// Compute the square root of n using Newton's Method. We start with // an initial estimate for sqrt(n), and then iterate // x_{i+1} = 1/2 * ( x_i + (n / x_i) ) // Result is returned in x func (e *Pslq) Sqrt(n, x *big.Float) { if n == x { panic("need distinct input and output") } if n.Sign() == 0 { x.Set(n) return } else if n.Sign() < 0 { panic("Sqrt of negative number") } prec := n.Prec() // Use the floating point square root as initial estimate nFloat64, _ := n.Float64() x.SetPrec(prec).SetFloat64(math.Sqrt(nFloat64)) // We use t as a temporary variable. There's no need to set its precision // since big.Float values with unset (== 0) precision automatically assume // the largest precision of the arguments when used as the result (receiver) // of a big.Float operation. var t big.Float // Iterate. for { t.Quo(n, x) // t = n / x_i t.Add(x, &t) // t = x_i + (n / x_i) t.Mul(&e.half, &t) // x_{i+1} = 0.5 * t if x.Cmp(&t) == 0 { // Exit loop if no change to result break } x.Set(&t) } }
func makeFloat(x *big.Float) Value { // convert -0 if x.Sign() == 0 { return floatVal0 } return floatVal{x} }
// BigCommaf produces a string form of the given big.Float in base 10 // with commas after every three orders of magnitude. func BigCommaf(v *big.Float) string { buf := &bytes.Buffer{} if v.Sign() < 0 { buf.Write([]byte{'-'}) v.Abs(v) } comma := []byte{','} parts := strings.Split(v.Text('f', -1), ".") pos := 0 if len(parts[0])%3 != 0 { pos += len(parts[0]) % 3 buf.WriteString(parts[0][:pos]) buf.Write(comma) } for ; pos < len(parts[0]); pos += 3 { buf.WriteString(parts[0][pos : pos+3]) buf.Write(comma) } buf.Truncate(buf.Len() - 1) if len(parts) > 1 { buf.Write([]byte{'.'}) buf.WriteString(parts[1]) } return buf.String() }
// floatSqrt computes the square root of x using Newton's method. // TODO: Use a better algorithm such as the one from math/sqrt.go. func floatSqrt(c Context, x *big.Float) *big.Float { switch x.Sign() { case -1: Errorf("square root of negative number") case 0: return newFloat(c) } // Each iteration computes // z = z - (z²-x)/2z // z holds the result so far. A good starting point is to halve the exponent. // Experiments show we converge in only a handful of iterations. z := newFloat(c) exp := x.MantExp(z) z.SetMantExp(z, exp/2) // Intermediates, allocated once. zSquared := newFloat(c) num := newFloat(c) den := newFloat(c) for loop := newLoop(c.Config(), "sqrt", x, 1); ; { zSquared.Mul(z, z) num.Sub(zSquared, x) den.Mul(floatTwo, z) num.Quo(num, den) z.Sub(z, num) if loop.done(z) { break } } return z }
// floatLog computes natural log(x) using the Maclaurin series for log(1-x). func floatLog(x *big.Float) *big.Float { if x.Sign() <= 0 { Errorf("log of non-positive value") } // The series wants x < 1, and log 1/x == -log x, so exploit that. invert := false if x.Cmp(floatOne) > 0 { invert = true xx := newF() xx.Quo(floatOne, x) x = xx } // x = mantissa * 2**exp, and 0.5 <= mantissa < 1. // So log(x) is log(mantissa)+exp*log(2), and 1-x will be // between 0 and 0.5, so the series for 1-x will converge well. // (The series converges slowly in general.) mantissa := newF() exp2 := x.MantExp(mantissa) exp := newF().SetInt64(int64(exp2)) exp.Mul(exp, floatLog2) if invert { exp.Neg(exp) } // y = 1-x (whereupon x = 1-y and we use that in the series). y := newF().SetInt64(1) y.Sub(y, mantissa) // The Maclaurin series for log(1-y) == log(x) is: -y - y²/2 - y³/3 ... yN := newF().Set(y) term := newF() n := newF().Set(floatOne) z := newF() // This is the slowest-converging series, so we add a factor of ten to the cutoff. // Only necessary when FloatPrec is at or beyond constPrecisionInBits. loop := newLoop("log", y, 40) for { term.Set(yN) term.Quo(term, n) z.Sub(z, term) if loop.terminate(z) { break } // Advance y**index (multiply by y). yN.Mul(yN, y) n.Add(n, floatOne) } if invert { z.Neg(z) } z.Add(z, exp) return z }
// NearestInt set res to the nearest integer to x func (e *Pslq) NearestInt(x *big.Float, res *big.Int) { prec := x.Prec() var tmp big.Float tmp.SetPrec(prec) if x.Sign() >= 0 { tmp.Add(x, &e.half) } else { tmp.Sub(x, &e.half) } tmp.Int(res) }
// floatSin computes sin(x) using argument reduction and a Taylor series. func floatSin(c Context, x *big.Float) *big.Float { negate := false if x.Sign() < 0 { x.Neg(x) negate = true } twoPiReduce(c, x) // sin(x) = x - x³/3! + x⁵/5! - ... // First term to compute in loop will be -x³/3! factorial := newFloat(c).SetInt64(6) result := sincos("sin", c, 3, x, newFloat(c).Set(x), 3, factorial) if negate { result.Neg(result) } return result }
// floatSqrt computes the square root of x using Newton's method. // TODO: Use a better algorithm such as the one from math/sqrt.go. func floatSqrt(x *big.Float) *big.Float { switch x.Sign() { case -1: Errorf("square root of negative number") case 0: return newF() } // Each iteration computes // z = z - (z²-x)/2z // delta holds the difference between the result // this iteration and the previous. The loop stops // when it hits zero. // z holds the result so far. A good starting point is to halve the exponent. // Experiments show we converge in only a handful of iterations. z := newF() exp := x.MantExp(z) z.SetMantExp(z, exp/2) // Intermediates, allocated once. zSquared := newF() num := newF() den := newF() loop := newLoop("sqrt", x, 1) for { zSquared.Mul(z, z) num.Sub(zSquared, x) den.Mul(floatTwo, z) num.Quo(num, den) z.Sub(z, num) if loop.terminate(z) { break } } return z }
// Sqrt returns a big.Float representation of the square root of // z. Precision is the same as the one of the argument. The function // panics if z is negative, returns ±0 when z = ±0, and +Inf when z = // +Inf. func Sqrt(z *big.Float) *big.Float { // panic on negative z if z.Sign() == -1 { panic("Sqrt: argument is negative") } // √±0 = ±0 if z.Sign() == 0 { return big.NewFloat(float64(z.Sign())) } // √+Inf = +Inf if z.IsInf() { return big.NewFloat(math.Inf(+1)) } // Compute √(a·2**b) as // √(a)·2**b/2 if b is even // √(2a)·2**b/2 if b > 0 is odd // √(0.5a)·2**b/2 if b < 0 is odd // // The difference in the odd exponent case is due to the fact that // exp/2 is rounded in different directions when exp is negative. mant := new(big.Float) exp := z.MantExp(mant) switch exp % 2 { case 1: mant.Mul(big.NewFloat(2), mant) case -1: mant.Mul(big.NewFloat(0.5), mant) } // Solving x² - z = 0 directly requires a Quo call, but it's // faster for small precisions. // // Solving 1/x² - z = 0 avoids the Quo call and is much faster for // high precisions. // // Use sqrtDirect for prec <= 128 and sqrtInverse for prec > 128. var x *big.Float if z.Prec() <= 128 { x = sqrtDirect(mant) } else { x = sqrtInverse(mant) } // re-attach the exponent and return return x.SetMantExp(x, exp/2) }
// Exp returns a big.Float representation of exp(z). Precision is // the same as the one of the argument. The function returns +Inf // when z = +Inf, and 0 when z = -Inf. func Exp(z *big.Float) *big.Float { // exp(0) == 1 if z.Sign() == 0 { return big.NewFloat(1).SetPrec(z.Prec()) } // Exp(+Inf) = +Inf if z.IsInf() && z.Sign() > 0 { return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec()) } // Exp(-Inf) = 0 if z.IsInf() && z.Sign() < 0 { return big.NewFloat(0).SetPrec(z.Prec()) } guess := new(big.Float) // try to get initial estimate using IEEE-754 math zf, _ := z.Float64() if zfs := math.Exp(zf); zfs == math.Inf(+1) || zfs == 0 { // too big or too small for IEEE-754 math, // perform argument reduction using // e^{2z} = (e^z)² halfZ := new(big.Float).Mul(z, big.NewFloat(0.5)) halfExp := Exp(halfZ.SetPrec(z.Prec() + 64)) return new(big.Float).Mul(halfExp, halfExp).SetPrec(z.Prec()) } else { // we got a nice IEEE-754 estimate guess.SetFloat64(zfs) } // f(t)/f'(t) = t*(log(t) - z) f := func(t *big.Float) *big.Float { x := new(big.Float) x.Sub(Log(t), z) return x.Mul(x, t) } x := newton(f, guess, z.Prec()) return x }
// Pow returns a big.Float representation of z**w. Precision is the same as the one // of the first argument. The function panics when z is negative. func Pow(z *big.Float, w *big.Float) *big.Float { if z.Sign() < 0 { panic("Pow: negative base") } // Pow(z, 0) = 1.0 if w.Sign() == 0 { return big.NewFloat(1).SetPrec(z.Prec()) } // Pow(z, 1) = z // Pow(+Inf, n) = +Inf if w.Cmp(big.NewFloat(1)) == 0 || z.IsInf() { return new(big.Float).Copy(z) } // Pow(z, -w) = 1 / Pow(z, w) if w.Sign() < 0 { x := new(big.Float) zExt := new(big.Float).Copy(z).SetPrec(z.Prec() + 64) wNeg := new(big.Float).Neg(w) return x.Quo(big.NewFloat(1), Pow(zExt, wNeg)).SetPrec(z.Prec()) } // w integer fast path if w.IsInt() { wi, _ := w.Int64() return powInt(z, int(wi)) } // compute w**z as exp(z log(w)) x := new(big.Float).SetPrec(z.Prec() + 64) logZ := Log(new(big.Float).Copy(z).SetPrec(z.Prec() + 64)) x.Mul(w, logZ) x = Exp(x) return x.SetPrec(z.Prec()) }
// Log returns a big.Float representation of the natural logarithm of // z. Precision is the same as the one of the argument. The function // panics if z is negative, returns -Inf when z = 0, and +Inf when z = // +Inf func Log(z *big.Float) *big.Float { // panic on negative z if z.Sign() == -1 { panic("Log: argument is negative") } // Log(0) = -Inf if z.Sign() == 0 { return big.NewFloat(math.Inf(-1)).SetPrec(z.Prec()) } prec := z.Prec() + 64 // guard digits one := big.NewFloat(1).SetPrec(prec) two := big.NewFloat(2).SetPrec(prec) four := big.NewFloat(4).SetPrec(prec) // Log(1) = 0 if z.Cmp(one) == 0 { return big.NewFloat(0).SetPrec(z.Prec()) } // Log(+Inf) = +Inf if z.IsInf() { return big.NewFloat(math.Inf(+1)).SetPrec(z.Prec()) } x := new(big.Float).SetPrec(prec) // if 0 < z < 1 we compute log(z) as -log(1/z) var neg bool if z.Cmp(one) < 0 { x.Quo(one, z) neg = true } else { x.Set(z) } // We scale up x until x >= 2**(prec/2), and then we'll be allowed // to use the AGM formula for Log(x). // // Double x until the condition is met, and keep track of the // number of doubling we did (needed to scale back later). lim := new(big.Float) lim.SetMantExp(two, int(prec/2)) k := 0 for x.Cmp(lim) < 0 { x.Mul(x, x) k++ } // Compute the natural log of x using the fact that // log(x) = π / (2 * AGM(1, 4/x)) // if // x >= 2**(prec/2), // where prec is the desired precision (in bits) pi := pi(prec) agm := agm(one, x.Quo(four, x)) // agm = AGM(1, 4/x) x.Quo(pi, x.Mul(two, agm)) // reuse x, we don't need it if neg { x.Neg(x) } // scale the result back multiplying by 2**-k // reuse lim to reduce allocations. x.Mul(x, lim.SetMantExp(one, -k)) return x.SetPrec(z.Prec()) }
// floatAtan computes atan(x) using a Taylor series. There are two series, // one for |x| < 1 and one for larger values. func floatAtan(c Context, x *big.Float) *big.Float { // atan(-x) == -atan(x). Do this up top to simplify the Euler crossover calculation. if x.Sign() < 0 { z := newFloat(c).Set(x) z = floatAtan(c, z.Neg(z)) return z.Neg(z) } // The series converge very slowly near 1. atan 1.00001 takes over a million // iterations at the default precision. But there is hope, an Euler identity: // atan(x) = atan(y) + atan((x-y)/(1+xy)) // Note that y is a free variable. If x is near 1, we can use this formula // to push the computation to values that converge faster. Because // tan(π/8) = √2 - 1, or equivalently atan(√2 - 1) == π/8 // we choose y = √2 - 1 and then we only need to calculate one atan: // atan(x) = π/8 + atan((x-y)/(1+xy)) // Where do we cross over? This version converges significantly faster // even at 0.5, but we must be careful that (x-y)/(1+xy) never approaches 1. // At x = 0.5, (x-y)/(1+xy) is 0.07; at x=1 it is 0.414214; at x=1.5 it is // 0.66, which is as big as we dare go. With 256 bits of precision and a // crossover at 0.5, here are the number of iterations done by // atan .1*iota 20 // 0.1 39, 0.2 55, 0.3 73, 0.4 96, 0.5 126, 0.6 47, 0.7 59, 0.8 71, 0.9 85, 1.0 99, 1.1 116, 1.2 38, 1.3 44, 1.4 50, 1.5 213, 1.6 183, 1.7 163, 1.8 147, 1.9 135, 2.0 125 tmp := newFloat(c).Set(floatOne) tmp.Sub(tmp, x) tmp.Abs(tmp) if tmp.Cmp(newFloat(c).SetFloat64(0.5)) < 0 { z := newFloat(c).Set(floatPi) z.Quo(z, newFloat(c).SetInt64(8)) y := floatSqrt(c, floatTwo) y.Sub(y, floatOne) num := newFloat(c).Set(x) num.Sub(num, y) den := newFloat(c).Set(x) den = den.Mul(den, y) den = den.Add(den, floatOne) z = z.Add(z, floatAtan(c, num.Quo(num, den))) return z } if x.Cmp(floatOne) > 0 { return floatAtanLarge(c, x) } // This is the series for small values |x| < 1. // asin(x) = x - x³/3 + x⁵/5 - x⁷/7 + ... // First term to compute in loop will be x n := newFloat(c) term := newFloat(c) xN := newFloat(c).Set(x) xSquared := newFloat(c).Set(x) xSquared.Mul(x, x) z := newFloat(c) // n goes up by two each loop. for loop := newLoop(c.Config(), "atan", x, 4); ; { term.Set(xN) term.Quo(term, n.SetUint64(2*loop.i+1)) z.Add(z, term) xN.Neg(xN) if loop.done(z) { break } // xN *= x², becoming x**(n+2). xN.Mul(xN, xSquared) } return z }
func (f BigFloat) String() string { var mant big.Float exp := f.Float.MantExp(&mant) positive := 1 if exp < 0 { positive = 0 exp = -exp } verb, prec := byte('g'), 12 format := conf.Format() if format != "" { v, p, ok := conf.FloatFormat() if ok { verb, prec = v, p } } // Printing huge floats can be very slow using // big.Float's native methods; see issue #11068. // For example 1e5000000 takes a minute of CPU time just // to print. The code below is instantaneous, by rescaling // first. It is however less feature-complete. // (Big ints are problematic too, but if you print 1e50000000 // as an integer you probably won't be surprised it's slow.) if fastFloatPrint && exp > 10000 { // We always use %g to print the fraction, and it will // never have an exponent, but if the format is %E we // need to use a capital E. eChar := 'e' if verb == 'E' || verb == 'G' { eChar = 'E' } fexp := newF().SetInt64(int64(exp)) fexp.Mul(fexp, floatLog2) fexp.Quo(fexp, floatLog10) // We now have a floating-point base 10 exponent. // Break into the integer part and the fractional part. // The integer part is what we will show. // The 10**(fractional part) will be multiplied back in. iexp, _ := fexp.Int(nil) fraction := fexp.Sub(fexp, newF().SetInt(iexp)) // Now compute 10**(fractional part). // Fraction is in base 10. Move it to base e. fraction.Mul(fraction, floatLog10) scale := exponential(fraction) if positive > 0 { mant.Mul(&mant, scale) } else { mant.Quo(&mant, scale) } ten := newF().SetInt64(10) i64exp := iexp.Int64() // For numbers not too far from one, print without the E notation. // Shouldn't happen (exp must be large to get here) but just // in case, we keep this around. if -4 <= i64exp && i64exp <= 11 { if i64exp > 0 { for i := 0; i < int(i64exp); i++ { mant.Mul(&mant, ten) } } else { for i := 0; i < int(-i64exp); i++ { mant.Quo(&mant, ten) } } return fmt.Sprintf("%g\n", &mant) } else { sign := "" if mant.Sign() < 0 { sign = "-" mant.Neg(&mant) } // If it has a leading zero, rescale. digits := mant.Text('g', prec) for digits[0] == '0' { mant.Mul(&mant, ten) if positive > 0 { i64exp-- } else { i64exp++ } digits = mant.Text('g', prec) } return fmt.Sprintf("%s%s%c%c%d", sign, digits, eChar, "-+"[positive], i64exp) } } return f.Float.Text(verb, prec) }
// Given a vector of real numbers x = [x_0, x_1, ..., x_n], this // uses the PSLQ algorithm to find a list of integers // [c_0, c_1, ..., c_n] such that // // |c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n| < tolerance // // and such that max |c_k| < maxcoeff. If no such vector exists, Pslq // returns one of the errors in this package depending on whether it // has run out of iterations, precision or explored up to the // maxcoeff. The tolerance defaults to 3/4 of the precision. // // This is a fairly direct translation of the pseudocode given by // David Bailey, "The PSLQ Integer Relation Algorithm": // http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html // // If a result is returned, the first non-zero element will be positive func (e *Pslq) Run(x []big.Float) ([]big.Int, error) { n := len(x) if n <= 1 { return nil, ErrorBadArguments } // At too low precision, the algorithm becomes meaningless if e.prec < 64 { return nil, ErrorPrecisionTooLow } if e.verbose && int(e.prec)/max(2, int(n)) < 5 { log.Printf("Warning: precision for PSLQ may be too low") } if e.verbose { log.Printf("PSLQ using prec %d and tol %g", e.prec, e.tol) } if e.tol.Sign() == 0 { return nil, ErrorToleranceRoundsToZero } // Temporary variables tmp0 := new(big.Float).SetPrec(e.prec) tmp1 := new(big.Float).SetPrec(e.prec) bigTmp := new(big.Int) // Convert to use 1-based indexing to allow us to be // consistent with Bailey's indexing. xNew := make([]big.Float, len(x)+1) minx := new(big.Float).SetPrec(e.prec) minxFirst := true for i, xk := range x { p := &xNew[i+1] p.Set(&xk) tmp0.Abs(p) if minxFirst || tmp0.Cmp(minx) < 0 { minxFirst = false minx.Set(tmp0) } } x = xNew if debug { printVector("x", x) } // Sanity check on magnitudes if minx.Sign() == 0 { return nil, ErrorZeroArguments } tmp1.SetInt64(128) tmp0.Quo(&e.tol, tmp1) if minx.Cmp(tmp0) < 0 { // minx < tol/128 return nil, ErrorArgumentTooSmall } tmp0.SetInt64(4) tmp1.SetInt64(3) tmp0.Quo(tmp0, tmp1) var γ big.Float e.Sqrt(tmp0, &γ) // sqrt(4<<prec)/3) if debug { fmt.Printf("γ = %f\n", &γ) } A := newBigIntMatrix(n+1, n+1) B := newBigIntMatrix(n+1, n+1) H := newMatrix(n+1, n+1) // Initialization Step 1 // // Set the n×n matrices A and B to the identity. for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { if i == j { A[i][j].SetInt64(1) B[i][j].SetInt64(1) } else { A[i][j].SetInt64(0) B[i][j].SetInt64(0) } H[i][j].SetInt64(0) } } if debug { printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Initialization Step 2 // // For k := 1 to n // compute s_k := sqrt( sum_j=k^n x_j^2 ) // endfor. // Set t = 1/s1. // For k := 1 to n: // y_k := t * x_k // s_k := t * s_k // endfor. s := make([]big.Float, n+1) for i := 1; i <= n; i++ { s[i].SetInt64(0) } for k := 1; k <= n; k++ { var t big.Float t.SetInt64(0) for j := k; j <= n; j++ { tmp0.Mul(&x[j], &x[j]) t.Add(&t, tmp0) } e.Sqrt(&t, &s[k]) } if debug { fmt.Println("Init Step 2") printVector("s", s) } var t big.Float t.Set(&s[1]) y := make([]big.Float, len(x)) copy(y, x) for k := 1; k <= n; k++ { // y[k] = (x[k] << prec) / t y[k].Quo(&x[k], &t) // s[k] = (s[k] << prec) / t s[k].Quo(&s[k], &t) } if debug { printVector("y", y) printVector("s", s) } // Init Step 3 // // Compute the n×(n−1) matrix H as follows: // For i := 1 to n: // for j := i + 1 to n − 1: // set Hij := 0 // endfor // if i ≤ n − 1 then set Hii := s_(i+1)/s_i // for j := 1 to i−1: // set Hij := −y_i * y_j / (s_j * s_(j+1)) // endfor // endfor for i := 1; i <= n; i++ { for j := i + 1; j < n; j++ { H[i][j].SetInt64(0) } if i <= n-1 { if s[i].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } // H[i][i] = (s[i+1] << prec) / s[i] H[i][i].Quo(&s[i+1], &s[i]) } for j := 1; j < i; j++ { var sjj1 big.Float sjj1.Mul(&s[j], &s[j+1]) if debug { fmt.Printf("sjj1 = %f\n", &sjj1) } if sjj1.Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } // H[i][j] = ((-y[i] * y[j]) << prec) / sjj1 tmp0.Mul(&y[i], &y[j]) tmp0.Neg(tmp0) H[i][j].Quo(tmp0, &sjj1) } } if debug { fmt.Println("Init Step 3") printMatrix("H", H) } // Init Step 4 // // Perform full reduction on H, simultaneously updating y, A and B: // // For i := 2 to n: // for j := i−1 to 1 step−1: // t := nint(Hij/Hjj) // y_j := y_j + t * y_i // for k := 1 to j: // Hik := Hik − t * Hjk // endfor // for k := 1 to n: // Aik := Aik − t * Ajk // Bkj := Bkj + t * Bki // endfor // endfor // endfor for i := 2; i <= n; i++ { for j := i - 1; j > 0; j-- { //t = floor(H[i][j]/H[j,j] + 0.5) var t big.Int var tFloat big.Float if H[j][j].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } tmp0.Quo(&H[i][j], &H[j][j]) e.NearestInt(tmp0, &t) tFloat.SetInt(&t).SetPrec(e.prec) if debug { fmt.Printf("H[i][j]=%f\n", &H[i][j]) fmt.Printf("H[j][j]=%f\n", &H[j][j]) fmt.Printf("tmp=%f\n", tmp0) fmt.Printf("t=%d\n", &t) } // y[j] = y[j] + (t * y[i] >> prec) tmp0.Mul(&y[i], &tFloat) y[j].Add(&y[j], tmp0) for k := 1; k <= j; k++ { // H[i][k] = H[i][k] - (t * H[j][k] >> prec) tmp0.Mul(&H[j][k], &tFloat) H[i][k].Sub(&H[i][k], tmp0) } for k := 1; k <= n; k++ { bigTmp.Mul(&t, &A[j][k]) A[i][k].Sub(&A[i][k], bigTmp) bigTmp.Mul(&t, &B[k][i]) B[k][j].Add(&B[k][j], bigTmp) } } } if debug { fmt.Println("Init Step 4") printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Main algorithm var REP int var norm big.Int vec := make([]big.Int, n) for REP = 0; REP < e.maxsteps; REP++ { // Step 1 // // Select m such that γ^i * |Hii| is maximal when i = m. m := -1 var szmax big.Float szmax.SetInt64(-1) var γPower big.Float γPower.Set(&γ) for i := 1; i < n; i++ { var absH big.Float absH.Abs(&H[i][i]) var sz big.Float sz.Mul(&γPower, &absH) // sz := (g**i * abs(h)) >> (prec * (i - 1)) if sz.Cmp(&szmax) > 0 { m = i szmax.Set(&sz) } γPower.Mul(&γPower, &γ) } if debug { fmt.Println("Step 1") fmt.Printf("szmax=%f\n", &szmax) fmt.Printf("m=%d\n", m) } // Step 2 // // Exchange entries m and m+1 of y, corresponding rows // of A and H, and corresponding columns of B. y[m], y[m+1] = y[m+1], y[m] for i := 1; i < n+1; i++ { H[m][i], H[m+1][i] = H[m+1][i], H[m][i] } for i := 1; i < n+1; i++ { A[m][i], A[m+1][i] = A[m+1][i], A[m][i] } for i := 1; i < n+1; i++ { B[i][m], B[i][m+1] = B[i][m+1], B[i][m] } if debug { fmt.Println("Step 2") printVector("y", y) printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Step 3 // // If m ≤ n−2 then update H as follows: // // t0 := sqrt( Hmm^2 + H(m,m+1)^2 ) // t1 := Hmm/t0 // t2 := H(m,m+1)/t0. // for i := m to n: // t3 := Him // t4 := Hi,m+1 // Him := t1t3 +t2t4 // Hi,m+1 := −t2t3 +t1t4 // endfor. if m <= n-2 { tmp0.Mul(&H[m][m], &H[m][m]) tmp1.Mul(&H[m][m+1], &H[m][m+1]) tmp0.Add(tmp0, tmp1) var t0 big.Float e.Sqrt(tmp0, &t0) // Precision probably exhausted if t0.Sign() == 0 { return nil, ErrorPrecisionExhausted } var t1, t2 big.Float t1.Quo(&H[m][m], &t0) t2.Quo(&H[m][m+1], &t0) for i := m; i <= n; i++ { var t3, t4 big.Float t3.Set(&H[i][m]) t4.Set(&H[i][m+1]) // H[i][m] = (t1*t3 + t2*t4) >> prec tmp0.Mul(&t1, &t3) tmp1.Mul(&t2, &t4) H[i][m].Add(tmp0, tmp1) // H[i][m+1] = (-t2*t3 + t1*t4) >> prec tmp0.Mul(&t2, &t3) tmp1.Mul(&t1, &t4) H[i][m+1].Sub(tmp1, tmp0) } } if debug { fmt.Println("Step 3") printMatrix("H", H) } // Step 4 // Perform block reduction on H, simultaneously updating y, A and B: // // For i := m+1 to n: // for j := min(i−1, m+1) to 1 step −1: // t := nint(Hij/Hjj) // yj := yj + t * yi // for k := 1 to j: // Hik := Hik − tHjk // endfor // for k := 1 to n: // Aik := Aik −tAjk // Bkj := Bkj +tBki // endfor // endfor // endfor. for i := m + 1; i <= n; i++ { var t big.Int var tFloat big.Float for j := min(i-1, m+1); j > 0; j-- { if H[j][j].Sign() == 0 { // Precision probably exhausted return nil, ErrorPrecisionExhausted } tmp0.Quo(&H[i][j], &H[j][j]) e.NearestInt(tmp0, &t) tFloat.SetInt(&t).SetPrec(e.prec) // y[j] = y[j] + ((t * y[i]) >> prec) tmp0.Mul(&y[i], &tFloat) y[j].Add(&y[j], tmp0) for k := 1; k <= j; k++ { // H[i][k] = H[i][k] - (t * H[j][k] >> prec) tmp0.Mul(&H[j][k], &tFloat) H[i][k].Sub(&H[i][k], tmp0) } for k := 1; k <= n; k++ { bigTmp.Mul(&t, &A[j][k]) A[i][k].Sub(&A[i][k], bigTmp) bigTmp.Mul(&t, &B[k][i]) B[k][j].Add(&B[k][j], bigTmp) } } } if debug { fmt.Println("Step 4") printBigIntMatrix("A", A) printBigIntMatrix("B", B) printMatrix("H", H) } // Step 6 // // Termination test: If the largest entry of A exceeds // the level of numeric precision used, then precision // is exhausted. If the smallest entry of the y vector // is less than the detection threshold, a relation // has been detected and is given in the corresponding // column of B. // // Until a relation is found, the error typically decreases // slowly (e.g. a factor 1-10) with each step TODO: we could // compare err from two successive iterations. If there is a // large drop (several orders of magnitude), that indicates a // "high quality" relation was detected. Reporting this to // the user somehow might be useful. maxAPrecision := 0 for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { precision := A[i][j].BitLen() if precision > maxAPrecision { maxAPrecision = precision } } } if debug { log.Printf("Max A precision = %d, precision = %d, tolerance %d, ratio = %.3f\n", maxAPrecision, e.prec, e.target, float64(maxAPrecision)/float64(e.target)) } if float64(maxAPrecision)/float64(e.target) > 0.85 { if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) } return nil, ErrorPrecisionExhausted } var best_err big.Float best_err.Set(&e.maxcoeff_fp) for i := 1; i <= n; i++ { var err big.Float err.Abs(&y[i]) // Maybe we are done? if err.Cmp(&e.tol) < 0 { // We are done if the coefficients are acceptable var maxc big.Int for j := 1; j <= n; j++ { if debug { fmt.Printf("vec[%d]=%d\n", j-1, &B[j][i]) } t := B[j][i] if debug { fmt.Printf("vec[%d]=%d\n", j-1, t) } vec[j-1] = t if t.Sign() < 0 { t.Neg(&t) } if t.Cmp(&maxc) > 0 { maxc.Set(&t) } } if debug { fmt.Printf("maxc = %d, maxcoeff = %d\n", maxc, e.maxcoeff) } if maxc.Cmp(&e.maxcoeff) < 0 { if e.verbose { log.Printf("FOUND relation at iter %d/%d, error: %g", REP, e.maxsteps, &err) } // Find sign of first non zero item sign := 0 for i := range vec { sign = vec[i].Sign() if sign != 0 { break } } // Normalise vec making first non-zero argument positive if sign < 0 { for i := range vec { vec[i].Neg(&vec[i]) } } return vec, nil } } if err.Cmp(&best_err) < 0 { best_err = err } } // Step 5 // // Norm bound: Compute M := 1/maxj |Hj|, where Hj // denotes the j-th row of H. // // Then there can exist no relation vector whose // Euclidean norm is less than M. // // Calculate a lower bound for the norm. We could do this // more exactly (using the Euclidean norm) but there is probably // no practical benefit. var recnorm big.Float recnorm.SetInt64(0) for i := 1; i <= n; i++ { for j := 1; j <= n; j++ { tmp0.Abs(&H[i][j]) if tmp0.Cmp(&recnorm) > 0 { recnorm.Set(tmp0) } } } norm.Set(&e.maxcoeff) if recnorm.Sign() != 0 { // norm = ((1 << (2 * prec)) / recnorm) >> prec tmp0.Quo(&e.one, &recnorm) tmp0.Int(&norm) } if e.verbose { log.Printf("%2d/%2d: Error: %g Norm: %d", REP, e.maxsteps, &best_err, &norm) } if norm.Cmp(&e.maxcoeff) >= 0 { if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) log.Printf("Could not find an integer relation. Norm bound: %d", &norm) } return nil, ErrorNoRelationFound } } if e.verbose { log.Printf("CANCELLING after step %d/%d.", REP, e.maxsteps) log.Printf("Could not find an integer relation. Norm bound: %d", &norm) } return nil, ErrorIterationsExceeded }