Ejemplo n.º 1
0
func (tm *LLVMTypeMap) Sizeof(typ types.Type) int64 {
	switch typ := typ.Underlying().(type) {
	case *types.Basic:
		switch typ.Kind() {
		case types.Int, types.Uint:
			return int64(tm.target.TypeAllocSize(tm.inttype))
		case types.Uintptr, types.UnsafePointer:
			return int64(tm.target.PointerSize())
		case types.String:
			return 2 * int64(tm.target.PointerSize())
		}
		return types.DefaultSizeof(typ)
	case *types.Array:
		eltsize := tm.Sizeof(typ.Elem())
		eltalign := tm.Alignof(typ.Elem())
		var eltpad int64
		if eltsize%eltalign != 0 {
			eltpad = eltalign - (eltsize % eltalign)
		}
		return (eltsize + eltpad) * typ.Len()
	case *types.Struct:
		if typ.NumFields() == 0 {
			return 0
		}
		fields := make([]*types.Field, int(typ.NumFields()))
		for i := range fields {
			fields[i] = typ.Field(i)
		}
		offsets := tm.Offsetsof(fields)
		n := len(fields)
		return offsets[n-1] + tm.Sizeof(fields[n-1].Type)
	}
	return int64(tm.target.PointerSize())
}
Ejemplo n.º 2
0
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t.  The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
	fl, ok := a.flattenMemo[t]
	if !ok {
		switch t := t.(type) {
		case *types.Named:
			u := t.Underlying()
			if _, ok := u.(*types.Interface); ok {
				// Debuggability hack: don't remove
				// the named type from interfaces as
				// they're very verbose.
				fl = append(fl, &fieldInfo{typ: t})
			} else {
				fl = a.flatten(u)
			}

		case *types.Basic,
			*types.Signature,
			*types.Chan,
			*types.Map,
			*types.Interface,
			*types.Slice,
			*types.Pointer:
			fl = append(fl, &fieldInfo{typ: t})

		case *types.Array:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for _, fi := range a.flatten(t.Elem()) {
				fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
			}

		case *types.Struct:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for i, n := 0, t.NumFields(); i < n; i++ {
				f := t.Field(i)
				for _, fi := range a.flatten(f.Type()) {
					fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
				}
			}

		case *types.Tuple:
			// No identity node: tuples are never address-taken.
			for i, n := 0, t.Len(); i < n; i++ {
				f := t.At(i)
				for _, fi := range a.flatten(f.Type()) {
					fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
				}
			}

		case *types.Builtin:
			panic("flatten(*types.Builtin)") // not the type of any value

		default:
			panic(t)
		}

		a.flattenMemo[t] = fl
	}

	return fl
}
Ejemplo n.º 3
0
func (tm *llvmTypeMap) Alignof(typ types.Type) int64 {
	switch typ := typ.Underlying().(type) {
	case *types.Array:
		return tm.Alignof(typ.Elem())
	case *types.Basic:
		switch typ.Kind() {
		case types.Int, types.Uint, types.Int64, types.Uint64,
			types.Float64, types.Complex64, types.Complex128:
			return int64(tm.target.TypeAllocSize(tm.inttype))
		case types.Uintptr, types.UnsafePointer, types.String:
			return int64(tm.target.PointerSize())
		}
		return tm.StdSizes.Alignof(typ)
	case *types.Struct:
		max := int64(1)
		for i := 0; i < typ.NumFields(); i++ {
			f := typ.Field(i)
			a := tm.Alignof(f.Type())
			if a > max {
				max = a
			}
		}
		return max
	}
	return int64(tm.target.PointerSize())
}
Ejemplo n.º 4
0
func (c *compiler) tollvmDebugDescriptor(t types.Type) llvm.DebugDescriptor {
	switch t := t.(type) {
	case *types.Pointer:
		return llvm.NewPointerDerivedType(c.tollvmDebugDescriptor(t.Elem()))
	case nil:
		return void_debug_type
	}
	bt := &llvm.BasicTypeDescriptor{
		Name:      c.types.TypeString(t),
		Size:      uint64(c.types.Sizeof(t) * 8),
		Alignment: uint64(c.types.Alignof(t) * 8),
	}
	if basic, ok := t.(*types.Basic); ok {
		switch bi := basic.Info(); {
		case bi&types.IsBoolean != 0:
			bt.TypeEncoding = llvm.DW_ATE_boolean
		case bi&types.IsUnsigned != 0:
			bt.TypeEncoding = llvm.DW_ATE_unsigned
		case bi&types.IsInteger != 0:
			bt.TypeEncoding = llvm.DW_ATE_signed
		case bi&types.IsFloat != 0:
			bt.TypeEncoding = llvm.DW_ATE_float
		}
	}
	return bt
}
Ejemplo n.º 5
0
// hashFor computes the hash of t.
func (h Hasher) hashFor(t types.Type) uint32 {
	// See IsIdentical for rationale.
	switch t := t.(type) {
	case *types.Basic:
		return uint32(t.Kind())

	case *types.Array:
		return 9043 + 2*uint32(t.Len()) + 3*h.Hash(t.Elem())

	case *types.Slice:
		return 9049 + 2*h.Hash(t.Elem())

	case *types.Struct:
		var hash uint32 = 9059
		for i, n := 0, t.NumFields(); i < n; i++ {
			f := t.Field(i)
			if f.Anonymous() {
				hash += 8861
			}
			hash += hashString(t.Tag(i))
			hash += hashString(f.Name()) // (ignore f.Pkg)
			hash += h.Hash(f.Type())
		}
		return hash

	case *types.Pointer:
		return 9067 + 2*h.Hash(t.Elem())

	case *types.Signature:
		var hash uint32 = 9091
		if t.IsVariadic() {
			hash *= 8863
		}
		return hash + 3*h.hashTuple(t.Params()) + 5*h.hashTuple(t.Results())

	case *types.Interface:
		var hash uint32 = 9103
		for i, n := 0, t.NumMethods(); i < n; i++ {
			// See go/types.identicalMethods for rationale.
			// Method order is not significant.
			// Ignore m.Pkg().
			m := t.Method(i)
			hash += 3*hashString(m.Name()) + 5*h.Hash(m.Type())
		}
		return hash

	case *types.Map:
		return 9109 + 2*h.Hash(t.Key()) + 3*h.Hash(t.Elem())

	case *types.Chan:
		return 9127 + 2*uint32(t.Dir()) + 3*h.Hash(t.Elem())

	case *types.Named:
		// Not safe with a copying GC; objects may move.
		return uint32(uintptr(unsafe.Pointer(t.Obj())))
	}
	panic("unexpected type")
}
Ejemplo n.º 6
0
// canHaveConcreteMethods returns true iff typ may have concrete
// methods associated with it.  Callers must supply allowPtr=true.
//
// TODO(gri): consider putting this in go/types.  It's surprisingly subtle.
func canHaveConcreteMethods(typ types.Type, allowPtr bool) bool {
	switch typ := typ.(type) {
	case *types.Pointer:
		return allowPtr && canHaveConcreteMethods(typ.Elem(), false)
	case *types.Named:
		switch typ.Underlying().(type) {
		case *types.Pointer, *types.Interface:
			return false
		}
		return true
	case *types.Struct:
		return true
	}
	return false
}
Ejemplo n.º 7
0
func (tm *llvmTypeMap) Sizeof(typ types.Type) int64 {
	switch typ := typ.Underlying().(type) {
	case *types.Basic:
		switch typ.Kind() {
		case types.Int, types.Uint:
			return int64(tm.target.TypeAllocSize(tm.inttype))
		case types.Uintptr, types.UnsafePointer:
			return int64(tm.target.PointerSize())
		}
		return tm.StdSizes.Sizeof(typ)
	case *types.Array:
		eltsize := tm.Sizeof(typ.Elem())
		eltalign := tm.Alignof(typ.Elem())
		var eltpad int64
		if eltsize%eltalign != 0 {
			eltpad = eltalign - (eltsize % eltalign)
		}
		return (eltsize + eltpad) * typ.Len()
	case *types.Slice:
		return 3 * int64(tm.target.PointerSize())
	case *types.Struct:
		n := typ.NumFields()
		if n == 0 {
			return 0
		}
		fields := make([]*types.Var, n)
		for i := range fields {
			fields[i] = typ.Field(i)
		}
		offsets := tm.Offsetsof(fields)
		return offsets[n-1] + tm.Sizeof(fields[n-1].Type())
	case *types.Interface:
		return int64((2 + typ.NumMethods()) * tm.target.PointerSize())
	}
	return int64(tm.target.PointerSize())
}
Ejemplo n.º 8
0
// typeBaseType returns the base type for a types.Type.
func typeBaseType(t types.Type) types.Type {
	switch t := t.(type) {
	case *types.Array:
		return typeBaseType(t.Elem())
	case *types.Pointer:
		return typeBaseType(t.Deref())
	case *types.Map:
		return typeBaseType(t.Elem()) // TODO(sqs): also return Key type; typeBaseType needs to return multiple results?
	case *types.Slice:
		return typeBaseType(t.Elem())
	}
	return t
}
Ejemplo n.º 9
0
func (v *LLVMValue) Convert(dsttyp types.Type) Value {
	b := v.compiler.builder

	// If it's a stack allocated value, we'll want to compare the
	// value type, not the pointer type.
	srctyp := v.typ

	// Get the underlying type, if any.
	origdsttyp := dsttyp
	dsttyp = dsttyp.Underlying()
	srctyp = srctyp.Underlying()

	// Identical (underlying) types? Just swap in the destination type.
	if types.IsIdentical(srctyp, dsttyp) {
		// A method converted to a function type without the
		// receiver is where we convert a "method value" into a
		// function.
		if srctyp, ok := srctyp.(*types.Signature); ok && srctyp.Recv() != nil {
			if dsttyp, ok := dsttyp.(*types.Signature); ok && dsttyp.Recv() == nil {
				return v.convertMethodValue(origdsttyp)
			}
		}

		// TODO avoid load here by reusing pointer value, if exists.
		return v.compiler.NewValue(v.LLVMValue(), origdsttyp)
	}

	// Both pointer types with identical underlying types? Same as above.
	if srctyp, ok := srctyp.(*types.Pointer); ok {
		if dsttyp, ok := dsttyp.(*types.Pointer); ok {
			srctyp := srctyp.Elem().Underlying()
			dsttyp := dsttyp.Elem().Underlying()
			if types.IsIdentical(srctyp, dsttyp) {
				return v.compiler.NewValue(v.LLVMValue(), origdsttyp)
			}
		}
	}

	// Convert from an interface type.
	if _, isinterface := srctyp.(*types.Interface); isinterface {
		if interface_, isinterface := dsttyp.(*types.Interface); isinterface {
			return v.mustConvertI2I(interface_)
		} else {
			return v.mustConvertI2V(origdsttyp)
		}
	}

	// Converting to an interface type.
	if interface_, isinterface := dsttyp.(*types.Interface); isinterface {
		return v.convertV2I(interface_)
	}

	byteslice := types.NewSlice(types.Typ[types.Byte])
	runeslice := types.NewSlice(types.Typ[types.Rune])

	// string ->
	if isString(srctyp) {
		// (untyped) string -> string
		// XXX should untyped strings be able to escape go/types?
		if isString(dsttyp) {
			return v.compiler.NewValue(v.LLVMValue(), origdsttyp)
		}

		// string -> []byte
		if types.IsIdentical(dsttyp, byteslice) {
			c := v.compiler
			value := v.LLVMValue()
			strdata := c.builder.CreateExtractValue(value, 0, "")
			strlen := c.builder.CreateExtractValue(value, 1, "")

			// Data must be copied, to prevent changes in
			// the byte slice from mutating the string.
			newdata := c.builder.CreateArrayMalloc(strdata.Type().ElementType(), strlen, "")
			memcpy := c.NamedFunction("runtime.memcpy", "func(uintptr, uintptr, uintptr)")
			c.builder.CreateCall(memcpy, []llvm.Value{
				c.builder.CreatePtrToInt(newdata, c.target.IntPtrType(), ""),
				c.builder.CreatePtrToInt(strdata, c.target.IntPtrType(), ""),
				strlen,
			}, "")
			strdata = newdata

			struct_ := llvm.Undef(c.types.ToLLVM(byteslice))
			struct_ = c.builder.CreateInsertValue(struct_, strdata, 0, "")
			struct_ = c.builder.CreateInsertValue(struct_, strlen, 1, "")
			struct_ = c.builder.CreateInsertValue(struct_, strlen, 2, "")
			return c.NewValue(struct_, byteslice)
		}

		// string -> []rune
		if types.IsIdentical(dsttyp, runeslice) {
			return v.stringToRuneSlice()
		}
	}

	// []byte -> string
	if types.IsIdentical(srctyp, byteslice) && isString(dsttyp) {
		c := v.compiler
		value := v.LLVMValue()
		data := c.builder.CreateExtractValue(value, 0, "")
		len := c.builder.CreateExtractValue(value, 1, "")

		// Data must be copied, to prevent changes in
		// the byte slice from mutating the string.
		newdata := c.builder.CreateArrayMalloc(data.Type().ElementType(), len, "")
		memcpy := c.NamedFunction("runtime.memcpy", "func(uintptr, uintptr, uintptr)")
		c.builder.CreateCall(memcpy, []llvm.Value{
			c.builder.CreatePtrToInt(newdata, c.target.IntPtrType(), ""),
			c.builder.CreatePtrToInt(data, c.target.IntPtrType(), ""),
			len,
		}, "")
		data = newdata

		struct_ := llvm.Undef(c.types.ToLLVM(types.Typ[types.String]))
		struct_ = c.builder.CreateInsertValue(struct_, data, 0, "")
		struct_ = c.builder.CreateInsertValue(struct_, len, 1, "")
		return c.NewValue(struct_, types.Typ[types.String])
	}

	// []rune -> string
	if types.IsIdentical(srctyp, runeslice) && isString(dsttyp) {
		return v.runeSliceToString()
	}

	// rune -> string
	if isString(dsttyp) && isInteger(srctyp) {
		return v.runeToString()
	}

	// TODO other special conversions?
	llvm_type := v.compiler.types.ToLLVM(dsttyp)

	// Unsafe pointer conversions.
	if dsttyp == types.Typ[types.UnsafePointer] { // X -> unsafe.Pointer
		if _, isptr := srctyp.(*types.Pointer); isptr {
			value := b.CreatePtrToInt(v.LLVMValue(), llvm_type, "")
			return v.compiler.NewValue(value, origdsttyp)
		} else if srctyp == types.Typ[types.Uintptr] {
			return v.compiler.NewValue(v.LLVMValue(), origdsttyp)
		}
	} else if srctyp == types.Typ[types.UnsafePointer] { // unsafe.Pointer -> X
		if _, isptr := dsttyp.(*types.Pointer); isptr {
			value := b.CreateIntToPtr(v.LLVMValue(), llvm_type, "")
			return v.compiler.NewValue(value, origdsttyp)
		} else if dsttyp == types.Typ[types.Uintptr] {
			return v.compiler.NewValue(v.LLVMValue(), origdsttyp)
		}
	}

	lv := v.LLVMValue()
	srcType := lv.Type()
	switch srcType.TypeKind() {
	case llvm.IntegerTypeKind:
		switch llvm_type.TypeKind() {
		case llvm.IntegerTypeKind:
			srcBits := srcType.IntTypeWidth()
			dstBits := llvm_type.IntTypeWidth()
			delta := srcBits - dstBits
			switch {
			case delta < 0:
				// TODO check if (un)signed, use S/ZExt accordingly.
				lv = b.CreateZExt(lv, llvm_type, "")
			case delta > 0:
				lv = b.CreateTrunc(lv, llvm_type, "")
			}
			return v.compiler.NewValue(lv, origdsttyp)
		case llvm.FloatTypeKind, llvm.DoubleTypeKind:
			if !isUnsigned(v.Type()) {
				lv = b.CreateSIToFP(lv, llvm_type, "")
			} else {
				lv = b.CreateUIToFP(lv, llvm_type, "")
			}
			return v.compiler.NewValue(lv, origdsttyp)
		}
	case llvm.DoubleTypeKind:
		switch llvm_type.TypeKind() {
		case llvm.FloatTypeKind:
			lv = b.CreateFPTrunc(lv, llvm_type, "")
			return v.compiler.NewValue(lv, origdsttyp)
		case llvm.IntegerTypeKind:
			if !isUnsigned(dsttyp) {
				lv = b.CreateFPToSI(lv, llvm_type, "")
			} else {
				lv = b.CreateFPToUI(lv, llvm_type, "")
			}
			return v.compiler.NewValue(lv, origdsttyp)
		}
	case llvm.FloatTypeKind:
		switch llvm_type.TypeKind() {
		case llvm.DoubleTypeKind:
			lv = b.CreateFPExt(lv, llvm_type, "")
			return v.compiler.NewValue(lv, origdsttyp)
		case llvm.IntegerTypeKind:
			if !isUnsigned(dsttyp) {
				lv = b.CreateFPToSI(lv, llvm_type, "")
			} else {
				lv = b.CreateFPToUI(lv, llvm_type, "")
			}
			return v.compiler.NewValue(lv, origdsttyp)
		}
	}

	// Complex -> complex. Complexes are only convertible to other
	// complexes, contant conversions aside. So we can just check the
	// source type here; given that the types are not identical
	// (checked above), we can assume the destination type is the alternate
	// complex type.
	if isComplex(srctyp) {
		var fpcast func(*Builder, llvm.Value, llvm.Type, string) llvm.Value
		var fptype llvm.Type
		if srctyp == types.Typ[types.Complex64] {
			fpcast = (*Builder).CreateFPExt
			fptype = llvm.DoubleType()
		} else {
			fpcast = (*Builder).CreateFPTrunc
			fptype = llvm.FloatType()
		}
		if fpcast != nil {
			realv := b.CreateExtractValue(lv, 0, "")
			imagv := b.CreateExtractValue(lv, 1, "")
			realv = fpcast(b, realv, fptype, "")
			imagv = fpcast(b, imagv, fptype, "")
			lv = llvm.Undef(v.compiler.types.ToLLVM(dsttyp))
			lv = b.CreateInsertValue(lv, realv, 0, "")
			lv = b.CreateInsertValue(lv, imagv, 1, "")
			return v.compiler.NewValue(lv, origdsttyp)
		}
	}

	srcstr := v.compiler.types.TypeString(v.typ)
	dststr := v.compiler.types.TypeString(origdsttyp)
	panic(fmt.Sprintf("unimplemented conversion: %s -> %s", srcstr, dststr))
}
Ejemplo n.º 10
0
// matchArgTypeInternal is the internal version of matchArgType. It carries a map
// remembering what types are in progress so we don't recur when faced with recursive
// types or mutually recursive types.
func (f *File) matchArgTypeInternal(t printfArgType, typ types.Type, arg ast.Expr, inProgress map[types.Type]bool) bool {
	// %v, %T accept any argument type.
	if t == anyType {
		return true
	}
	if typ == nil {
		// external call
		typ = f.pkg.types[arg].Type
		if typ == nil {
			return true // probably a type check problem
		}
	}
	// If the type implements fmt.Formatter, we have nothing to check.
	// But (see issue 6259) that's not easy to verify, so instead we see
	// if its method set contains a Format function. We could do better,
	// even now, but we don't need to be 100% accurate. Wait for 6259 to
	// be fixed instead. TODO.
	if f.hasMethod(typ, "Format") {
		return true
	}
	// If we can use a string, might arg (dynamically) implement the Stringer or Error interface?
	if t&argString != 0 {
		if types.AssertableTo(errorType, typ) || types.AssertableTo(stringerType, typ) {
			return true
		}
	}

	typ = typ.Underlying()
	if inProgress[typ] {
		// We're already looking at this type. The call that started it will take care of it.
		return true
	}
	inProgress[typ] = true

	switch typ := typ.(type) {
	case *types.Signature:
		return t&argPointer != 0

	case *types.Map:
		// Recur: map[int]int matches %d.
		return t&argPointer != 0 ||
			(f.matchArgTypeInternal(t, typ.Key(), arg, inProgress) && f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress))

	case *types.Chan:
		return t&argPointer != 0

	case *types.Array:
		// Same as slice.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		// Recur: []int matches %d.
		return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem().Underlying(), arg, inProgress)

	case *types.Slice:
		// Same as array.
		if types.Identical(typ.Elem().Underlying(), types.Typ[types.Byte]) && t&argString != 0 {
			return true // %s matches []byte
		}
		// Recur: []int matches %d. But watch out for
		//	type T []T
		// If the element is a pointer type (type T[]*T), it's handled fine by the Pointer case below.
		return t&argPointer != 0 || f.matchArgTypeInternal(t, typ.Elem(), arg, inProgress)

	case *types.Pointer:
		// Ugly, but dealing with an edge case: a known pointer to an invalid type,
		// probably something from a failed import.
		if typ.Elem().String() == "invalid type" {
			if *verbose {
				f.Warnf(arg.Pos(), "printf argument %v is pointer to invalid or unknown type", f.gofmt(arg))
			}
			return true // special case
		}
		// If it's actually a pointer with %p, it prints as one.
		if t == argPointer {
			return true
		}
		// If it's pointer to struct, that's equivalent in our analysis to whether we can print the struct.
		if str, ok := typ.Elem().Underlying().(*types.Struct); ok {
			return f.matchStructArgType(t, str, arg, inProgress)
		}
		// The rest can print with %p as pointers, or as integers with %x etc.
		return t&(argInt|argPointer) != 0

	case *types.Struct:
		return f.matchStructArgType(t, typ, arg, inProgress)

	case *types.Interface:
		// If the static type of the argument is empty interface, there's little we can do.
		// Example:
		//	func f(x interface{}) { fmt.Printf("%s", x) }
		// Whether x is valid for %s depends on the type of the argument to f. One day
		// we will be able to do better. For now, we assume that empty interface is OK
		// but non-empty interfaces, with Stringer and Error handled above, are errors.
		return typ.NumMethods() == 0

	case *types.Basic:
		switch typ.Kind() {
		case types.UntypedBool,
			types.Bool:
			return t&argBool != 0

		case types.UntypedInt,
			types.Int,
			types.Int8,
			types.Int16,
			types.Int32,
			types.Int64,
			types.Uint,
			types.Uint8,
			types.Uint16,
			types.Uint32,
			types.Uint64,
			types.Uintptr:
			return t&argInt != 0

		case types.UntypedFloat,
			types.Float32,
			types.Float64:
			return t&argFloat != 0

		case types.UntypedComplex,
			types.Complex64,
			types.Complex128:
			return t&argComplex != 0

		case types.UntypedString,
			types.String:
			return t&argString != 0

		case types.UnsafePointer:
			return t&(argPointer|argInt) != 0

		case types.UntypedRune:
			return t&(argInt|argRune) != 0

		case types.UntypedNil:
			return t&argPointer != 0 // TODO?

		case types.Invalid:
			if *verbose {
				f.Warnf(arg.Pos(), "printf argument %v has invalid or unknown type", f.gofmt(arg))
			}
			return true // Probably a type check problem.
		}
		panic("unreachable")
	}

	return false
}
Ejemplo n.º 11
0
Archivo: ops.go Proyecto: 4honor/obdi
// zero returns a new "zero" value of the specified type.
func zero(t types.Type) value {
	switch t := t.(type) {
	case *types.Basic:
		if t.Kind() == types.UntypedNil {
			panic("untyped nil has no zero value")
		}
		if t.Info()&types.IsUntyped != 0 {
			// TODO(adonovan): make it an invariant that
			// this is unreachable.  Currently some
			// constants have 'untyped' types when they
			// should be defaulted by the typechecker.
			t = ssa.DefaultType(t).(*types.Basic)
		}
		switch t.Kind() {
		case types.Bool:
			return false
		case types.Int:
			return int(0)
		case types.Int8:
			return int8(0)
		case types.Int16:
			return int16(0)
		case types.Int32:
			return int32(0)
		case types.Int64:
			return int64(0)
		case types.Uint:
			return uint(0)
		case types.Uint8:
			return uint8(0)
		case types.Uint16:
			return uint16(0)
		case types.Uint32:
			return uint32(0)
		case types.Uint64:
			return uint64(0)
		case types.Uintptr:
			return uintptr(0)
		case types.Float32:
			return float32(0)
		case types.Float64:
			return float64(0)
		case types.Complex64:
			return complex64(0)
		case types.Complex128:
			return complex128(0)
		case types.String:
			return ""
		case types.UnsafePointer:
			return unsafe.Pointer(nil)
		default:
			panic(fmt.Sprint("zero for unexpected type:", t))
		}
	case *types.Pointer:
		return (*value)(nil)
	case *types.Array:
		a := make(array, t.Len())
		for i := range a {
			a[i] = zero(t.Elem())
		}
		return a
	case *types.Named:
		return zero(t.Underlying())
	case *types.Interface:
		return iface{} // nil type, methodset and value
	case *types.Slice:
		return []value(nil)
	case *types.Struct:
		s := make(structure, t.NumFields())
		for i := range s {
			s[i] = zero(t.Field(i).Type())
		}
		return s
	case *types.Tuple:
		if t.Len() == 1 {
			return zero(t.At(0).Type())
		}
		s := make(tuple, t.Len())
		for i := range s {
			s[i] = zero(t.At(i).Type())
		}
		return s
	case *types.Chan:
		return chan value(nil)
	case *types.Map:
		if usesBuiltinMap(t.Key()) {
			return map[value]value(nil)
		}
		return (*hashmap)(nil)
	case *types.Signature:
		return (*ssa.Function)(nil)
	}
	panic(fmt.Sprint("zero: unexpected ", t))
}
Ejemplo n.º 12
0
func (w *Walker) writeType(buf *bytes.Buffer, typ types.Type) {
	switch typ := typ.(type) {
	case *types.Basic:
		s := typ.Name()
		switch typ.Kind() {
		case types.UnsafePointer:
			s = "unsafe.Pointer"
		case types.UntypedBool:
			s = "ideal-bool"
		case types.UntypedInt:
			s = "ideal-int"
		case types.UntypedRune:
			// "ideal-char" for compatibility with old tool
			// TODO(gri) change to "ideal-rune"
			s = "ideal-char"
		case types.UntypedFloat:
			s = "ideal-float"
		case types.UntypedComplex:
			s = "ideal-complex"
		case types.UntypedString:
			s = "ideal-string"
		case types.UntypedNil:
			panic("should never see untyped nil type")
		default:
			switch s {
			case "byte":
				s = "uint8"
			case "rune":
				s = "int32"
			}
		}
		buf.WriteString(s)

	case *types.Array:
		fmt.Fprintf(buf, "[%d]", typ.Len())
		w.writeType(buf, typ.Elem())

	case *types.Slice:
		buf.WriteString("[]")
		w.writeType(buf, typ.Elem())

	case *types.Struct:
		buf.WriteString("struct")

	case *types.Pointer:
		buf.WriteByte('*')
		w.writeType(buf, typ.Elem())

	case *types.Tuple:
		panic("should never see a tuple type")

	case *types.Signature:
		buf.WriteString("func")
		w.writeSignature(buf, typ)

	case *types.Interface:
		buf.WriteString("interface{")
		if typ.NumMethods() > 0 {
			buf.WriteByte(' ')
			buf.WriteString(strings.Join(sortedMethodNames(typ), ", "))
			buf.WriteByte(' ')
		}
		buf.WriteString("}")

	case *types.Map:
		buf.WriteString("map[")
		w.writeType(buf, typ.Key())
		buf.WriteByte(']')
		w.writeType(buf, typ.Elem())

	case *types.Chan:
		var s string
		switch typ.Dir() {
		case ast.SEND:
			s = "chan<- "
		case ast.RECV:
			s = "<-chan "
		default:
			s = "chan "
		}
		buf.WriteString(s)
		w.writeType(buf, typ.Elem())

	case *types.Named:
		obj := typ.Obj()
		pkg := obj.Pkg()
		if pkg != nil && pkg != w.current {
			buf.WriteString(pkg.Name())
			buf.WriteByte('.')
		}
		buf.WriteString(typ.Obj().Name())

	default:
		panic(fmt.Sprintf("unknown type %T", typ))
	}
}
Ejemplo n.º 13
0
Archivo: util.go Proyecto: 4honor/obdi
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t.  The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
	fl, ok := a.flattenMemo[t]
	if !ok {
		switch t := t.(type) {
		case *types.Named:
			u := t.Underlying()
			if isInterface(u) {
				// Debuggability hack: don't remove
				// the named type from interfaces as
				// they're very verbose.
				fl = append(fl, &fieldInfo{typ: t})
			} else {
				fl = a.flatten(u)
			}

		case *types.Basic,
			*types.Signature,
			*types.Chan,
			*types.Map,
			*types.Interface,
			*types.Slice,
			*types.Pointer:
			fl = append(fl, &fieldInfo{typ: t})

		case *types.Array:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for _, fi := range a.flatten(t.Elem()) {
				fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
			}

		case *types.Struct:
			fl = append(fl, &fieldInfo{typ: t}) // identity node
			for i, n := 0, t.NumFields(); i < n; i++ {
				f := t.Field(i)
				for _, fi := range a.flatten(f.Type()) {
					fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
				}
			}

		case *types.Tuple:
			// No identity node: tuples are never address-taken.
			n := t.Len()
			if n == 1 {
				// Don't add a fieldInfo link for singletons,
				// e.g. in params/results.
				fl = append(fl, a.flatten(t.At(0).Type())...)
			} else {
				for i := 0; i < n; i++ {
					f := t.At(i)
					for _, fi := range a.flatten(f.Type()) {
						fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
					}
				}
			}

		default:
			panic(t)
		}

		a.flattenMemo[t] = fl
	}

	return fl
}