Ejemplo n.º 1
0
// gfxLoop is responsible for drawing things to the window. This loop must be
// independent of the Chippy main loop.
func gfxLoop(w *chippy.Window, r gfx.Renderer) {
	// Load the Ice file.
	scene, err := ice.LoadFile(os.Args[1])
	if err != nil {
		log.Fatal(err)
	}

	// Setup a camera to use a perspective projection.
	camera := gfx.NewCamera()
	camFOV := 75.0
	camNear := 0.1
	camFar := 100.0
	camera.SetPersp(r.Bounds(), camFOV, camNear, camFar)

	// Move the camera -2 on the Y axis (back two units away from the triangle
	// object).
	//camera.SetPos(math.Vec3{0, -50, 10})
	//camera.SetPos(math.Vec3{0, -5, 2})
	camera.SetPos(math.Vec3{0, -7, 3})

	// Create a simple shader.
	shader := gfx.NewShader("SimpleShader")
	shader.GLSLVert = glslVert
	shader.GLSLFrag = glslFrag

	// Preload the shader (useful for seeing shader errors, if any).
	onLoad := make(chan *gfx.Shader, 1)
	r.LoadShader(shader, onLoad)
	go func() {
		<-onLoad
		shader.RLock()
		if !shader.Loaded {
			log.Println(string(shader.Error))
		}
		shader.RUnlock()
	}()

	// Assign the shader to each object in the scene.
	for _, o := range scene.Objects {
		o.Shader = shader
		o.State.FaceCulling = gfx.NoFaceCulling
		//var verts = make([]gfx.Vec3, 0, len(o.Meshes[0].Indices))
		//for _, v := range o.Meshes[0].Indices {
		//	verts = append(verts, o.Meshes[0].Vertices[v])
		//}
		//o.Meshes[0].Vertices = verts
		//o.Meshes[0].Indices = nil
		//if len(o.Meshes[0].Indices) > 5 {
		//	log.Println(name, len(o.Meshes[0].Indices))
		//	bad := o.Meshes[0].Indices[743]
		//	log.Println(o.Meshes[0].Vertices[bad])
		//	o.Meshes[0].Indices = o.Meshes[0].Indices[744-3:744]
		//}
	}

	// Start a goroutine to handle window events and move the camera around.
	go func() {
		event := w.Events()
		for {
			select {
			case e := <-event:
				switch ev := e.(type) {
				case keyboard.TypedEvent:
					if ev.Rune == 'm' {
						// Toggle MSAA now.
						msaa := !r.MSAA()
						r.SetMSAA(msaa)
						log.Println("MSAA Enabled?", msaa)
					}

				case mouse.Event:
					if ev.Button == mouse.Left && ev.State == mouse.Down {
						w.SetCursorGrabbed(!w.CursorGrabbed())
					}
				}
			}
		}
	}()

	event := w.Events()
	for {
	camEvents:
		for {
			select {
			case e := <-event:
				switch ev := e.(type) {
				case chippy.ResizedEvent:
					// Update the camera's projection matrix for the new width and
					// height.
					camera.Lock()
					camera.SetPersp(r.Bounds(), camFOV, camNear, camFar)
					camera.Unlock()

				case chippy.CursorPositionEvent:
					if w.CursorGrabbed() {
						dt := r.Clock().Dt()
						camera.Lock()
						camRot := camera.Rot()
						camRot.Z -= 4 * ev.X * dt
						camRot.X -= 4 * ev.Y * dt
						camera.SetRot(camRot)
						camera.Unlock()
					}
				}
			default:
				break camEvents
			}
		}

		// Move the camera now.
		if w.CursorGrabbed() {
			dt := r.Clock().Dt()
			var local, parent math.Vec3
			speed := 16.0
			if w.Keyboard.Down(keyboard.A) {
				local.X -= speed * dt
			}
			if w.Keyboard.Down(keyboard.D) {
				local.X += speed * dt
			}
			if w.Keyboard.Down(keyboard.W) {
				local.Y += speed * dt
			}
			if w.Keyboard.Down(keyboard.S) {
				local.Y -= speed * dt
			}
			if w.Keyboard.Down(keyboard.LeftCtrl) {
				parent.Z -= speed * dt
			}
			if w.Keyboard.Down(keyboard.LeftShift) {
				parent.Z += speed * dt
			}
			camera.Lock()
			worldSpace := camera.ConvertPos(local, gfx.LocalToWorld)
			parentSpace := camera.ConvertPos(worldSpace, gfx.WorldToParent)
			camera.SetPos(parentSpace.Add(parent))
			camera.Unlock()
		}

		// Clear the entire area (empty rectangle means "the whole area").
		r.Clear(image.Rect(0, 0, 0, 0), gfx.Color{1, 1, 1, 1})
		r.ClearDepth(image.Rect(0, 0, 0, 0), 1.0)

		// Draw each model in the scene.
		for _, o := range scene.Objects {
			r.Draw(image.Rect(0, 0, 0, 0), o, camera)
		}

		// Render the whole frame.
		r.Render()
	}
}
Ejemplo n.º 2
0
// gfxLoop is responsible for drawing things to the window. This loop must be
// independent of the Chippy main loop.
func gfxLoop(w *chippy.Window, r gfx.Renderer) {
	w.SetSize(640, 640)
	w.SetPositionCenter(chippy.DefaultScreen())
	glr := r.(*gl2.Renderer)
	glr.UpdateBounds(image.Rect(0, 0, 640, 640))

	// Create a perspective viewing frustum matrix.
	width, height := 640, 640
	aspectRatio := float64(width) / float64(height)
	viewMat := gfx.ConvertMat4(math.Mat4Perspective(75.0, aspectRatio, 0.001, 1000.0))

	// Create a camera.
	camera := &gfx.Camera{
		Object:  new(gfx.Object),
		Frustum: viewMat,
	}
	_ = camera

	// Create a wireframe shader.
	shader := &gfx.Shader{
		Name:     "wireframe shader",
		GLSLVert: wireVert,
		GLSLFrag: wireFrag,
		Inputs:   make(map[string]interface{}),
	}

	// Wait for the shader to load (not strictly required).
	onLoad := make(chan *gfx.Shader, 1)
	r.LoadShader(shader, onLoad)
	<-onLoad
	if shader.Loaded {
		fmt.Println("Shader loaded")
	} else {
		fmt.Println(string(shader.Error))
	}

	// Create a triangle object.
	triangle := &gfx.Object{
		Shader: shader,
		State:  gfx.DefaultState,
		Meshes: []*gfx.Mesh{
			&gfx.Mesh{
				Vertices: []gfx.Vec3{
					// Top
					{0, .9, 0},
					{-.9, -.9, 0},
					{.9, -.9, 0},
				},
				Colors: []gfx.Color{
					// Top
					{1, 0, 0, 0},
					{0, 1, 0, 0},
					{0, 0, 1, 0},
				},
			},
		},
	}
	triangle.State.FaceCulling = gfx.NoFaceCulling

	octree := gfx.NewOctree()

	update := make(chan *gfx.Object)
	go func() {
		events := w.Events()
		for {
			e := <-events
			kev, ok := e.(keyboard.TypedEvent)
			if ok {
				if kev.Rune == 'f' || kev.Rune == 'b' {
					for i := 0; i < 100; i++ {
						s := mySpatial{
							aabb: randomAABB(0.1, 0.25),
						}
						if kev.Rune == 'b' {
							s = mySpatial{
								aabb: randomAABB(0.1, 0.5),
							}
						}
						//s.aabb.Min.Z = -.1
						//s.aabb.Max.Z = .1
						//octree = gfx.NewOctree()
						octree.Add(s)
						//fmt.Println(s.AABB().Center(), s.AABB())
					}

					// Create new mesh and ask the renderer to load it.
					newMesh := octreeMesh(octree)
					onLoad := make(chan *gfx.Mesh, 1)
					r.LoadMesh(newMesh, onLoad)
					<-onLoad

					// Take ownership of the triangle.
					<-update

					// Swap the mesh.
					triangle.Meshes[0] = newMesh

					// Give back ownership.
					update <- triangle
				}

				if kev.Rune == 'q' {
					// Take ownership of the triangle.
					<-update

					// Update rotation.
					v, ok := triangle.Shader.Inputs["rx"]
					rx := float32(0.0)
					if ok {
						rx = v.(float32)
					}
					rx += 0.1
					triangle.Shader.Inputs["rx"] = rx

					// Give back ownership.
					update <- triangle
				}

				if kev.Rune == 's' || kev.Rune == 'S' {
					fmt.Println("Writing screenshot to file...")
					// Download the image from the graphics hardware and save
					// it to disk.
					complete := make(chan image.Image, 1)
					r.Download(image.Rect(0, 0, 0, 0), complete)
					img := <-complete // Wait for download to complete.

					// Save to png.
					f, err := os.Create("screenshot.png")
					if err != nil {
						log.Fatal(err)
					}
					err = png.Encode(f, img)
					if err != nil {
						log.Fatal(err)
					}
					fmt.Println("Wrote texture to screenshot.png")
				}
			}

		}
	}()

	triangleDrawn := make(chan *gfx.Object, 1)
	for {
		// Clear the entire area (empty rectangle means "the whole area").
		r.Clear(image.Rect(0, 0, 0, 0), gfx.Color{1, 1, 1, 1})
		r.ClearDepth(image.Rect(0, 0, 0, 0), 1.0)

		// See if someone else needs ownership of the triangle before we draw.
		select {
		case update <- triangle:
			// Wait for them to give ownership back.
			<-update
		default:
		}

		// Draw the triangle to the screen.
		r.Draw(image.Rect(0, 0, 0, 0), triangle, triangleDrawn)

		// Render the whole frame.
		r.Render()

		select {
		case <-triangleDrawn:
			// Allow updates to the triangle if needed.
			select {
			case update <- triangle:
				<-update
			default:
			}
		}
	}
}
Ejemplo n.º 3
0
// gfxLoop is responsible for drawing things to the window. This loop must be
// independent of the Chippy main loop.
func gfxLoop(w *chippy.Window, r gfx.Renderer) {
	w.SetSize(640, 640)
	w.SetPositionCenter(chippy.DefaultScreen())
	glr := r.(*gl2.Renderer)
	glr.UpdateBounds(image.Rect(0, 0, 640, 640))

	// Create a camera.

	// Wait for the shader to load (not strictly required).
	onLoad := make(chan *gfx.Shader, 1)
	r.LoadShader(Wireframe, onLoad)
	go func() {
		<-onLoad
		Wireframe.RLock()
		if Wireframe.Loaded {
			fmt.Println("Shader loaded")
		} else {
			fmt.Println(string(Wireframe.Error))
		}
		Wireframe.RUnlock()
	}()

	// Create a triangle object.
	triangle := gfx.NewObject()
	triangle.Shader = Wireframe
	triangle.Meshes = []*gfx.Mesh{
		&gfx.Mesh{},
	}
	triangle.Meshes[0].GenerateBary()
	triangle.FaceCulling = gfx.NoFaceCulling
	triangle.AlphaMode = gfx.AlphaToCoverage

	tree := ntree.New()
	level := 0

	go func() {
		events := w.Events()
		for {
			e := <-events
			kev, ok := e.(keyboard.TypedEvent)
			if ok {
				if kev.Rune == ' ' || kev.Rune == 'b' {
					for i := 0; i < 1; i++ {
						s := random(0.1, 0.15)
						if kev.Rune == 'b' {
							s = random(0.1, 0.5)
						}
						tree.Add(s)
					}

					// Create new mesh and ask the renderer to load it.
					newMesh := NTreeMesh(tree, level)
					onLoad := make(chan *gfx.Mesh, 1)
					r.LoadMesh(newMesh, onLoad)
					<-onLoad

					// Swap the mesh.
					triangle.Lock()
					triangle.Meshes[0] = newMesh
					triangle.Unlock()
				}

				if kev.Rune == '1' || kev.Rune == '2' {
					if kev.Rune == '1' {
						level--
					} else {
						level++
					}
					fmt.Println("level", level)

					// Create new mesh and ask the renderer to load it.
					newMesh := NTreeMesh(tree, level)
					onLoad := make(chan *gfx.Mesh, 1)
					r.LoadMesh(newMesh, onLoad)
					<-onLoad

					// Swap the mesh.
					triangle.Lock()
					triangle.Meshes[0] = newMesh
					triangle.Unlock()
				}

				if kev.Rune == 's' || kev.Rune == 'S' {
					fmt.Println("Writing screenshot to file...")
					// Download the image from the graphics hardware and save
					// it to disk.
					complete := make(chan image.Image, 1)
					r.Download(image.Rect(0, 0, 0, 0), complete)
					img := <-complete // Wait for download to complete.

					// Save to png.
					f, err := os.Create("screenshot.png")
					if err != nil {
						log.Fatal(err)
					}
					err = png.Encode(f, img)
					if err != nil {
						log.Fatal(err)
					}
					fmt.Println("Wrote texture to screenshot.png")
				}
			}

		}
	}()

	for {
		// Clear the entire area (empty rectangle means "the whole area").
		r.Clear(image.Rect(0, 0, 0, 0), gfx.Color{1, 1, 1, 1})
		r.ClearDepth(image.Rect(0, 0, 0, 0), 1.0)

		// Update the rotation.
		dt := r.Clock().Dt()
		triangle.RLock()
		rot := triangle.Transform.Rot()
		if w.Keyboard.Down(keyboard.ArrowLeft) {
			rot.Z += 90 * dt
		}
		if w.Keyboard.Down(keyboard.ArrowRight) {
			rot.Z -= 90 * dt
		}
		if w.Keyboard.Down(keyboard.ArrowUp) {
			rot.X += 20 * dt
		}
		if w.Keyboard.Down(keyboard.ArrowDown) {
			rot.X -= 20 * dt
		}
		triangle.Transform.SetRot(rot)
		triangle.RUnlock()

		// Draw the triangle to the screen.
		r.Draw(image.Rect(0, 0, 0, 0), triangle, nil)

		// Render the whole frame.
		r.Render()
	}
}