Ejemplo n.º 1
0
// Send implements the batch.Sender interface. If the request is part of a
// transaction, the TxnCoordSender adds the transaction to a map of active
// transactions and begins heartbeating it. Every subsequent request for the
// same transaction updates the lastUpdate timestamp to prevent live
// transactions from being considered abandoned and garbage collected.
// Read/write mutating requests have their key or key range added to the
// transaction's interval tree of key ranges for eventual cleanup via resolved
// write intents; they're tagged to an outgoing EndTransaction request, with
// the receiving replica in charge of resolving them.
func (tc *TxnCoordSender) Send(
	ctx context.Context, ba roachpb.BatchRequest,
) (*roachpb.BatchResponse, *roachpb.Error) {
	// Start new or pick up active trace. From here on, there's always an active
	// Trace, though its overhead is small unless it's sampled.
	sp := opentracing.SpanFromContext(ctx)
	var tracer opentracing.Tracer
	if sp == nil {
		tracer = tc.AmbientContext.Tracer
		sp = tracer.StartSpan(opTxnCoordSender)
		defer sp.Finish()
		ctx = opentracing.ContextWithSpan(ctx, sp)
	} else {
		tracer = sp.Tracer()
	}

	startNS := tc.clock.PhysicalNow()

	if ba.Txn != nil {
		// If this request is part of a transaction...
		if err := tc.maybeBeginTxn(&ba); err != nil {
			return nil, roachpb.NewError(err)
		}

		txnID := *ba.Txn.ID

		// Associate the txnID with the trace. We need to do this after the
		// maybeBeginTxn call. We set both a baggage item and a tag because only
		// tags show up in the LIghtstep UI.
		txnIDStr := txnID.String()
		sp.SetTag("txnID", txnIDStr)
		sp.SetBaggageItem("txnID", txnIDStr)

		var et *roachpb.EndTransactionRequest
		var hasET bool
		{
			var rArgs roachpb.Request
			rArgs, hasET = ba.GetArg(roachpb.EndTransaction)
			if hasET {
				et = rArgs.(*roachpb.EndTransactionRequest)
				if len(et.Key) != 0 {
					return nil, roachpb.NewErrorf("EndTransaction must not have a Key set")
				}
				et.Key = ba.Txn.Key
				if len(et.IntentSpans) > 0 {
					// TODO(tschottdorf): it may be useful to allow this later.
					// That would be part of a possible plan to allow txns which
					// write on multiple coordinators.
					return nil, roachpb.NewErrorf("client must not pass intents to EndTransaction")
				}
			}
		}

		if pErr := func() *roachpb.Error {
			tc.Lock()
			defer tc.Unlock()
			if pErr := tc.maybeRejectClientLocked(ctx, *ba.Txn); pErr != nil {
				return pErr
			}

			if !hasET {
				return nil
			}
			// Everything below is carried out only when trying to commit.

			// Populate et.IntentSpans, taking into account both any existing
			// and new writes, and taking care to perform proper deduplication.
			txnMeta := tc.txns[txnID]
			distinctSpans := true
			if txnMeta != nil {
				et.IntentSpans = txnMeta.keys
				// Defensively set distinctSpans to false if we had any previous
				// requests in this transaction. This effectively limits the distinct
				// spans optimization to 1pc transactions.
				distinctSpans = len(txnMeta.keys) == 0
			}
			// We can't pass in a batch response here to better limit the key
			// spans as we don't know what is going to be affected. This will
			// affect queries such as `DELETE FROM my.table LIMIT 10` when
			// executed as a 1PC transaction. e.g.: a (BeginTransaction,
			// DeleteRange, EndTransaction) batch.
			ba.IntentSpanIterate(nil, func(key, endKey roachpb.Key) {
				et.IntentSpans = append(et.IntentSpans, roachpb.Span{
					Key:    key,
					EndKey: endKey,
				})
			})
			// TODO(peter): Populate DistinctSpans on all batches, not just batches
			// which contain an EndTransactionRequest.
			var distinct bool
			// The request might already be used by an outgoing goroutine, so
			// we can't safely mutate anything in-place (as MergeSpans does).
			et.IntentSpans = append([]roachpb.Span(nil), et.IntentSpans...)
			et.IntentSpans, distinct = roachpb.MergeSpans(et.IntentSpans)
			ba.Header.DistinctSpans = distinct && distinctSpans
			if len(et.IntentSpans) == 0 {
				// If there aren't any intents, then there's factually no
				// transaction to end. Read-only txns have all of their state
				// in the client.
				return roachpb.NewErrorf("cannot commit a read-only transaction")
			}
			if txnMeta != nil {
				txnMeta.keys = et.IntentSpans
			}
			return nil
		}(); pErr != nil {
			return nil, pErr
		}

		if hasET && log.V(1) {
			for _, intent := range et.IntentSpans {
				log.Eventf(ctx, "intent: [%s,%s)", intent.Key, intent.EndKey)
			}
		}
	}

	// Embed the trace metadata into the header for use by RPC recipients. We need
	// to do this after the maybeBeginTxn call above.
	// TODO(tschottdorf): To get rid of the spurious alloc below we need to
	// implement the carrier interface on ba.Header or make Span non-nullable,
	// both of which force all of ba on the Heap. It's already there, so may
	// not be a big deal, but ba should live on the stack. Also not easy to use
	// a buffer pool here since anything that goes into the RPC layer could be
	// used by goroutines we didn't wait for.
	if ba.TraceContext == nil {
		ba.TraceContext = &tracing.SpanContextCarrier{}
	} else {
		// We didn't make this object but are about to mutate it, so we
		// have to take a copy - the original might already have been
		// passed to the RPC layer.
		ba.TraceContext = protoutil.Clone(ba.TraceContext).(*tracing.SpanContextCarrier)
	}
	if err := tracer.Inject(sp.Context(), basictracer.Delegator, ba.TraceContext); err != nil {
		return nil, roachpb.NewError(err)
	}

	// Send the command through wrapped sender, taking appropriate measures
	// on error.
	var br *roachpb.BatchResponse
	{
		var pErr *roachpb.Error
		br, pErr = tc.wrapped.Send(ctx, ba)

		if _, ok := pErr.GetDetail().(*roachpb.OpRequiresTxnError); ok {
			// TODO(tschottdorf): needs to keep the trace.
			br, pErr = tc.resendWithTxn(ba)
		}

		if pErr = tc.updateState(ctx, startNS, ba, br, pErr); pErr != nil {
			log.Eventf(ctx, "error: %s", pErr)
			return nil, pErr
		}
	}

	if br.Txn == nil {
		return br, nil
	}

	if _, ok := ba.GetArg(roachpb.EndTransaction); !ok {
		return br, nil
	}
	// If the --linearizable flag is set, we want to make sure that
	// all the clocks in the system are past the commit timestamp
	// of the transaction. This is guaranteed if either
	// - the commit timestamp is MaxOffset behind startNS
	// - MaxOffset ns were spent in this function
	// when returning to the client. Below we choose the option
	// that involves less waiting, which is likely the first one
	// unless a transaction commits with an odd timestamp.
	if tsNS := br.Txn.Timestamp.WallTime; startNS > tsNS {
		startNS = tsNS
	}
	sleepNS := tc.clock.MaxOffset() -
		time.Duration(tc.clock.PhysicalNow()-startNS)
	if tc.linearizable && sleepNS > 0 {
		defer func() {
			if log.V(1) {
				log.Infof(ctx, "%v: waiting %s on EndTransaction for linearizability", br.Txn.Short(), util.TruncateDuration(sleepNS, time.Millisecond))
			}
			time.Sleep(sleepNS)
		}()
	}
	if br.Txn.Status != roachpb.PENDING {
		tc.Lock()
		tc.cleanupTxnLocked(ctx, *br.Txn)
		tc.Unlock()
	}
	return br, nil
}