Beispiel #1
0
func GenerateFractal(im *image.Gray) {

	z := &cn{}

	c := &cn{}
	g := color.Gray{}
	for x := 0; x < 1000; x++ {
		for y := 0; y < 1000; y++ {

			c.r = (*width * float64(x) / float64(1000)) - *width/float64(2)
			c.i = (*height * float64(y) / float64(1000)) - *height/float64(2)
			c.r += *centerx
			c.i += *centery

			z.r = 0
			z.i = 0
			zrsqr := z.r * z.r
			zisqr := z.i * z.i

			var i uint8 = 0
			for zrsqr+zisqr < 4.0 && i < 255 {
				i++
				z.i = square(z.r+z.i) - zrsqr - zisqr
				z.i += c.i
				z.r = zrsqr - zisqr + c.r
				zrsqr = square(z.r)
				zisqr = square(z.i)
			}
			g.Y = i
			im.SetGray(x, y, g)

		}
	}
}
Beispiel #2
0
func drawRect(img *image.Gray, c color.Gray, xPos, yPos, width, height float64) {
	for h := 0.0; h < height; h += 1.0 {
		for w := 0.0; w < width; w += 1.0 {
			img.SetGray(int(xPos+w), int(yPos+h), c)
		}
	}
}
Beispiel #3
0
// Transforms gray input image color depth to the palette defined in p
// The algorithm simply assigns the nearest palette color to each pixel,
// without distributing error in any way, so expect color banding
func ditheringAverage(img *image.Gray, p *color.Palette) {
	size := img.Bounds()
	for y := size.Min.Y; y < size.Max.Y; y++ {
		for x := size.Min.X; x < size.Max.X; x++ {
			c1 := img.GrayAt(x, y)
			c2 := p.Convert(c1).(color.Gray)
			img.SetGray(x, y, c2)
		}
	}
}
Beispiel #4
0
func drawRect(img *image.Gray, r image.Rectangle, c color.Gray) {
	// Draw top and bottom lines
	for x := r.Min.X - 1; x <= r.Max.X; x++ {
		img.SetGray(x, r.Min.Y-1, c)
		img.SetGray(x, r.Max.Y+1, c)
	}

	// Draw side lines
	for y := r.Min.Y - 1; y <= r.Max.Y; y++ {
		img.SetGray(r.Min.X-1, y, c)
		img.SetGray(r.Max.X+1, y, c)
	}
}
Beispiel #5
0
func draw_line(start_x, start_y, end_x, end_y int, col color.Gray, img *image.Gray) {
	// Bresenham's
	var cx int = start_x
	var cy int = start_y

	var dx int = end_x - cx
	var dy int = end_y - cy
	if dx < 0 {
		dx = 0 - dx
	}
	if dy < 0 {
		dy = 0 - dy
	}

	var sx int
	var sy int
	if cx < end_x {
		sx = 1
	} else {
		sx = -1
	}
	if cy < end_y {
		sy = 1
	} else {
		sy = -1
	}
	var err int = dx - dy

	var n int
	for n = 0; n < 1000; n++ {
		img.SetGray(cx, cy, col)
		if (cx == end_x) && (cy == end_y) {
			return
		}
		var e2 int = 2 * err
		if e2 > (0 - dy) {
			err = err - dy
			cx = cx + sx
		}
		if e2 < dx {
			err = err + dx
			cy = cy + sy
		}
	}
}
Beispiel #6
0
func setBlock(x, y, blockSize, t int, img image.Image, g *image.Gray) {
	// Loop through all the pixels in the block
	for cy := y; cy < y+blockSize; cy++ {
		if cy >= img.Bounds().Max.Y {
			break
		}
		for cx := x; cx < x+blockSize; cx++ {
			if cx >= img.Bounds().Max.X {
				continue
			}
			l := int(lumAt(cx, cy, img))
			if l > t {
				g.SetGray(cx, cy, white)
			} else {
				g.SetGray(cx, cy, black)
			}
		}
	}
}
// kf3 is a generic convolution 3x3 kernel filter that operatates on
// images of type image.Gray from the Go standard image library.
func kf3(k *[9]float64, src, dst *image.Gray) {
	for y := src.Rect.Min.Y; y < src.Rect.Max.Y; y++ {
		for x := src.Rect.Min.X; x < src.Rect.Max.X; x++ {
			var sum float64
			var i int
			for yo := y - 1; yo <= y+1; yo++ {
				for xo := x - 1; xo <= x+1; xo++ {
					if (image.Point{xo, yo}).In(src.Rect) {
						sum += k[i] * float64(src.At(xo, yo).(color.Gray).Y)
					} else {
						sum += k[i] * float64(src.At(x, y).(color.Gray).Y)
					}
					i++
				}
			}
			dst.SetGray(x, y,
				color.Gray{uint8(math.Min(255, math.Max(0, sum)))})
		}
	}
}
Beispiel #8
0
func drawRect(img *image.Gray, r image.Rectangle, c color.Gray) {
	for x := r.Min.X; x < r.Max.X; x++ {
		img.SetGray(x, r.Min.Y, c)
	}
	for x := r.Min.X; x < r.Max.X; x++ {
		img.SetGray(x, r.Max.Y, c)
	}
	for y := r.Min.Y; y < r.Max.Y; y++ {
		img.SetGray(r.Min.X, y, c)
	}
	for y := r.Min.Y; y < r.Max.Y; y++ {
		img.SetGray(r.Max.X, y, c)
	}
}
Beispiel #9
0
// copies and resizes src into dst's r
func scaleDownTo(dst *image.Gray, r image.Rectangle, src *image.Gray) error {
	if src.Bounds().Dx()%r.Dx() != 0 || src.Bounds().Dy()%r.Dy() != 0 {
		return errors.New("Source image size not multiple of rectagle size")
	}

	dx := src.Bounds().Dx() / r.Dx()
	dy := src.Bounds().Dy() / r.Dy()
	area := dx * dy
	for y := r.Min.Y; y < r.Max.Y; y++ {
		for x := r.Min.X; x < r.Max.X; x++ {
			col := 0
			for v := 0; v < dy; v++ {
				for u := 0; u < dx; u++ {
					offset := src.PixOffset((x-r.Min.X)*dx+u, (y-r.Min.Y)*dy+v)
					col += int(src.Pix[offset])
				}
			}
			dst.SetGray(x, y, color.Gray{uint8(col / area)})
		}
	}
	return nil
}
Beispiel #10
0
// RecogniseDigit takes 28x28 gray image and tries to recognise a digit
// panics if image has wrong size
func RecogniseDigit(img image.Gray, threshold uint8) (int, float64) {
	if img.Bounds().Max.X != 28 || img.Bounds().Max.Y != 28 {
		panic("Image size is invalid, use 28x28.")
	}

	input := make([]float64, 28*28, 28*28)
	pos := 0
	for x := 0; x < 28; x++ {
		for y := 0; y < 28; y++ {
			val := img.GrayAt(x, y).Y
			if val < threshold {
				val = 255 - val
			} else {
				val = 0
			}

			img.SetGray(x, y, color.Gray{Y: val})
			input[pos] = float64(val) / 255
			pos++
		}
	}
	digit, confidence := argmax(nn.Evaluate(input))
	return digit, confidence
}
Beispiel #11
0
func drawDroplet(img *image.Gray, x, y, r, h float64) {
	ri := int(r + 1)
	xi := int(x + 0.5)
	yi := int(y + 0.5)
	for i := yi - ri; i <= yi+ri; i++ {
		for j := xi - ri; j <= xi+ri; j++ {
			if i < 0 || i >= img.Rect.Dy() || j < 0 || j >= img.Rect.Dx() {
				continue
			}

			di := float64(i) - y
			dj := float64(j) - x
			if rr := di*di + dj*dj; rr <= r*r {
				vprev := img.GrayAt(j, i).Y
				v := 100*h/r*math.Pow(1-rr/r/r, 1.0)/math.Sqrt(1-di/r) + float64(vprev)
				if v > 255 {
					v = 255
				}

				img.SetGray(j, i, color.Gray{uint8(v)})
			}
		}
	}
}
Beispiel #12
0
func sdfize(img *image.Gray) {
	w := img.Bounds().Size().X
	h := img.Bounds().Size().Y
	g1 := make([]xys, w*h)
	g2 := make([]xys, w*h)

	for y := 0; y < h; y++ {
		for x := 0; x < w; x++ {
			a := img.Pix[img.PixOffset(x, y)]
			if a < 0x7F {
				g2[y*w+x] = infinity
			} else {
				g1[y*w+x] = infinity
			}
		}
	}

	generateSDF(int16(w), int16(h), g1)
	generateSDF(int16(w), int16(h), g2)

	for y := 0; y < h; y++ {
		for x := 0; x < w; x++ {
			pos := y*w + x
			dist1 := distance(g1[pos].x, g1[pos].y)
			dist2 := distance(g2[pos].x, g2[pos].y)
			dist := 2 * 128 * (dist1 - dist2) / float64(w)
			if dist < -128 {
				dist = -128
			} else if dist > 127 {
				dist = 127
			}
			c := uint8(128 + dist)
			img.SetGray(x, y, color.Gray{c})
		}
	}
}
Beispiel #13
0
func drawBubble(img *image.Gray, xPos, yPos, width, height float64, content string, filled bool) {
	gapBeg := xPos + width/4.0
	gapEnd := xPos + width - width/4.0

	if filled {
		drawRect(img, black, xPos, yPos, width, height)
		return
	}

	ftContext.DrawString(content, freetype.Pt(int(gapBeg+width/6), int(yPos+height)))
	for w := xPos; w < xPos+width; w += 1.0 {
		if w >= gapBeg && w <= gapEnd {
			continue
		}
		img.SetGray(int(w), int(yPos), color.Gray{0x22})
		img.SetGray(int(w), int(yPos+height), color.Gray{0x22})
	}

	for h := yPos; h < yPos+height; h += 1.0 {
		img.SetGray(int(xPos), int(h), color.Gray{0x22})
		img.SetGray(int(xPos+width), int(h), color.Gray{0x22})
	}
}
Beispiel #14
0
// Dithering algorithms
// Dithering is the process of reducing the colorspace of an image to a more
// restricted palette. Since the Game Boy Printer only has a 2bit colorspace
// available, it's important that some dithering algorithms are implemented to
// deal with the fact. Depending on the properties of the dithering algorithm
// detail may or may not be preserved as well. Using simple techniques like
// average dithering will yield results with lots of color banding, while employing
// error diffusion techniques such as Floyd Steinberg will produce smoother
// results (color banding is replaced by the introduction of noise)
// The wikipedia article (http://en.wikipedia.org/wiki/Dither) is quite interesting
// and talks about some dithering algorithms, some of which are implemented here.
// Floyd Steinberg is an error diffusion dithering algorithm that adds the error
// of each color conversion to the neighbours of each pixel. This way it's possible
// to achieve a finer graded dithering
func ditheringFloydSteinberg(img *image.Gray, p *color.Palette) {
	size := img.Bounds()
	for y := size.Min.Y; y < size.Max.Y; y++ {
		for x := size.Min.X; x < size.Max.X; x++ {
			c1 := img.GrayAt(x, y)
			c2 := p.Convert(c1).(color.Gray)
			delta := int(c1.Y) - int(c2.Y)
			switch {
			case x+1 < size.Max.X && y < size.Max.Y:
				img.SetGray(x+1, y, color.Gray{uint8(int(img.GrayAt(x+1, y).Y) + delta*7/16)})
				fallthrough
			case x < size.Max.X && y+1 < size.Max.Y:
				img.SetGray(x, y+1, color.Gray{uint8(int(img.GrayAt(x, y+1).Y) + delta*5/16)})
				fallthrough
			case x-1 >= size.Min.X && y+1 < size.Max.Y:
				img.SetGray(x-1, y+1, color.Gray{uint8(int(img.GrayAt(x-1, y+1).Y) + delta*3/16)})
				fallthrough
			case x+1 < size.Max.X && y+1 < size.Max.Y:
				img.SetGray(x+1, y+1, color.Gray{uint8(int(img.GrayAt(x+1, y+1).Y) + delta*1/16)})
			}
			img.Set(x, y, c2)
		}
	}
}
Beispiel #15
0
// decode decodes the IDAT data into an image.
func (d *decoder) decode() (image.Image, error) {
	r, err := zlib.NewReader(d)
	if err != nil {
		return nil, err
	}
	defer r.Close()
	bitsPerPixel := 0
	pixOffset := 0
	var (
		gray     *image.Gray
		rgba     *image.RGBA
		paletted *image.Paletted
		nrgba    *image.NRGBA
		gray16   *image.Gray16
		rgba64   *image.RGBA64
		nrgba64  *image.NRGBA64
		img      image.Image
	)
	switch d.cb {
	case cbG1, cbG2, cbG4, cbG8:
		bitsPerPixel = d.depth
		gray = image.NewGray(image.Rect(0, 0, d.width, d.height))
		img = gray
	case cbGA8:
		bitsPerPixel = 16
		nrgba = image.NewNRGBA(image.Rect(0, 0, d.width, d.height))
		img = nrgba
	case cbTC8:
		bitsPerPixel = 24
		rgba = image.NewRGBA(image.Rect(0, 0, d.width, d.height))
		img = rgba
	case cbP1, cbP2, cbP4, cbP8:
		bitsPerPixel = d.depth
		paletted = image.NewPaletted(image.Rect(0, 0, d.width, d.height), d.palette)
		img = paletted
	case cbTCA8:
		bitsPerPixel = 32
		nrgba = image.NewNRGBA(image.Rect(0, 0, d.width, d.height))
		img = nrgba
	case cbG16:
		bitsPerPixel = 16
		gray16 = image.NewGray16(image.Rect(0, 0, d.width, d.height))
		img = gray16
	case cbGA16:
		bitsPerPixel = 32
		nrgba64 = image.NewNRGBA64(image.Rect(0, 0, d.width, d.height))
		img = nrgba64
	case cbTC16:
		bitsPerPixel = 48
		rgba64 = image.NewRGBA64(image.Rect(0, 0, d.width, d.height))
		img = rgba64
	case cbTCA16:
		bitsPerPixel = 64
		nrgba64 = image.NewNRGBA64(image.Rect(0, 0, d.width, d.height))
		img = nrgba64
	}
	bytesPerPixel := (bitsPerPixel + 7) / 8

	// cr and pr are the bytes for the current and previous row.
	// The +1 is for the per-row filter type, which is at cr[0].
	cr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8)
	pr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8)

	for y := 0; y < d.height; y++ {
		// Read the decompressed bytes.
		_, err := io.ReadFull(r, cr)
		if err != nil {
			return nil, err
		}

		// Apply the filter.
		cdat := cr[1:]
		pdat := pr[1:]
		switch cr[0] {
		case ftNone:
			// No-op.
		case ftSub:
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += cdat[i-bytesPerPixel]
			}
		case ftUp:
			for i, p := range pdat {
				cdat[i] += p
			}
		case ftAverage:
			for i := 0; i < bytesPerPixel; i++ {
				cdat[i] += pdat[i] / 2
			}
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += uint8((int(cdat[i-bytesPerPixel]) + int(pdat[i])) / 2)
			}
		case ftPaeth:
			filterPaeth(cdat, pdat, bytesPerPixel)
		default:
			return nil, FormatError("bad filter type")
		}

		// Convert from bytes to colors.
		switch d.cb {
		case cbG1:
			for x := 0; x < d.width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 7) * 0xff})
					b <<= 1
				}
			}
		case cbG2:
			for x := 0; x < d.width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 6) * 0x55})
					b <<= 2
				}
			}
		case cbG4:
			for x := 0; x < d.width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 4) * 0x11})
					b <<= 4
				}
			}
		case cbG8:
			copy(gray.Pix[pixOffset:], cdat)
			pixOffset += gray.Stride
		case cbGA8:
			for x := 0; x < d.width; x++ {
				ycol := cdat[2*x+0]
				nrgba.SetNRGBA(x, y, color.NRGBA{ycol, ycol, ycol, cdat[2*x+1]})
			}
		case cbTC8:
			pix, i, j := rgba.Pix, pixOffset, 0
			for x := 0; x < d.width; x++ {
				pix[i+0] = cdat[j+0]
				pix[i+1] = cdat[j+1]
				pix[i+2] = cdat[j+2]
				pix[i+3] = 0xff
				i += 4
				j += 3
			}
			pixOffset += rgba.Stride
		case cbP1:
			for x := 0; x < d.width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ {
					idx := b >> 7
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 1
				}
			}
		case cbP2:
			for x := 0; x < d.width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ {
					idx := b >> 6
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 2
				}
			}
		case cbP4:
			for x := 0; x < d.width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ {
					idx := b >> 4
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 4
				}
			}
		case cbP8:
			if len(paletted.Palette) != 255 {
				for x := 0; x < d.width; x++ {
					if len(paletted.Palette) <= int(cdat[x]) {
						paletted.Palette = paletted.Palette[:int(cdat[x])+1]
					}
				}
			}
			copy(paletted.Pix[pixOffset:], cdat)
			pixOffset += paletted.Stride
		case cbTCA8:
			copy(nrgba.Pix[pixOffset:], cdat)
			pixOffset += nrgba.Stride
		case cbG16:
			for x := 0; x < d.width; x++ {
				ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
				gray16.SetGray16(x, y, color.Gray16{ycol})
			}
		case cbGA16:
			for x := 0; x < d.width; x++ {
				ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1])
				acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3])
				nrgba64.SetNRGBA64(x, y, color.NRGBA64{ycol, ycol, ycol, acol})
			}
		case cbTC16:
			for x := 0; x < d.width; x++ {
				rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
				gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
				bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
				rgba64.SetRGBA64(x, y, color.RGBA64{rcol, gcol, bcol, 0xffff})
			}
		case cbTCA16:
			for x := 0; x < d.width; x++ {
				rcol := uint16(cdat[8*x+0])<<8 | uint16(cdat[8*x+1])
				gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3])
				bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5])
				acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7])
				nrgba64.SetNRGBA64(x, y, color.NRGBA64{rcol, gcol, bcol, acol})
			}
		}

		// The current row for y is the previous row for y+1.
		pr, cr = cr, pr
	}

	// Check for EOF, to verify the zlib checksum.
	n, err := r.Read(pr[:1])
	if err != io.EOF {
		return nil, FormatError(err.Error())
	}
	if n != 0 || d.idatLength != 0 {
		return nil, FormatError("too much pixel data")
	}

	return img, nil
}
Beispiel #16
0
// readImagePass reads a single image pass, sized according to the pass number.
func (d *decoder) readImagePass(r io.Reader, pass int, allocateOnly bool) (image.Image, error) {
	var bitsPerPixel int = 0
	pixOffset := 0
	var (
		gray     *image.Gray
		rgba     *image.RGBA
		paletted *image.Paletted
		nrgba    *image.NRGBA
		gray16   *image.Gray16
		rgba64   *image.RGBA64
		nrgba64  *image.NRGBA64
		img      image.Image
	)
	width, height := d.width, d.height
	if d.interlace == itAdam7 && !allocateOnly {
		p := interlacing[pass]
		// Add the multiplication factor and subtract one, effectively rounding up.
		width = (width - p.xOffset + p.xFactor - 1) / p.xFactor
		height = (height - p.yOffset + p.yFactor - 1) / p.yFactor
		// A PNG image can't have zero width or height, but for an interlaced
		// image, an individual pass might have zero width or height. If so, we
		// shouldn't even read a per-row filter type byte, so return early.
		if width == 0 || height == 0 {
			return nil, nil
		}
	}
	switch d.cb {
	case cbG1, cbG2, cbG4, cbG8:
		bitsPerPixel = d.depth
		gray = image.NewGray(image.Rect(0, 0, width, height))
		img = gray
	case cbGA8:
		bitsPerPixel = 16
		nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
		img = nrgba
	case cbTC8:
		bitsPerPixel = 24
		rgba = image.NewRGBA(image.Rect(0, 0, width, height))
		img = rgba
	case cbP1, cbP2, cbP4, cbP8:
		bitsPerPixel = d.depth
		paletted = image.NewPaletted(image.Rect(0, 0, width, height), d.palette)
		img = paletted
	case cbTCA8:
		bitsPerPixel = 32
		nrgba = image.NewNRGBA(image.Rect(0, 0, width, height))
		img = nrgba
	case cbG16:
		bitsPerPixel = 16
		gray16 = image.NewGray16(image.Rect(0, 0, width, height))
		img = gray16
	case cbGA16:
		bitsPerPixel = 32
		nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
		img = nrgba64
	case cbTC16:
		bitsPerPixel = 48
		rgba64 = image.NewRGBA64(image.Rect(0, 0, width, height))
		img = rgba64
	case cbTCA16:
		bitsPerPixel = 64
		nrgba64 = image.NewNRGBA64(image.Rect(0, 0, width, height))
		img = nrgba64
	}
	if allocateOnly {
		return img, nil
	}
	bytesPerPixel := (bitsPerPixel + 7) / 8

	// The +1 is for the per-row filter type, which is at cr[0].
	rowSize := 1 + (bitsPerPixel*width+7)/8
	// cr and pr are the bytes for the current and previous row.
	cr := make([]uint8, rowSize)
	pr := make([]uint8, rowSize)

	for y := 0; y < height; y++ {
		// Read the decompressed bytes.
		_, err := io.ReadFull(r, cr)
		if err != nil {
			if err == io.EOF || err == io.ErrUnexpectedEOF {
				return nil, FormatError("not enough pixel data")
			}
			return nil, err
		}

		// Apply the filter.
		cdat := cr[1:]
		pdat := pr[1:]
		switch cr[0] {
		case ftNone:
			// No-op.
		case ftSub:
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += cdat[i-bytesPerPixel]
			}
		case ftUp:
			for i, p := range pdat {
				cdat[i] += p
			}
		case ftAverage:
			// The first column has no column to the left of it, so it is a
			// special case. We know that the first column exists because we
			// check above that width != 0, and so len(cdat) != 0.
			for i := 0; i < bytesPerPixel; i++ {
				cdat[i] += pdat[i] / 2
			}
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += uint8((int(cdat[i-bytesPerPixel]) + int(pdat[i])) / 2)
			}
		case ftPaeth:
			filterPaeth(cdat, pdat, bytesPerPixel)
		default:
			return nil, FormatError("bad filter type")
		}

		// Convert from bytes to colors.
		switch d.cb {
		case cbG1:
			for x := 0; x < width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 7) * 0xff})
					b <<= 1
				}
			}
		case cbG2:
			for x := 0; x < width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 6) * 0x55})
					b <<= 2
				}
			}
		case cbG4:
			for x := 0; x < width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < width; x2++ {
					gray.SetGray(x+x2, y, color.Gray{(b >> 4) * 0x11})
					b <<= 4
				}
			}
		case cbG8:
			copy(gray.Pix[pixOffset:], cdat)
			pixOffset += gray.Stride
		case cbGA8:
			for x := 0; x < width; x++ {
				ycol := cdat[2*x+0]
				nrgba.SetNRGBA(x, y, color.NRGBA{ycol, ycol, ycol, cdat[2*x+1]})
			}
		case cbTC8:
			pix, i, j := rgba.Pix, pixOffset, 0
			for x := 0; x < width; x++ {
				pix[i+0] = cdat[j+0]
				pix[i+1] = cdat[j+1]
				pix[i+2] = cdat[j+2]
				pix[i+3] = 0xff
				i += 4
				j += 3
			}
			pixOffset += rgba.Stride
		case cbP1:
			for x := 0; x < width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < width; x2++ {
					idx := b >> 7
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 1
				}
			}
		case cbP2:
			for x := 0; x < width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < width; x2++ {
					idx := b >> 6
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 2
				}
			}
		case cbP4:
			for x := 0; x < width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < width; x2++ {
					idx := b >> 4
					if len(paletted.Palette) <= int(idx) {
						paletted.Palette = paletted.Palette[:int(idx)+1]
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 4
				}
			}
		case cbP8:
			if len(paletted.Palette) != 255 {
				for x := 0; x < width; x++ {
					if len(paletted.Palette) <= int(cdat[x]) {
						paletted.Palette = paletted.Palette[:int(cdat[x])+1]
					}
				}
			}
			copy(paletted.Pix[pixOffset:], cdat)
			pixOffset += paletted.Stride
		case cbTCA8:
			copy(nrgba.Pix[pixOffset:], cdat)
			pixOffset += nrgba.Stride
		case cbG16:
			for x := 0; x < width; x++ {
				ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
				gray16.SetGray16(x, y, color.Gray16{ycol})
			}
		case cbGA16:
			for x := 0; x < width; x++ {
				ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1])
				acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3])
				nrgba64.SetNRGBA64(x, y, color.NRGBA64{ycol, ycol, ycol, acol})
			}
		case cbTC16:
			for x := 0; x < width; x++ {
				rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
				gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
				bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
				rgba64.SetRGBA64(x, y, color.RGBA64{rcol, gcol, bcol, 0xffff})
			}
		case cbTCA16:
			for x := 0; x < width; x++ {
				rcol := uint16(cdat[8*x+0])<<8 | uint16(cdat[8*x+1])
				gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3])
				bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5])
				acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7])
				nrgba64.SetNRGBA64(x, y, color.NRGBA64{rcol, gcol, bcol, acol})
			}
		}

		// The current row for y is the previous row for y+1.
		pr, cr = cr, pr
	}

	return img, nil
}
Beispiel #17
0
func (d *decoder) idatReader(idat io.Reader) (image.Image, os.Error) {
	r, err := zlib.NewReader(idat)
	if err != nil {
		return nil, err
	}
	defer r.Close()
	bitsPerPixel := 0
	maxPalette := uint8(0)
	var (
		gray     *image.Gray
		rgba     *image.RGBA
		paletted *image.Paletted
		nrgba    *image.NRGBA
		gray16   *image.Gray16
		rgba64   *image.RGBA64
		nrgba64  *image.NRGBA64
		img      image.Image
	)
	switch d.cb {
	case cbG1, cbG2, cbG4, cbG8:
		bitsPerPixel = d.depth
		gray = image.NewGray(d.width, d.height)
		img = gray
	case cbGA8:
		bitsPerPixel = 16
		nrgba = image.NewNRGBA(d.width, d.height)
		img = nrgba
	case cbTC8:
		bitsPerPixel = 24
		rgba = image.NewRGBA(d.width, d.height)
		img = rgba
	case cbP1, cbP2, cbP4, cbP8:
		bitsPerPixel = d.depth
		paletted = image.NewPaletted(d.width, d.height, d.palette)
		img = paletted
		maxPalette = uint8(len(d.palette) - 1)
	case cbTCA8:
		bitsPerPixel = 32
		nrgba = image.NewNRGBA(d.width, d.height)
		img = nrgba
	case cbG16:
		bitsPerPixel = 16
		gray16 = image.NewGray16(d.width, d.height)
		img = gray16
	case cbGA16:
		bitsPerPixel = 32
		nrgba64 = image.NewNRGBA64(d.width, d.height)
		img = nrgba64
	case cbTC16:
		bitsPerPixel = 48
		rgba64 = image.NewRGBA64(d.width, d.height)
		img = rgba64
	case cbTCA16:
		bitsPerPixel = 64
		nrgba64 = image.NewNRGBA64(d.width, d.height)
		img = nrgba64
	}
	bytesPerPixel := (bitsPerPixel + 7) / 8

	// cr and pr are the bytes for the current and previous row.
	// The +1 is for the per-row filter type, which is at cr[0].
	cr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8)
	pr := make([]uint8, 1+(bitsPerPixel*d.width+7)/8)

	for y := 0; y < d.height; y++ {
		// Read the decompressed bytes.
		_, err := io.ReadFull(r, cr)
		if err != nil {
			return nil, err
		}

		// Apply the filter.
		cdat := cr[1:]
		pdat := pr[1:]
		switch cr[0] {
		case ftNone:
			// No-op.
		case ftSub:
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += cdat[i-bytesPerPixel]
			}
		case ftUp:
			for i := 0; i < len(cdat); i++ {
				cdat[i] += pdat[i]
			}
		case ftAverage:
			for i := 0; i < bytesPerPixel; i++ {
				cdat[i] += pdat[i] / 2
			}
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += uint8((int(cdat[i-bytesPerPixel]) + int(pdat[i])) / 2)
			}
		case ftPaeth:
			for i := 0; i < bytesPerPixel; i++ {
				cdat[i] += paeth(0, pdat[i], 0)
			}
			for i := bytesPerPixel; i < len(cdat); i++ {
				cdat[i] += paeth(cdat[i-bytesPerPixel], pdat[i], pdat[i-bytesPerPixel])
			}
		default:
			return nil, FormatError("bad filter type")
		}

		// Convert from bytes to colors.
		switch d.cb {
		case cbG1:
			for x := 0; x < d.width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, image.GrayColor{(b >> 7) * 0xff})
					b <<= 1
				}
			}
		case cbG2:
			for x := 0; x < d.width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, image.GrayColor{(b >> 6) * 0x55})
					b <<= 2
				}
			}
		case cbG4:
			for x := 0; x < d.width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ {
					gray.SetGray(x+x2, y, image.GrayColor{(b >> 4) * 0x11})
					b <<= 4
				}
			}
		case cbG8:
			for x := 0; x < d.width; x++ {
				gray.SetGray(x, y, image.GrayColor{cdat[x]})
			}
		case cbGA8:
			for x := 0; x < d.width; x++ {
				ycol := cdat[2*x+0]
				nrgba.SetNRGBA(x, y, image.NRGBAColor{ycol, ycol, ycol, cdat[2*x+1]})
			}
		case cbTC8:
			for x := 0; x < d.width; x++ {
				rgba.SetRGBA(x, y, image.RGBAColor{cdat[3*x+0], cdat[3*x+1], cdat[3*x+2], 0xff})
			}
		case cbP1:
			for x := 0; x < d.width; x += 8 {
				b := cdat[x/8]
				for x2 := 0; x2 < 8 && x+x2 < d.width; x2++ {
					idx := b >> 7
					if idx > maxPalette {
						return nil, FormatError("palette index out of range")
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 1
				}
			}
		case cbP2:
			for x := 0; x < d.width; x += 4 {
				b := cdat[x/4]
				for x2 := 0; x2 < 4 && x+x2 < d.width; x2++ {
					idx := b >> 6
					if idx > maxPalette {
						return nil, FormatError("palette index out of range")
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 2
				}
			}
		case cbP4:
			for x := 0; x < d.width; x += 2 {
				b := cdat[x/2]
				for x2 := 0; x2 < 2 && x+x2 < d.width; x2++ {
					idx := b >> 4
					if idx > maxPalette {
						return nil, FormatError("palette index out of range")
					}
					paletted.SetColorIndex(x+x2, y, idx)
					b <<= 4
				}
			}
		case cbP8:
			for x := 0; x < d.width; x++ {
				if cdat[x] > maxPalette {
					return nil, FormatError("palette index out of range")
				}
				paletted.SetColorIndex(x, y, cdat[x])
			}
		case cbTCA8:
			for x := 0; x < d.width; x++ {
				nrgba.SetNRGBA(x, y, image.NRGBAColor{cdat[4*x+0], cdat[4*x+1], cdat[4*x+2], cdat[4*x+3]})
			}
		case cbG16:
			for x := 0; x < d.width; x++ {
				ycol := uint16(cdat[2*x+0])<<8 | uint16(cdat[2*x+1])
				gray16.SetGray16(x, y, image.Gray16Color{ycol})
			}
		case cbGA16:
			for x := 0; x < d.width; x++ {
				ycol := uint16(cdat[4*x+0])<<8 | uint16(cdat[4*x+1])
				acol := uint16(cdat[4*x+2])<<8 | uint16(cdat[4*x+3])
				nrgba64.SetNRGBA64(x, y, image.NRGBA64Color{ycol, ycol, ycol, acol})
			}
		case cbTC16:
			for x := 0; x < d.width; x++ {
				rcol := uint16(cdat[6*x+0])<<8 | uint16(cdat[6*x+1])
				gcol := uint16(cdat[6*x+2])<<8 | uint16(cdat[6*x+3])
				bcol := uint16(cdat[6*x+4])<<8 | uint16(cdat[6*x+5])
				rgba64.SetRGBA64(x, y, image.RGBA64Color{rcol, gcol, bcol, 0xffff})
			}
		case cbTCA16:
			for x := 0; x < d.width; x++ {
				rcol := uint16(cdat[8*x+0])<<8 | uint16(cdat[8*x+1])
				gcol := uint16(cdat[8*x+2])<<8 | uint16(cdat[8*x+3])
				bcol := uint16(cdat[8*x+4])<<8 | uint16(cdat[8*x+5])
				acol := uint16(cdat[8*x+6])<<8 | uint16(cdat[8*x+7])
				nrgba64.SetNRGBA64(x, y, image.NRGBA64Color{rcol, gcol, bcol, acol})
			}
		}

		// The current row for y is the previous row for y+1.
		pr, cr = cr, pr
	}
	return img, nil
}
Beispiel #18
0
func drawLine(img *image.Gray, x, y, h int, c color.Gray) {
	for cy := y; cy <= y+h; cy++ {
		img.SetGray(x, cy, c)
	}
}