.ToInt(value))
				if !ok {
					panic("could not get exact uint")
				}
				return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatUint(d>>32, 10), strconv.FormatUint(d&(1<<32-1), 10))
			}
			d, ok := constant.Int64Val(constant.ToInt(value))
			if !ok {
				panic("could not get exact int")
			}
			return c.formatExpr("%s", strconv.FormatInt(d, 10))
		case isFloat(basic):
			f, _ := constant.Float64Val(value)
			return c.formatExpr("%s", strconv.FormatFloat(f, 'g', -1, 64))
		case isComplex(basic):
			r, _ := constant.Float64Val(constant.Real(value))
			i, _ := constant.Float64Val(constant.Imag(value))
			if basic.Kind() == types.UntypedComplex {
				exprType = types.Typ[types.Complex128]
			}
			return c.formatExpr("new %s(%s, %s)", c.typeName(exprType), strconv.FormatFloat(r, 'g', -1, 64), strconv.FormatFloat(i, 'g', -1, 64))
		case isString(basic):
			return c.formatExpr("%s", encodeString(constant.StringVal(value)))
		default:
			panic("Unhandled constant type: " + basic.String())
		}
	}

	var obj types.Object
	switch e := expr.(type) {
	case *ast.SelectorExpr:
		obj = c.p.Uses[e.Sel]
	case *ast.Ident:
		obj = c.p.Defs[e]
		if obj == nil {
			obj = c.p.Uses[e]
		}
	}

	if obj != nil && typesutil.IsJsPackage(obj.Pkg()) {
		switch obj.Name() {
		case "Global":
			return c.formatExpr("$global")
		case "Module":
			return c.formatExpr("$module")
		case "Undefined":
			return c.formatExpr("undefined")
		}
	}

	switch e := expr.(type) {
	case *ast.CompositeLit:
		if ptrType, isPointer := exprType.(*types.Pointer); isPointer {
			exprType = ptrType.Elem()
		}

		collectIndexedElements := func(elementType types.Type) []string {
			var elements []string
			i := 0
			zero := c.translateExpr(c.zeroValue(elementType)).String()
			for _, element := range e.Elts {
				if kve, isKve := element.(*ast.KeyValueExpr); isKve {
					key, ok := constant.Int64Val(constant.ToInt(c.p.Types[kve.Key].Value))
					if !ok {
						panic("could not get exact int")
					}
					i = int(key)
					element = kve.Value
				}
				for len(elements) <= i {
					elements = append(elements, zero)
				}
				elements[i] = c.translateImplicitConversionWithCloning(element, elementType).String()
				i++
			}
			return elements
		}

		switch t := exprType.Underlying().(type) {
		case *types.Array:
			elements := collectIndexedElements(t.Elem())
			if len(elements) == 0 {
				return c.formatExpr("%s.zero()", c.typeName(t))
			}
			zero := c.translateExpr(c.zeroValue(t.Elem())).String()
			for len(elements) < int(t.Len()) {
				elements = append(elements, zero)
			}
			return c.formatExpr(`$toNativeArray(%s, [%s])`, typeKind(t.Elem()), strings.Join(elements, ", "))
		case *types.Slice:
			return c.formatExpr("new %s([%s])", c.typeName(exprType), strings.Join(collectIndexedElements(t.Elem()), ", "))
		case *types.Map:
			entries := make([]string, len(e.Elts))
			for i, element := range e.Elts {
				kve := element.(*ast.KeyValueExpr)
				entries[i] = fmt.Sprintf("{ k: %s, v: %s }", c.translateImplicitConversionWithCloning(kve.Key, t.Key()), c.translateImplicitConversionWithCloning(kve.Value, t.Elem()))
			}
			return c.formatExpr("$makeMap(%s.keyFor, [%s])", c.typeName(t.Key()), strings.Join(entries, ", "))
		case *types.Struct:
			elements := make([]string, t.NumFields())
			isKeyValue := true
			if len(e.Elts) != 0 {
				_, isKeyValue = e.Elts[0].(*ast.KeyValueExpr)
			}
			if !isKeyValue {
				for i, element := range e.Elts {
					elements[i] = c.translateImplicitConversionWithCloning(element, t.Field(i).Type()).String()
				}
			}
			if isKeyValue {
				for i := range elements {
					elements[i] = c.translateExpr(c.zeroValue(t.Field(i).Type())).String()
				}
				for _, element := range e.Elts {
					kve := element.(*ast.KeyValueExpr)
					for j := range elements {
						if kve.Key.(*ast.Ident).Name == t.Field(j).Name() {
							elements[j] = c.translateImplicitConversionWithCloning(kve.Value, t.Field(j).Type()).String()
							break
						}
					}
				}
			}
			return c.formatExpr("new %s.ptr(%s)", c.typeName(exprType), strings.Join(elements, ", "))
		default:
			panic(fmt.Sprintf("Unhandled CompositeLit type: %T\n", t))
		}

	case *ast.FuncLit:
		_, fun := translateFunction(e.Type, nil, e.Body, c, exprType.(*types.Signature), c.p.FuncLitInfos[e], "")
		if len(c.p.escapingVars) != 0 {
			names := make([]string, 0, len(c.p.escapingVars))
			for obj := range c.p.escapingVars {
				names = append(names, c.p.objectNames[obj])
			}
			sort.Strings(names)
			list := strings.Join(names, ", ")
			return c.formatExpr("(function(%s) { return %s; })(%s)", list, fun, list)
		}
		return c.formatExpr("(%s)", fun)

	case *ast.UnaryExpr:
		t := c.p.TypeOf(e.X)
		switch e.Op {
		case token.AND:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("%e.object", e.X)
			}

			switch t.Underlying().(type) {
			case *types.Struct, *types.Array:
				return c.translateExpr(e.X)
			}

			switch x := astutil.RemoveParens(e.X).(type) {
			case *ast.CompositeLit:
				return c.formatExpr("$newDataPointer(%e, %s)", x, c.typeName(c.p.TypeOf(e)))
			case *ast.Ident:
				obj := c.p.Uses[x].(*types.Var)
				if c.p.escapingVars[obj] {
					return c.formatExpr("(%1s.$ptr || (%1s.$ptr = new %2s(function() { return this.$target[0]; }, function($v) { this.$target[0] = $v; }, %1s)))", c.p.objectNames[obj], c.typeName(exprType))
				}
				return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
			case *ast.SelectorExpr:
				sel, ok := c.p.SelectionOf(x)
				if !ok {
					// qualified identifier
					obj := c.p.Uses[x.Sel].(*types.Var)
					return c.formatExpr(`(%1s || (%1s = new %2s(function() { return %3s; }, function($v) { %4s })))`, c.varPtrName(obj), c.typeName(exprType), c.objectName(obj), c.translateAssign(x, c.newIdent("$v", exprType), false))
				}
				newSel := &ast.SelectorExpr{X: c.newIdent("this.$target", c.p.TypeOf(x.X)), Sel: x.Sel}
				c.setType(newSel, exprType)
				c.p.additionalSelections[newSel] = sel
				return c.formatExpr("(%1e.$ptr_%2s || (%1e.$ptr_%2s = new %3s(function() { return %4e; }, function($v) { %5s }, %1e)))", x.X, x.Sel.Name, c.typeName(exprType), newSel, c.translateAssign(newSel, c.newIdent("$v", exprType), false))
			case *ast.IndexExpr:
				if _, ok := c.p.TypeOf(x.X).Underlying().(*types.Slice); ok {
					return c.formatExpr("$indexPtr(%1e.$array, %1e.$offset + %2e, %3s)", x.X, x.Index, c.typeName(exprType))
				}
				return c.formatExpr("$indexPtr(%e, %e, %s)", x.X, x.Index, c.typeName(exprType))
			case *ast.StarExpr:
				return c.translateExpr(x.X)
			default:
				panic(fmt.Sprintf("Unhandled: %T\n", x))
			}

		case token.ARROW:
			call := &ast.CallExpr{
				Fun:  c.newIdent("$recv", types.NewSignature(nil, types.NewTuple(types.NewVar(0, nil, "", t)), types.NewTuple(types.NewVar(0, nil, "", exprType), types.NewVar(0, nil, "", types.Typ[types.Bool])), false)),
				Args: []ast.Expr{e.X},
			}
			c.Blocking[call] = true
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr("%e", call)
			}
			return c.formatExpr("%e[0]", call)
		}

		basic := t.Underlying().(*types.Basic)
		switch e.Op {
		case token.ADD:
			return c.translateExpr(e.X)
		case token.SUB:
			switch {
			case is64Bit(basic):
				return c.formatExpr("new %1s(-%2h, -%2l)", c.typeName(t), e.X)
			case isComplex(basic):
				return c.formatExpr("new %1s(-%2r, -%2i)", c.typeName(t), e.X)
			case isUnsigned(basic):
				return c.fixNumber(c.formatExpr("-%e", e.X), basic)
			default:
				return c.formatExpr("-%e", e.X)
			}
		case token.XOR:
			if is64Bit(basic) {
				return c.formatExpr("new %1s(~%2h, ~%2l >>> 0)", c.typeName(t), e.X)
			}
			return c.fixNumber(c.formatExpr("~%e", e.X), basic)
		case token.NOT:
			return c.formatExpr("!%e", e.X)
		default:
			panic(e.Op)
		}

	case *ast.BinaryExpr:
		if e.Op == token.NEQ {
			return c.formatExpr("!(%s)", c.translateExpr(&ast.BinaryExpr{
				X:  e.X,
				Op: token.EQL,
				Y:  e.Y,
			}))
		}

		t := c.p.TypeOf(e.X)
		t2 := c.p.TypeOf(e.Y)
		_, isInterface := t2.Underlying().(*types.Interface)
		if isInterface || types.Identical(t, types.Typ[types.UntypedNil]) {
			t = t2
		}

		if basic, isBasic := t.Underlying().(*types.Basic); isBasic && isNumeric(basic) {
			if is64Bit(basic) {
				switch e.Op {
				case token.MUL:
					return c.formatExpr("$mul64(%e, %e)", e.X, e.Y)
				case token.QUO:
					return c.formatExpr("$div64(%e, %e, false)", e.X, e.Y)
				case token.REM:
					return c.formatExpr("$div64(%e, %e, true)", e.X, e.Y)
				case token.SHL:
					return c.formatExpr("$shiftLeft64(%e, %f)", e.X, e.Y)
				case token.SHR:
					return c.formatExpr("$shiftRight%s(%e, %f)", toJavaScriptType(basic), e.X, e.Y)
				case token.EQL:
					return c.formatExpr("(%1h === %2h && %1l === %2l)", e.X, e.Y)
				case token.LSS:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l < %2l))", e.X, e.Y)
				case token.LEQ:
					return c.formatExpr("(%1h < %2h || (%1h === %2h && %1l <= %2l))", e.X, e.Y)
				case token.GTR:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l > %2l))", e.X, e.Y)
				case token.GEQ:
					return c.formatExpr("(%1h > %2h || (%1h === %2h && %1l >= %2l))", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1h %4t %2h, %1l %4t %2l)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND, token.OR, token.XOR:
					return c.formatExpr("new %3s(%1h %4t %2h, (%1l %4t %2l) >>> 0)", e.X, e.Y, c.typeName(t), e.Op)
				case token.AND_NOT:
					return c.formatExpr("new %3s(%1h & ~%2h, (%1l & ~%2l) >>> 0)", e.X, e.Y, c.typeName(t))
				default:
					panic(e.Op)
				}
			}

			if isComplex(basic) {
				switch e.Op {
				case token.EQL:
					return c.formatExpr("(%1r === %2r && %1i === %2i)", e.X, e.Y)
				case token.ADD, token.SUB:
					return c.formatExpr("new %3s(%1r %4t %2r, %1i %4t %2i)", e.X, e.Y, c.typeName(t), e.Op)
				case token.MUL:
					return c.formatExpr("new %3s(%1r * %2r - %1i * %2i, %1r * %2i + %1i * %2r)", e.X, e.Y, c.typeName(t))
				case token.QUO:
					return c.formatExpr("$divComplex(%e, %e)", e.X, e.Y)
				default:
					panic(e.Op)
				}
			}

			switch e.Op {
			case token.EQL:
				return c.formatParenExpr("%e === %e", e.X, e.Y)
			case token.LSS, token.LEQ, token.GTR, token.GEQ:
				return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.ADD, token.SUB:
				return c.fixNumber(c.formatExpr("%e %t %e", e.X, e.Op, e.Y), basic)
			case token.MUL:
				switch basic.Kind() {
				case types.Int32, types.Int:
					return c.formatParenExpr("$imul(%e, %e)", e.X, e.Y)
				case types.Uint32, types.Uintptr:
					return c.formatParenExpr("$imul(%e, %e) >>> 0", e.X, e.Y)
				}
				return c.fixNumber(c.formatExpr("%e * %e", e.X, e.Y), basic)
			case token.QUO:
				if isInteger(basic) {
					// cut off decimals
					shift := ">>"
					if isUnsigned(basic) {
						shift = ">>>"
					}
					return c.formatExpr(`(%1s = %2e / %3e, (%1s === %1s && %1s !== 1/0 && %1s !== -1/0) ? %1s %4s 0 : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_q"), e.X, e.Y, shift)
				}
				if basic.Kind() == types.Float32 {
					return c.fixNumber(c.formatExpr("%e / %e", e.X, e.Y), basic)
				}
				return c.formatExpr("%e / %e", e.X, e.Y)
			case token.REM:
				return c.formatExpr(`(%1s = %2e %% %3e, %1s === %1s ? %1s : $throwRuntimeError("integer divide by zero"))`, c.newVariable("_r"), e.X, e.Y)
			case token.SHL, token.SHR:
				op := e.Op.String()
				if e.Op == token.SHR && isUnsigned(basic) {
					op = ">>>"
				}
				if v := c.p.Types[e.Y].Value; v != nil {
					i, _ := constant.Uint64Val(constant.ToInt(v))
					if i >= 32 {
						return c.formatExpr("0")
					}
					return c.fixNumber(c.formatExpr("%e %s %s", e.X, op, strconv.FormatUint(i, 10)), basic)
				}
				if e.Op == token.SHR && !isUnsigned(basic) {
					return c.fixNumber(c.formatParenExpr("%e >> $min(%f, 31)", e.X, e.Y), basic)
				}
				y := c.newVariable("y")
				return c.fixNumber(c.formatExpr("(%s = %f, %s < 32 ? (%e %s %s) : 0)", y, e.Y, y, e.X, op, y), basic)
			case token.AND, token.OR:
				if isUnsigned(basic) {
					return c.formatParenExpr("(%e %t %e) >>> 0", e.X, e.Op, e.Y)
				}
				return c.formatParenExpr("%e %t %e", e.X, e.Op, e.Y)
			case token.AND_NOT:
				return c.fixNumber(c.formatParenExpr("%e & ~%e", e.X, e.Y), basic)
			case token.XOR:
				return c.fixNumber(c.formatParenExpr("%e ^ %e", e.X, e.Y), basic)
			default:
				panic(e.Op)
			}
		}

		switch e.Op {
		case token.ADD, token.LSS, token.LEQ, token.GTR, token.GEQ:
			return c.formatExpr("%e %t %e", e.X, e.Op, e.Y)
		case token.LAND:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (!(%s)) { %s = false; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e && %e", e.X, e.Y)
		case token.LOR:
			if c.Blocking[e.Y] {
				skipCase := c.caseCounter
				c.caseCounter++
				resultVar := c.newVariable("_v")
				c.Printf("if (%s) { %s = true; $s = %d; continue s; }", c.translateExpr(e.X), resultVar, skipCase)
				c.Printf("%s = %s; case %d:", resultVar, c.translateExpr(e.Y), skipCase)
				return c.formatExpr("%s", resultVar)
			}
			return c.formatExpr("%e || %e", e.X, e.Y)
		case token.EQL:
			switch u := t.Underlying().(type) {
			case *types.Array, *types.Struct:
				return c.formatExpr("$equal(%e, %e, %s)", e.X, e.Y, c.typeName(t))
			case *types.Interface:
				return c.formatExpr("$interfaceIsEqual(%s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
			case *types.Pointer:
				if _, ok := u.Elem().Underlying().(*types.Array); ok {
					return c.formatExpr("$equal(%s, %s, %s)", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t), c.typeName(u.Elem()))
				}
			case *types.Basic:
				if isBoolean(u) {
					if b, ok := analysis.BoolValue(e.X, c.p.Info.Info); ok && b {
						return c.translateExpr(e.Y)
					}
					if b, ok := analysis.BoolValue(e.Y, c.p.Info.Info); ok && b {
						return c.translateExpr(e.X)
					}
				}
			}
			return c.formatExpr("%s === %s", c.translateImplicitConversion(e.X, t), c.translateImplicitConversion(e.Y, t))
		default:
			panic(e.Op)
		}

	case *ast.ParenExpr:
		return c.formatParenExpr("%e", e.X)

	case *ast.IndexExpr:
		switch t := c.p.TypeOf(e.X).Underlying().(type) {
		case *types.Array, *types.Pointer:
			pattern := rangeCheck("%1e[%2f]", c.p.Types[e.Index].Value != nil, true)
			if _, ok := t.(*types.Pointer); ok { // check pointer for nix (attribute getter causes a panic)
				pattern = `(%1e.nilCheck, ` + pattern + `)`
			}
			return c.formatExpr(pattern, e.X, e.Index)
		case *types.Slice:
			return c.formatExpr(rangeCheck("%1e.$array[%1e.$offset + %2f]", c.p.Types[e.Index].Value != nil, false), e.X, e.Index)
		case *types.Map:
			if typesutil.IsJsObject(c.p.TypeOf(e.Index)) {
				c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: e.Index.Pos(), Msg: "cannot use js.Object as map key"})
			}
			key := fmt.Sprintf("%s.keyFor(%s)", c.typeName(t.Key()), c.translateImplicitConversion(e.Index, t.Key()))
			if _, isTuple := exprType.(*types.Tuple); isTuple {
				return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? [%1s.v, true] : [%4e, false])`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
			}
			return c.formatExpr(`(%1s = %2e[%3s], %1s !== undefined ? %1s.v : %4e)`, c.newVariable("_entry"), e.X, key, c.zeroValue(t.Elem()))
		case *types.Basic:
			return c.formatExpr("%e.charCodeAt(%f)", e.X, e.Index)
		default:
			panic(fmt.Sprintf("Unhandled IndexExpr: %T\n", t))
		}

	case *ast.SliceExpr:
		if b, isBasic := c.p.TypeOf(e.X).Underlying().(*types.Basic); isBasic && isString(b) {
			switch {
			case e.Low == nil && e.High == nil:
				return c.translateExpr(e.X)
			case e.Low == nil:
				return c.formatExpr("%e.substring(0, %f)", e.X, e.High)
			case e.High == nil:
				return c.formatExpr("%e.substring(%f)", e.X, e.Low)
			default:
				return c.formatExpr("%e.substring(%f, %f)", e.X, e.Low, e.High)
			}
		}
		slice := c.translateConversionToSlice(e.X, exprType)
		switch {
		case e.Low == nil && e.High == nil:
			return c.formatExpr("%s", slice)
		case e.Low == nil:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, 0, %f, %f)", slice, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, 0, %f)", slice, e.High)
		case e.High == nil:
			return c.formatExpr("$subslice(%s, %f)", slice, e.Low)
		default:
			if e.Max != nil {
				return c.formatExpr("$subslice(%s, %f, %f, %f)", slice, e.Low, e.High, e.Max)
			}
			return c.formatExpr("$subslice(%s, %f, %f)", slice, e.Low, e.High)
		}

	case *ast.SelectorExpr:
		sel, ok := c.p.SelectionOf(e)
		if !ok {
			// qualified identifier
			return c.formatExpr("%s", c.objectName(obj))
		}

		switch sel.Kind() {
		case types.FieldVal:
			fields, jsTag := c.translateSelection(sel, e.Pos())
			if jsTag != "" {
				if _, ok := sel.Type().(*types.Signature); ok {
					return c.formatExpr("$internalize(%1e.%2s.%3s, %4s, %1e.%2s)", e.X, strings.Join(fields, "."), jsTag, c.typeName(sel.Type()))
				}
				return c.internalize(c.formatExpr("%e.%s.%s", e.X, strings.Join(fields, "."), jsTag), sel.Type())
			}
			return c.formatExpr("%e.%s", e.X, strings.Join(fields, "."))
		case types.MethodVal:
			return c.formatExpr(`$methodVal(%s, "%s")`, c.makeReceiver(e), sel.Obj().(*types.Func).Name())
		case types.MethodExpr:
			if !sel.Obj().Exported() {
				c.p.dependencies[sel.Obj()] = true
			}
			if _, ok := sel.Recv().Underlying().(*types.Interface); ok {
				return c.formatExpr(`$ifaceMethodExpr("%s")`, sel.Obj().(*types.Func).Name())
			}
			return c.formatExpr(`$methodExpr(%s, "%s")`, c.typeName(sel.Recv()), sel.Obj().(*types.Func).Name())
		default:
			panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
		}

	case *ast.CallExpr:
		plainFun := astutil.RemoveParens(e.Fun)

		if astutil.IsTypeExpr(plainFun, c.p.Info.Info) {
			return c.formatExpr("%s", c.translateConversion(e.Args[0], c.p.TypeOf(plainFun)))
		}

		sig := c.p.TypeOf(plainFun).Underlying().(*types.Signature)

		switch f := plainFun.(type) {
		case *ast.Ident:
			obj := c.p.Uses[f]
			if o, ok := obj.(*types.Builtin); ok {
				return c.translateBuiltin(o.Name(), sig, e.Args, e.Ellipsis.IsValid())
			}
			if typesutil.IsJsPackage(obj.Pkg()) && obj.Name() == "InternalObject" {
				return c.translateExpr(e.Args[0])
			}
			return c.translateCall(e, sig, c.translateExpr(f))

		case *ast.SelectorExpr:
			sel, ok := c.p.SelectionOf(f)
			if !ok {
				// qualified identifier
				obj := c.p.Uses[f.Sel]
				if typesutil.IsJsPackage(obj.Pkg()) {
					switch obj.Name() {
					case "Debugger":
						return c.formatExpr("debugger")
					case "InternalObject":
						return c.translateExpr(e.Args[0])
					}
				}
				return c.translateCall(e, sig, c.translateExpr(f))
			}

			externalizeExpr := func(e ast.Expr) string {
				t := c.p.TypeOf(e)
				if types.Identical(t, types.Typ[types.UntypedNil]) {
					return "null"
				}
				return c.externalize(c.translateExpr(e).String(), t)
			}
			externalizeArgs := func(args []ast.Expr) string {
				s := make([]string, len(args))
				for i, arg := range args {
					s[i] = externalizeExpr(arg)
				}
				return strings.Join(s, ", ")
			}

			switch sel.Kind() {
			case types.MethodVal:
				recv := c.makeReceiver(f)
				declaredFuncRecv := sel.Obj().(*types.Func).Type().(*types.Signature).Recv().Type()
				if typesutil.IsJsObject(declaredFuncRecv) {
					globalRef := func(id string) string {
						if recv.String() == "$global" && id[0] == '$' && len(id) > 1 {
							return id
						}
						return recv.String() + "." + id
					}
					switch sel.Obj().Name() {
					case "Get":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s", globalRef(id))
						}
						return c.formatExpr("%s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Set":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							return c.formatExpr("%s = %s", globalRef(id), externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Delete":
						return c.formatExpr("delete %s[$externalize(%e, $String)]", recv, e.Args[0])
					case "Length":
						return c.formatExpr("$parseInt(%s.length)", recv)
					case "Index":
						return c.formatExpr("%s[%e]", recv, e.Args[0])
					case "SetIndex":
						return c.formatExpr("%s[%e] = %s", recv, e.Args[0], externalizeExpr(e.Args[1]))
					case "Call":
						if id, ok := c.identifierConstant(e.Args[0]); ok {
							if e.Ellipsis.IsValid() {
								objVar := c.newVariable("obj")
								return c.formatExpr("(%s = %s, %s.%s.apply(%s, %s))", objVar, recv, objVar, id, objVar, externalizeExpr(e.Args[1]))
							}
							return c.formatExpr("%s(%s)", globalRef(id), externalizeArgs(e.Args[1:]))
						}
						if e.Ellipsis.IsValid() {
							objVar := c.newVariable("obj")
							return c.formatExpr("(%s = %s, %s[$externalize(%e, $String)].apply(%s, %s))", objVar, recv, objVar, e.Args[0], objVar, externalizeExpr(e.Args[1]))
						}
						return c.formatExpr("%s[$externalize(%e, $String)](%s)", recv, e.Args[0], externalizeArgs(e.Args[1:]))
					case "Invoke":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("%s.apply(undefined, %s)", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("%s(%s)", recv, externalizeArgs(e.Args))
					case "New":
						if e.Ellipsis.IsValid() {
							return c.formatExpr("new ($global.Function.prototype.bind.apply(%s, [undefined].concat(%s)))", recv, externalizeExpr(e.Args[0]))
						}
						return c.formatExpr("new (%s)(%s)", recv, externalizeArgs(e.Args))
					case "Bool":
						return c.internalize(recv, types.Typ[types.Bool])
					case "String":
						return c.internalize(recv, types.Typ[types.String])
					case "Int":
						return c.internalize(recv, types.Typ[types.Int])
					case "Int64":
						return c.internalize(recv, types.Typ[types.Int64])
					case "Uint64":
						return c.internalize(recv, types.Typ[types.Uint64])
					case "Float":
						return c.internalize(recv, types.Typ[types.Float64])
					case "Interface":
						return c.internalize(recv, types.NewInterface(nil, nil))
					case "Unsafe":
						return recv
					default:
						panic("Invalid js package object: " + sel.Obj().Name())
					}
				}

				methodName := sel.Obj().Name()
				if reservedKeywords[methodName] {
					methodName += "$"
				}
				return c.translateCall(e, sig, c.formatExpr("%s.%s", recv, methodName))

			case types.FieldVal:
				fields, jsTag := c.translateSelection(sel, f.Pos())
				if jsTag != "" {
					call := c.formatExpr("%e.%s.%s(%s)", f.X, strings.Join(fields, "."), jsTag, externalizeArgs(e.Args))
					switch sig.Results().Len() {
					case 0:
						return call
					case 1:
						return c.internalize(call, sig.Results().At(0).Type())
					default:
						c.p.errList = append(c.p.errList, types.Error{Fset: c.p.fileSet, Pos: f.Pos(), Msg: "field with js tag can not have func type with multiple results"})
					}
				}
				return c.translateCall(e, sig, c.formatExpr("%e.%s", f.X, strings.Join(fields, ".")))

			case types.MethodExpr:
				return c.translateCall(e, sig, c.translateExpr(f))

			default:
				panic(fmt.Sprintf("unexpected sel.Kind(): %T", sel.Kind()))
			}
		default:
			return c.translateCall(e, sig, c.translateExpr(plainFun))
		}

	case *ast.StarExpr:
		if typesutil.IsJsObject(c.p.TypeOf(e.X)) {
			return c.formatExpr("new $jsObjectPtr(%e)", e.X)
		}
		if c1, isCall := e.X.(*ast.CallExpr); isCall && len(c1.Args) == 1 {
			if c2, isCall := c1.Args[0].(*ast.CallExpr); isCall && len(c2.Args) == 1 && types.Identical(c.p.TypeOf(c2.Fun), types.Typ[types.UnsafePointer]) {
				if unary, isUnary := c2.Args[0].(*ast.UnaryExpr); isUnary && unary.Op == token.AND {
					return c.translateExpr(unary.X) // unsafe conversion
				}
			}
		}
		switch exprType.Underlying().(type) {
		case *types.Struct, *types.Array:
			return c.translateExpr(e.X)
		}
		return c.formatExpr("%e.$get()", e.X)

	case *ast.TypeAssertExpr:
		if e.Type == nil {
			return c.translateExpr(e.X)
		}
		t := c.p.TypeOf(e.Type)
		if _, isTuple := exprType.(*types.Tuple); isTuple {
			return c.formatExpr("$assertType(%e, %s, true)", e.X, c.typeName(t))
		}
		return c.formatExpr("$assertType(%e, %s)", e.X, c.typeName(t))

	case *ast.Ident:
		if e.Name == "_" {
			panic("Tried to translate underscore identifier.")
		}
		switch o := obj.(type) {
		case *types.Var, *types.Const:
			return c.formatExpr("%s", c.objectName(o))
		case *types.Func:
			return c.formatExpr("%s", c.objectName(o))
		case *types.TypeName:
			return c.formatExpr("%s", c.typeName(o.Type()))
		case *types.Nil:
			if typesutil.IsJsObject(exprType) {
				return c.formatExpr("null")
			}
			switch t := exprType.Underlying().(type) {
			case *types.Basic:
				if t.Kind() != types.UnsafePointer {
					panic("unexpected basic type")
				}
				return c.formatExpr("0")
			case *types.Slice, *types.Pointer:
				return c.formatExpr("%s.nil", c.typeName(exprType))
			case *types.Chan:
				return c.formatExpr("$chanNil")
			case *types.Map:
				return c.formatExpr("false")
			case *types.Interface:
				return c.formatExpr("$ifaceNil")
			case *types.Signature:
				return c.formatExpr("$throwNilPointerError")
			default:
				panic(fmt.Sprintf("unexpected type: %T", t))
			}
		default:
			panic(fmt.Sprintf("Unhandled object: %T\n", o))
		}

	case *this:
		if isWrapped(c.p.TypeOf(e)) {
			return c.formatExpr("this.$val")
		}
		return c.formatExpr("this")

	case nil:
		return c.formatExpr("")

	default:
		panic(fmt.Sprintf("Unhandled expression: %T\n", e))

	}
}
Beispiel #28
0
// whicherrs takes an position to an error and tries to find all types, constants
// and global value which a given error can point to and which can be checked from the
// scope where the error lives.
// In short, it returns a list of things that can be checked against in order to handle
// an error properly.
//
// TODO(dmorsing): figure out if fields in errors like *os.PathError.Err
// can be queried recursively somehow.
func whicherrs(q *Query) error {
	lconf := loader.Config{Build: q.Build}

	if err := setPTAScope(&lconf, q.Scope); err != nil {
		return err
	}

	// Load/parse/type-check the program.
	lprog, err := lconf.Load()
	if err != nil {
		return err
	}
	q.Fset = lprog.Fset

	qpos, err := parseQueryPos(lprog, q.Pos, true) // needs exact pos
	if err != nil {
		return err
	}

	prog := ssautil.CreateProgram(lprog, ssa.GlobalDebug)

	ptaConfig, err := setupPTA(prog, lprog, q.PTALog, q.Reflection)
	if err != nil {
		return err
	}

	path, action := findInterestingNode(qpos.info, qpos.path)
	if action != actionExpr {
		return fmt.Errorf("whicherrs wants an expression; got %s",
			astutil.NodeDescription(qpos.path[0]))
	}
	var expr ast.Expr
	var obj types.Object
	switch n := path[0].(type) {
	case *ast.ValueSpec:
		// ambiguous ValueSpec containing multiple names
		return fmt.Errorf("multiple value specification")
	case *ast.Ident:
		obj = qpos.info.ObjectOf(n)
		expr = n
	case ast.Expr:
		expr = n
	default:
		return fmt.Errorf("unexpected AST for expr: %T", n)
	}

	typ := qpos.info.TypeOf(expr)
	if !types.Identical(typ, builtinErrorType) {
		return fmt.Errorf("selection is not an expression of type 'error'")
	}
	// Determine the ssa.Value for the expression.
	var value ssa.Value
	if obj != nil {
		// def/ref of func/var object
		value, _, err = ssaValueForIdent(prog, qpos.info, obj, path)
	} else {
		value, _, err = ssaValueForExpr(prog, qpos.info, path)
	}
	if err != nil {
		return err // e.g. trivially dead code
	}

	// Defer SSA construction till after errors are reported.
	prog.Build()

	globals := findVisibleErrs(prog, qpos)
	constants := findVisibleConsts(prog, qpos)

	res := &whicherrsResult{
		qpos:   qpos,
		errpos: expr.Pos(),
	}

	// TODO(adonovan): the following code is heavily duplicated
	// w.r.t.  "pointsto".  Refactor?

	// Find the instruction which initialized the
	// global error. If more than one instruction has stored to the global
	// remove the global from the set of values that we want to query.
	allFuncs := ssautil.AllFunctions(prog)
	for fn := range allFuncs {
		for _, b := range fn.Blocks {
			for _, instr := range b.Instrs {
				store, ok := instr.(*ssa.Store)
				if !ok {
					continue
				}
				gval, ok := store.Addr.(*ssa.Global)
				if !ok {
					continue
				}
				gbl, ok := globals[gval]
				if !ok {
					continue
				}
				// we already found a store to this global
				// The normal error define is just one store in the init
				// so we just remove this global from the set we want to query
				if gbl != nil {
					delete(globals, gval)
				}
				globals[gval] = store.Val
			}
		}
	}

	ptaConfig.AddQuery(value)
	for _, v := range globals {
		ptaConfig.AddQuery(v)
	}

	ptares := ptrAnalysis(ptaConfig)
	valueptr := ptares.Queries[value]
	for g, v := range globals {
		ptr, ok := ptares.Queries[v]
		if !ok {
			continue
		}
		if !ptr.MayAlias(valueptr) {
			continue
		}
		res.globals = append(res.globals, g)
	}
	pts := valueptr.PointsTo()
	dedup := make(map[*ssa.NamedConst]bool)
	for _, label := range pts.Labels() {
		// These values are either MakeInterfaces or reflect
		// generated interfaces. For the purposes of this
		// analysis, we don't care about reflect generated ones
		makeiface, ok := label.Value().(*ssa.MakeInterface)
		if !ok {
			continue
		}
		constval, ok := makeiface.X.(*ssa.Const)
		if !ok {
			continue
		}
		c := constants[*constval]
		if c != nil && !dedup[c] {
			dedup[c] = true
			res.consts = append(res.consts, c)
		}
	}
	concs := pts.DynamicTypes()
	concs.Iterate(func(conc types.Type, _ interface{}) {
		// go/types is a bit annoying here.
		// We want to find all the types that we can
		// typeswitch or assert to. This means finding out
		// if the type pointed to can be seen by us.
		//
		// For the purposes of this analysis, the type is always
		// either a Named type or a pointer to one.
		// There are cases where error can be implemented
		// by unnamed types, but in that case, we can't assert to
		// it, so we don't care about it for this analysis.
		var name *types.TypeName
		switch t := conc.(type) {
		case *types.Pointer:
			named, ok := t.Elem().(*types.Named)
			if !ok {
				return
			}
			name = named.Obj()
		case *types.Named:
			name = t.Obj()
		default:
			return
		}
		if !isAccessibleFrom(name, qpos.info.Pkg) {
			return
		}
		res.types = append(res.types, &errorType{conc, name})
	})
	sort.Sort(membersByPosAndString(res.globals))
	sort.Sort(membersByPosAndString(res.consts))
	sort.Sort(sorterrorType(res.types))

	q.result = res
	return nil
}
Beispiel #29
0
// Ensure that, in debug mode, we can determine the ssa.Value
// corresponding to every ast.Expr.
func TestValueForExpr(t *testing.T) {
	if runtime.GOOS == "android" {
		t.Skipf("no testdata dir on %s", runtime.GOOS)
	}

	conf := loader.Config{ParserMode: parser.ParseComments}
	f, err := conf.ParseFile("testdata/valueforexpr.go", nil)
	if err != nil {
		t.Error(err)
		return
	}
	conf.CreateFromFiles("main", f)

	iprog, err := conf.Load()
	if err != nil {
		t.Error(err)
		return
	}

	mainInfo := iprog.Created[0]

	prog := ssautil.CreateProgram(iprog, 0)
	mainPkg := prog.Package(mainInfo.Pkg)
	mainPkg.SetDebugMode(true)
	mainPkg.Build()

	if false {
		// debugging
		for _, mem := range mainPkg.Members {
			if fn, ok := mem.(*ssa.Function); ok {
				fn.WriteTo(os.Stderr)
			}
		}
	}

	// Find the actual AST node for each canonical position.
	parenExprByPos := make(map[token.Pos]*ast.ParenExpr)
	ast.Inspect(f, func(n ast.Node) bool {
		if n != nil {
			if e, ok := n.(*ast.ParenExpr); ok {
				parenExprByPos[e.Pos()] = e
			}
		}
		return true
	})

	// Find all annotations of form /*@kind*/.
	for _, c := range f.Comments {
		text := strings.TrimSpace(c.Text())
		if text == "" || text[0] != '@' {
			continue
		}
		text = text[1:]
		pos := c.End() + 1
		position := prog.Fset.Position(pos)
		var e ast.Expr
		if target := parenExprByPos[pos]; target == nil {
			t.Errorf("%s: annotation doesn't precede ParenExpr: %q", position, text)
			continue
		} else {
			e = target.X
		}

		path, _ := astutil.PathEnclosingInterval(f, pos, pos)
		if path == nil {
			t.Errorf("%s: can't find AST path from root to comment: %s", position, text)
			continue
		}

		fn := ssa.EnclosingFunction(mainPkg, path)
		if fn == nil {
			t.Errorf("%s: can't find enclosing function", position)
			continue
		}

		v, gotAddr := fn.ValueForExpr(e) // (may be nil)
		got := strings.TrimPrefix(fmt.Sprintf("%T", v), "*ssa.")
		if want := text; got != want {
			t.Errorf("%s: got value %q, want %q", position, got, want)
		}
		if v != nil {
			T := v.Type()
			if gotAddr {
				T = T.Underlying().(*types.Pointer).Elem() // deref
			}
			if !types.Identical(T, mainInfo.TypeOf(e)) {
				t.Errorf("%s: got type %s, want %s", position, mainInfo.TypeOf(e), T)
			}
		}
	}
}
Beispiel #30
0
// Implements displays the "implements" relation as it pertains to the
// selected type.
// If the selection is a method, 'implements' displays
// the corresponding methods of the types that would have been reported
// by an implements query on the receiver type.
//
func implements(q *Query) error {
	lconf := loader.Config{Build: q.Build}
	allowErrors(&lconf)

	qpkg, err := importQueryPackage(q.Pos, &lconf)
	if err != nil {
		return err
	}

	// Set the packages to search.
	if len(q.Scope) > 0 {
		// Inspect all packages in the analysis scope, if specified.
		if err := setPTAScope(&lconf, q.Scope); err != nil {
			return err
		}
	} else {
		// Otherwise inspect the forward and reverse
		// transitive closure of the selected package.
		// (In theory even this is incomplete.)
		_, rev, _ := importgraph.Build(q.Build)
		for path := range rev.Search(qpkg) {
			lconf.ImportWithTests(path)
		}

		// TODO(adonovan): for completeness, we should also
		// type-check and inspect function bodies in all
		// imported packages.  This would be expensive, but we
		// could optimize by skipping functions that do not
		// contain type declarations.  This would require
		// changing the loader's TypeCheckFuncBodies hook to
		// provide the []*ast.File.
	}

	// Load/parse/type-check the program.
	lprog, err := lconf.Load()
	if err != nil {
		return err
	}
	q.Fset = lprog.Fset

	qpos, err := parseQueryPos(lprog, q.Pos, false)
	if err != nil {
		return err
	}

	// Find the selected type.
	path, action := findInterestingNode(qpos.info, qpos.path)

	var method *types.Func
	var T types.Type // selected type (receiver if method != nil)

	switch action {
	case actionExpr:
		// method?
		if id, ok := path[0].(*ast.Ident); ok {
			if obj, ok := qpos.info.ObjectOf(id).(*types.Func); ok {
				recv := obj.Type().(*types.Signature).Recv()
				if recv == nil {
					return fmt.Errorf("this function is not a method")
				}
				method = obj
				T = recv.Type()
			}
		}
	case actionType:
		T = qpos.info.TypeOf(path[0].(ast.Expr))
	}
	if T == nil {
		return fmt.Errorf("no type or method here")
	}

	// Find all named types, even local types (which can have
	// methods via promotion) and the built-in "error".
	var allNamed []types.Type
	for _, info := range lprog.AllPackages {
		for _, obj := range info.Defs {
			if obj, ok := obj.(*types.TypeName); ok {
				allNamed = append(allNamed, obj.Type())
			}
		}
	}
	allNamed = append(allNamed, types.Universe.Lookup("error").Type())

	var msets typeutil.MethodSetCache

	// Test each named type.
	var to, from, fromPtr []types.Type
	for _, U := range allNamed {
		if isInterface(T) {
			if msets.MethodSet(T).Len() == 0 {
				continue // empty interface
			}
			if isInterface(U) {
				if msets.MethodSet(U).Len() == 0 {
					continue // empty interface
				}

				// T interface, U interface
				if !types.Identical(T, U) {
					if types.AssignableTo(U, T) {
						to = append(to, U)
					}
					if types.AssignableTo(T, U) {
						from = append(from, U)
					}
				}
			} else {
				// T interface, U concrete
				if types.AssignableTo(U, T) {
					to = append(to, U)
				} else if pU := types.NewPointer(U); types.AssignableTo(pU, T) {
					to = append(to, pU)
				}
			}
		} else if isInterface(U) {
			if msets.MethodSet(U).Len() == 0 {
				continue // empty interface
			}

			// T concrete, U interface
			if types.AssignableTo(T, U) {
				from = append(from, U)
			} else if pT := types.NewPointer(T); types.AssignableTo(pT, U) {
				fromPtr = append(fromPtr, U)
			}
		}
	}

	var pos interface{} = qpos
	if nt, ok := deref(T).(*types.Named); ok {
		pos = nt.Obj()
	}

	// Sort types (arbitrarily) to ensure test determinism.
	sort.Sort(typesByString(to))
	sort.Sort(typesByString(from))
	sort.Sort(typesByString(fromPtr))

	var toMethod, fromMethod, fromPtrMethod []*types.Selection // contain nils
	if method != nil {
		for _, t := range to {
			toMethod = append(toMethod,
				types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
		}
		for _, t := range from {
			fromMethod = append(fromMethod,
				types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
		}
		for _, t := range fromPtr {
			fromPtrMethod = append(fromPtrMethod,
				types.NewMethodSet(t).Lookup(method.Pkg(), method.Name()))
		}
	}

	q.result = &implementsResult{
		qpos, T, pos, to, from, fromPtr, method, toMethod, fromMethod, fromPtrMethod,
	}
	return nil
}