Ejemplo n.º 1
0
func main() {

	// GA parameters
	C := goga.ReadConfParams("tsp-simple.json")
	rnd.Init(C.Seed)

	// location / coordinates of stations
	locations := [][]float64{
		{60, 200}, {180, 200}, {80, 180}, {140, 180}, {20, 160}, {100, 160}, {200, 160},
		{140, 140}, {40, 120}, {100, 120}, {180, 100}, {60, 80}, {120, 80}, {180, 60},
		{20, 40}, {100, 40}, {200, 40}, {20, 20}, {60, 20}, {160, 20},
	}
	nstations := len(locations)
	C.SetIntOrd(nstations)
	C.CalcDerived()

	// objective value function
	C.OvaOor = func(ind *goga.Individual, idIsland, time int, report *bytes.Buffer) {
		L := locations
		ids := ind.Ints
		dist := 0.0
		for i := 1; i < nstations; i++ {
			a, b := ids[i-1], ids[i]
			dist += math.Sqrt(math.Pow(L[b][0]-L[a][0], 2.0) + math.Pow(L[b][1]-L[a][1], 2.0))
		}
		a, b := ids[nstations-1], ids[0]
		dist += math.Sqrt(math.Pow(L[b][0]-L[a][0], 2.0) + math.Pow(L[b][1]-L[a][1], 2.0))
		ind.Ovas[0] = dist
		return
	}

	// evolver
	nova, noor := 1, 0
	evo := goga.NewEvolver(nova, noor, C)
	evo.Run()

	// results
	io.Pfgreen("best = %v\n", evo.Best.Ints)
	io.Pfgreen("best OVA = %v  (871.117353844847)\n\n", evo.Best.Ovas[0])

	// plot travelling salesman path
	if C.DoPlot {
		plt.SetForEps(1, 300)
		X, Y := make([]float64, nstations), make([]float64, nstations)
		for k, id := range evo.Best.Ints {
			X[k], Y[k] = locations[id][0], locations[id][1]
			plt.PlotOne(X[k], Y[k], "'r.', ms=5, clip_on=0, zorder=20")
			plt.Text(X[k], Y[k], io.Sf("%d", id), "fontsize=7, clip_on=0, zorder=30")
		}
		plt.Plot(X, Y, "'b-', clip_on=0, zorder=10")
		plt.Plot([]float64{X[0], X[nstations-1]}, []float64{Y[0], Y[nstations-1]}, "'b-', clip_on=0, zorder=10")
		plt.Equal()
		plt.AxisRange(10, 210, 10, 210)
		plt.Gll("$x$", "$y$", "")
		plt.SaveD("/tmp/goga", "test_evo04.eps")
	}
}
Ejemplo n.º 2
0
// SolveC solves the linear Complex system A.x = b
func (o *LinSolUmfpack) SolveC(xR, xC, bR, bC []float64, dummy bool) (err error) {

	// check
	if !o.cmplx {
		return chk.Err(_linsol_umfpack_err12)
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolUmfpack.SolveC . . . . . . . . . . . . . . . \n\n")
	}

	// UMFPACK: pointers
	pxR := (*C.double)(unsafe.Pointer(&xR[0]))
	pxC := (*C.double)(unsafe.Pointer(&xC[0]))
	pbR := (*C.double)(unsafe.Pointer(&bR[0]))
	pbC := (*C.double)(unsafe.Pointer(&bC[0]))

	// UMFPACK: solve
	st := C.umfpack_zl_solve(C.UMFPACK_A, o.ap, o.ai, o.ax, o.az, pxR, pxC, pbR, pbC, o.unum, o.uctrl, nil)
	if st != C.UMFPACK_OK {
		chk.Err(_linsol_umfpack_err13, Uerr2Text[int(st)])
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolUmfpack.Solve = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 3
0
// Clean deletes temporary data structures
func (o *LinSolUmfpack) Clean() {

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolUmfpack.Clean . . . . . . . . . . . . . . . \n\n")
	}

	// clean up
	if o.cmplx {
		C.umfpack_zl_free_symbolic(&o.usymb)
		C.umfpack_zl_free_numeric(&o.unum)
	} else {
		C.umfpack_dl_free_symbolic(&o.usymb)
		C.umfpack_dl_free_numeric(&o.unum)
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolUmfpack.Clean   = %v\n", o.name, time.Now().Sub(o.tini))
	}
}
Ejemplo n.º 4
0
// Clean deletes temporary data structures
func (o *LinSolMumps) Clean() {

	// exit if not initialised
	if !o.is_initialised {
		return
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.Clean . . . . . . . . . . . . . . . \n\n")
	}

	// clean up
	if o.cmplx {
		o.mz.job = -2     // finalize code
		C.zmumps_c(&o.mz) // do finalize
	} else {
		o.m.job = -2     // finalize code
		C.dmumps_c(&o.m) // do finalize
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.Clean   = %v\n", o.name, time.Now().Sub(o.tini))
	}
}
Ejemplo n.º 5
0
// SolveC solves the linear Complex system A.x = b
//  NOTES:
//    1) sum_b_to_root is a flag for MUMPS; it tells Solve to sum the values in 'b' arrays to the root processor
func (o *LinSolMumps) SolveC(xR, xC, bR, bC []float64, sum_b_to_root bool) (err error) {

	// check
	if !o.cmplx {
		return chk.Err(_linsol_mumps_err11)
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.SolveC . . . . . . . . . . . . . . . \n\n")
	}

	// MUMPS: set RHS in processor # 0
	if sum_b_to_root {
		mpi.SumToRoot(xR, bR)
		mpi.SumToRoot(xC, bC)
		// join complex values
		if mpi.Rank() == 0 {
			for i := 0; i < len(xR); i++ {
				o.xRC[i*2], o.xRC[i*2+1] = xR[i], xC[i]
			}
		}
	} else {
		// join complex values
		if mpi.Rank() == 0 {
			for i := 0; i < len(xR); i++ {
				o.xRC[i*2], o.xRC[i*2+1] = bR[i], bC[i]
			}
		}
	}

	// MUMPS: solve
	o.mz.job = 3      // solution code
	C.zmumps_c(&o.mz) // solve
	if o.mz.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err12, mumps_error(o.mz.info[1-1], o.mz.info[2-1]))
	}

	// MUMPS: split complex values
	if mpi.Rank() == 0 {
		for i := 0; i < len(xR); i++ {
			xR[i], xC[i] = o.xRC[i*2], o.xRC[i*2+1]
		}
	}

	// MUMPS: broadcast from root
	mpi.BcastFromRoot(xR)
	mpi.BcastFromRoot(xC)

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.Solve = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 6
0
func Test_fileio01(tst *testing.T) {

	//verbose()
	chk.PrintTitle("fileio01")

	// start
	analysis := NewFEM("data/bh16.sim", "", true, false, false, false, chk.Verbose, 0)

	// domain A
	domsA := NewDomains(analysis.Sim, analysis.DynCfs, analysis.HydSta, 0, 1, false)
	if len(domsA) == 0 {
		tst.Errorf("NewDomains failed\n")
		return
	}
	domA := domsA[0]
	err := domA.SetStage(0)
	if err != nil {
		tst.Errorf("SetStage failed\n%v", err)
		return
	}
	for i, _ := range domA.Sol.Y {
		domA.Sol.Y[i] = float64(i)
	}
	io.Pforan("domA.Sol.Y = %v\n", domA.Sol.Y)

	// write file
	tidx := 123
	err = domA.SaveSol(tidx, true)
	if err != nil {
		tst.Errorf("SaveSol failed:\n%v", err)
		return
	}

	// domain B
	domsB := NewDomains(analysis.Sim, analysis.DynCfs, analysis.HydSta, 0, 1, false)
	if len(domsB) == 0 {
		tst.Errorf("NewDomains failed\n")
		return
	}
	domB := domsB[0]
	err = domB.SetStage(0)
	if err != nil {
		tst.Errorf("SetStage failed\n%v", err)
		return
	}
	io.Pfpink("domB.Sol.Y (before) = %v\n", domB.Sol.Y)

	// read file
	err = domB.ReadSol(analysis.Sim.DirOut, analysis.Sim.Key, analysis.Sim.EncType, tidx)
	if err != nil {
		tst.Errorf("ReadSol failed:\n%v", err)
		return
	}
	io.Pfgreen("domB.Sol.Y (after) = %v\n", domB.Sol.Y)

	// check
	chk.Vector(tst, "Y", 1e-17, domA.Sol.Y, domB.Sol.Y)
	chk.Vector(tst, "dy/dt", 1e-17, domA.Sol.Dydt, domB.Sol.Dydt)
	chk.Vector(tst, "d²y/dt²", 1e-17, domA.Sol.D2ydt2, domB.Sol.D2ydt2)
}
Ejemplo n.º 7
0
func Test_2dinteg02(tst *testing.T) {

	//verbose()
	chk.PrintTitle("2dinteg02. bidimensional integral")

	// Γ(1/4, 1)
	gamma_1div4_1 := 0.2462555291934987088744974330686081384629028737277219

	x := utl.LinSpace(0, 1, 11)
	y := utl.LinSpace(0, 1, 11)
	m, n := len(x), len(y)
	f := la.MatAlloc(m, n)
	for i := 0; i < m; i++ {
		for j := 0; j < n; j++ {
			f[i][j] = 8.0 * math.Exp(-math.Pow(x[i], 2)-math.Pow(y[j], 4))
		}
	}
	dx, dy := x[1]-x[0], y[1]-y[0]
	Vt := Trapz2D(dx, dy, f)
	Vs := Simps2D(dx, dy, f)
	Vc := math.Sqrt(math.Pi) * math.Erf(1) * (math.Gamma(1.0/4.0) - gamma_1div4_1)
	io.Pforan("Vt = %v\n", Vt)
	io.Pforan("Vs = %v\n", Vs)
	io.Pfgreen("Vc = %v\n", Vc)
	chk.Scalar(tst, "Vt", 0.0114830435645548, Vt, Vc)
	chk.Scalar(tst, "Vs", 1e-4, Vs, Vc)

}
Ejemplo n.º 8
0
func Test_fileio01(tst *testing.T) {

	chk.PrintTitle("fileio01")

	// start
	if !Start("data/bh16.sim", true, chk.Verbose) {
		tst.Errorf("test failed\n")
	}
	defer End()

	// domain A
	distr := false
	domA := NewDomain(Global.Sim.Regions[0], distr)
	if domA == nil {
		tst.Errorf("test failed\n")
	}
	if !domA.SetStage(0, Global.Sim.Stages[0], distr) {
		tst.Errorf("test failed\n")
	}
	for i, _ := range domA.Sol.Y {
		domA.Sol.Y[i] = float64(i)
	}
	io.Pforan("domA.Sol.Y = %v\n", domA.Sol.Y)

	// write file
	tidx := 123
	if !domA.SaveSol(tidx) {
		tst.Errorf("test failed")
		return
	}
	dir, fnk := Global.Dirout, Global.Fnkey
	io.Pfblue2("file %v written\n", out_nod_path(dir, fnk, tidx, Global.Rank))

	// domain B
	domB := NewDomain(Global.Sim.Regions[0], distr)
	if domB == nil {
		tst.Errorf("test failed\n")
	}
	if !domB.SetStage(0, Global.Sim.Stages[0], distr) {
		tst.Errorf("test failed")
	}
	io.Pfpink("domB.Sol.Y (before) = %v\n", domB.Sol.Y)

	// read file
	if !domB.ReadSol(dir, fnk, tidx) {
		tst.Errorf("test failed")
		return
	}
	io.Pfgreen("domB.Sol.Y (after) = %v\n", domB.Sol.Y)

	// check
	chk.Vector(tst, "Y", 1e-17, domA.Sol.Y, domB.Sol.Y)
	chk.Vector(tst, "dy/dt", 1e-17, domA.Sol.Dydt, domB.Sol.Dydt)
	chk.Vector(tst, "d²y/dt²", 1e-17, domA.Sol.D2ydt2, domB.Sol.D2ydt2)
}
Ejemplo n.º 9
0
func Test_elast02(tst *testing.T) {

	//verbose()
	chk.PrintTitle("elast02")

	//K, G := 2.0, 3.0/4.0
	K, G := 1116.6666666666667, 837.5
	io.Pfgreen("K = %v\n", Calc_K_from_Enu(2010, 0.2))
	io.Pfgreen("G = %v\n", Calc_G_from_Knu(K, 0.2))

	ndim, pstress := 2, false
	var ec SmallElasticity
	err := ec.Init(ndim, pstress, []*fun.Prm{
		&fun.Prm{N: "K", V: K},
		&fun.Prm{N: "G", V: G},
	})
	io.Pforan("ec: %+v\n", &ec)
	if err != nil {
		tst.Errorf("test failed: %v\n", err)
		return
	}

	nsig, nalp, large, nle := 2*ndim, 0, false, false
	state := NewState(nsig, nalp, large, nle)

	D := la.MatAlloc(nsig, nsig)
	ec.CalcD(D, state)

	a := K + 4.0*G/3.0
	b := K - 2.0*G/3.0
	c := 2.0 * G
	chk.Matrix(tst, "D", 1e-12, D, [][]float64{
		{a, b, b, 0},
		{b, a, b, 0},
		{b, b, a, 0},
		{0, 0, 0, c},
	})
}
Ejemplo n.º 10
0
// SolveR solves the linear Real system A.x = b
//  NOTES:
//    1) sum_b_to_root is a flag for MUMPS; it tells Solve to sum the values in 'b' arrays to the root processor
func (o *LinSolMumps) SolveR(xR, bR []float64, sum_b_to_root bool) (err error) {

	// check
	if !o.is_initialised {
		return chk.Err("linear solver must be initialised first\n")
	}
	if o.cmplx {
		return chk.Err(_linsol_mumps_err09)
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.SolveR . . . . . . . . . . . . . . . \n\n")
	}

	// MUMPS: set RHS in processor # 0
	if sum_b_to_root {
		mpi.SumToRoot(xR, bR)
	} else {
		if mpi.Rank() == 0 {
			copy(xR, bR) // x := b
		}
	}

	// only proc # 0 needs the RHS
	if mpi.Rank() == 0 {
		o.m.rhs = (*C.double)(unsafe.Pointer(&xR[0]))
	}

	// MUMPS: solve
	o.m.job = 3      // solution code
	C.dmumps_c(&o.m) // solve
	if o.m.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err10, mumps_error(o.m.info[1-1], o.m.info[2-1]))
	}
	mpi.BcastFromRoot(xR) // broadcast from root

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.Solve = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 11
0
func Test_MTshuffleInts01(tst *testing.T) {

	//verbose()
	chk.PrintTitle("MTshuffleInts01. Mersenne Twister")

	Init(0)

	n := 10
	nums := utl.IntRange(n)
	io.Pfgreen("before = %v\n", nums)
	MTintShuffle(nums)
	io.Pfcyan("after  = %v\n", nums)

	sort.Ints(nums)
	io.Pforan("sorted = %v\n", nums)
	chk.Ints(tst, "nums", nums, utl.IntRange(n))
}
Ejemplo n.º 12
0
// Fact performs symbolic/numeric factorisation. This method also converts the triplet form
// to the column-compressed form, including the summation of duplicated entries
func (o *LinSolMumps) Fact() (err error) {

	// check
	if !o.is_initialised {
		return chk.Err("linear solver must be initialised first\n")
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.Fact . . . . . . . . . . . . . . . \n\n")
	}

	// complex
	if o.cmplx {

		// MUMPS: factorisation
		o.mz.job = 2      // factorisation code
		C.zmumps_c(&o.mz) // factorise
		if o.mz.info[1-1] < 0 {
			return chk.Err(_linsol_mumps_err08, "Real", mumps_error(o.mz.info[1-1], o.mz.info[2-1]))
		}

		// real
	} else {

		// MUMPS: factorisation
		o.m.job = 2      // factorisation code
		C.dmumps_c(&o.m) // factorise
		if o.m.info[1-1] < 0 {
			return chk.Err(_linsol_mumps_err08, "Complex", mumps_error(o.m.info[1-1], o.m.info[2-1]))
		}
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.Fact  = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 13
0
// SolveR solves the linear Real system A.x = b
func (o *LinSolUmfpack) SolveR(xR, bR []float64, dummy bool) (err error) {

	// check
	if !o.is_initialised {
		return chk.Err("linear solver must be initialised first\n")
	}
	if o.cmplx {
		return chk.Err(_linsol_umfpack_err10)
	}

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolUmfpack.SolveR . . . . . . . . . . . . . . . \n\n")
	}

	// UMFPACK: pointers
	pxR := (*C.double)(unsafe.Pointer(&xR[0]))
	pbR := (*C.double)(unsafe.Pointer(&bR[0]))

	// UMFPACK: solve
	st := C.umfpack_dl_solve(C.UMFPACK_A, o.ap, o.ai, o.ax, pxR, pbR, o.unum, o.uctrl, o.uinfo)
	if st != C.UMFPACK_OK {
		return chk.Err(_linsol_umfpack_err11, Uerr2Text[int(st)])
	}
	if o.verb {
		C.umfpack_dl_report_info(o.uctrl, o.uinfo)
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolUmfpack.Solve = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 14
0
func Test_GOshuffleInts01(tst *testing.T) {

	//verbose()
	chk.PrintTitle("GOshuffleInts01")

	Init(0)

	n := 10
	nums := utl.IntRange(n)
	io.Pfgreen("before = %v\n", nums)
	IntShuffle(nums)
	io.Pfcyan("after  = %v\n", nums)

	sort.Ints(nums)
	io.Pforan("sorted = %v\n", nums)
	chk.Ints(tst, "nums", nums, utl.IntRange(n))

	shufled := IntGetShuffled(nums)
	io.Pfyel("shufled = %v\n", shufled)
	sort.Ints(shufled)
	chk.Ints(tst, "shufled", shufled, utl.IntRange(n))
}
Ejemplo n.º 15
0
func Test_getunique01(tst *testing.T) {

	//verbose()
	chk.PrintTitle("getunique01")

	Init(0)

	nsel := 5 // number of selections
	size := 10
	nums := utl.IntRange(size)
	hist := IntHistogram{Stations: utl.IntRange(size + 5)}
	sel := IntGetUnique(nums, nsel)
	io.Pfgreen("nums = %v\n", nums)
	io.Pfcyan("sel  = %v\n", sel)
	for i := 0; i < NSAMPLES; i++ {
		sel := IntGetUnique(nums, nsel)
		check_repeated(sel)
		hist.Count(sel, false)
		//io.Pfgrey("sel  = %v\n", sel)
	}

	io.Pf(TextHist(hist.GenLabels("%d"), hist.Counts, 60))
}
Ejemplo n.º 16
0
func Test_intordcx01(tst *testing.T) {

	//verbose()
	chk.PrintTitle("intordcx01")

	var ops OpsData
	ops.SetDefault()
	ops.Pc = 1

	rnd.Init(0)

	A := []int{1, 2, 3, 4, 5, 6, 7, 8}
	B := []int{2, 4, 6, 8, 7, 5, 3, 1}
	a := make([]int, len(A))
	b := make([]int, len(A))
	ops.Cuts = []int{2, 5}
	IntOrdCrossover(a, b, A, B, 0, &ops)
	io.Pforan("A = %v\n", A)
	io.Pfblue2("B = %v\n", B)
	io.Pfgreen("a = %v\n", a)
	io.Pfyel("b = %v\n", b)
	chk.Ints(tst, "A", A, []int{1, 2, 3, 4, 5, 6, 7, 8})
	chk.Ints(tst, "B", B, []int{2, 4, 6, 8, 7, 5, 3, 1})
	chk.Ints(tst, "a", a, []int{4, 5, 6, 8, 7, 1, 2, 3})
	chk.Ints(tst, "b", b, []int{8, 7, 3, 4, 5, 1, 2, 6})
	sort.Ints(a)
	sort.Ints(b)
	nums := utl.IntRange2(1, 9)
	chk.Ints(tst, "asorted = 12345678", a, nums)
	chk.Ints(tst, "bsorted = 12345678", b, nums)

	A = []int{1, 3, 5, 7, 6, 2, 4, 8}
	B = []int{5, 6, 3, 8, 2, 1, 4, 7}
	ops.Cuts = []int{3, 6}
	IntOrdCrossover(a, b, A, B, 0, &ops)
	io.Pforan("\nA = %v\n", A)
	io.Pfblue2("B = %v\n", B)
	io.Pfgreen("a = %v\n", a)
	io.Pfyel("b = %v\n", b)
	chk.Ints(tst, "A", A, []int{1, 3, 5, 7, 6, 2, 4, 8})
	chk.Ints(tst, "B", B, []int{5, 6, 3, 8, 2, 1, 4, 7})
	chk.Ints(tst, "a", a, []int{5, 7, 6, 8, 2, 1, 4, 3})
	chk.Ints(tst, "b", b, []int{3, 8, 1, 7, 6, 2, 4, 5})
	sort.Ints(a)
	sort.Ints(b)
	chk.Ints(tst, "asorted = 12345678", a, nums)
	chk.Ints(tst, "bsorted = 12345678", b, nums)

	A = []int{1, 2, 3, 4, 5, 6, 7, 8}
	B = []int{2, 4, 6, 8, 7, 5, 3, 1}
	ops.Cuts = []int{}
	IntOrdCrossover(a, b, A, B, 0, &ops)
	io.Pforan("\nA = %v\n", A)
	io.Pfblue2("B = %v\n", B)
	io.Pfgreen("a = %v\n", a)
	io.Pfyel("b = %v\n", b)
	sort.Ints(a)
	sort.Ints(b)
	chk.Ints(tst, "asorted = 12345678", a, nums)
	chk.Ints(tst, "bsorted = 12345678", b, nums)

	C := []int{1, 2, 3}
	D := []int{3, 1, 2}
	c := make([]int, len(C))
	d := make([]int, len(D))
	IntOrdCrossover(c, d, C, D, 0, &ops)
	io.Pforan("\nC = %v\n", C)
	io.Pfblue2("D = %v\n", D)
	io.Pfgreen("c = %v\n", c)
	io.Pfyel("d = %v\n", d)
	chk.Ints(tst, "c", c, []int{2, 1, 3})
	chk.Ints(tst, "d", d, []int{1, 2, 3})
	sort.Ints(c)
	sort.Ints(d)
	chk.Ints(tst, "csorted = 123", c, []int{1, 2, 3})
	chk.Ints(tst, "dsorted = 123", d, []int{1, 2, 3})
}
Ejemplo n.º 17
0
// testing_compare_results_u compares results with u-formulation
func TestingCompareResultsU(tst *testing.T, simfilepath, cmpfname, alias string, tolK, tolu, tols float64, skipK, verbose bool) {

	// FEM structure
	fem := NewFEM(simfilepath, alias, false, false, true, false, verbose, 0)

	// set stage
	err := fem.SetStage(0)
	if err != nil {
		chk.Panic("cannot set stage:\n%v", err)
	}

	// zero solution
	err = fem.ZeroStage(0, true)
	if err != nil {
		chk.Panic("cannot zero stage data:\n%v", err)
	}

	// read file with comparison results
	buf, err := io.ReadFile(cmpfname)
	if err != nil {
		tst.Errorf("TestingCompareResultsU: ReadFile failed\n")
		return
	}

	// unmarshal json
	var cmp_set T_results_set
	err = json.Unmarshal(buf, &cmp_set)
	if err != nil {
		tst.Errorf("TestingCompareResultsU: Unmarshal failed\n")
		return
	}

	// run comparisons
	dom := fem.Domains[0]
	dmult := 1.0
	for idx, cmp := range cmp_set {

		// displacements multiplier
		if idx == 0 && math.Abs(cmp.DispMult) > 1e-10 {
			dmult = cmp.DispMult
		}

		// time index
		tidx := idx + 1
		if verbose {
			io.PfYel("\n\ntidx = %d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n", tidx)
		}

		// load gofem results
		err = dom.Read(fem.Summary, tidx, 0, true)
		if err != nil {
			chk.Panic("cannot read 'gofem' results:\n%v", err)
		}
		if verbose {
			io.Pfyel("time = %v\n", dom.Sol.T)
		}

		// check K matrices
		if !skipK {
			if verbose {
				io.Pfgreen(". . . checking K matrices . . .\n")
			}
			for eid, Ksg := range cmp.Kmats {
				if e, ok := dom.Elems[eid].(*ElemU); ok {
					err = e.AddToKb(dom.Kb, dom.Sol, true)
					if err != nil {
						chk.Panic("TestingCompareResultsU: AddToKb failed\n")
					}
					chk.Matrix(tst, io.Sf("K%d", eid), tolK, e.K, Ksg)
				}
				if e, ok := dom.Elems[eid].(*Rod); ok {
					err = e.AddToKb(dom.Kb, dom.Sol, true)
					if err != nil {
						chk.Panic("TestingCompareResultsU: AddToKb failed\n")
					}
					chk.Matrix(tst, io.Sf("K%d", eid), tolK, e.K, Ksg)
				}
				if e, ok := dom.Elems[eid].(*ElastRod); ok {
					err = e.AddToKb(dom.Kb, dom.Sol, true)
					if err != nil {
						chk.Panic("TestingCompareResultsU: AddToKb failed\n")
					}
					chk.Matrix(tst, io.Sf("K%d", eid), tolK, e.K, Ksg)
				}
			}
		}

		// check displacements
		if verbose {
			io.Pfgreen(". . . checking displacements . . .\n")
		}
		for nid, usg := range cmp.Disp {
			ix := dom.Vid2node[nid].Dofs[0].Eq
			iy := dom.Vid2node[nid].Dofs[1].Eq
			chk.AnaNum(tst, "ux", tolu, dom.Sol.Y[ix], usg[0]*dmult, verbose)
			chk.AnaNum(tst, "uy", tolu, dom.Sol.Y[iy], usg[1]*dmult, verbose)
			if len(usg) == 3 {
				iz := dom.Vid2node[nid].Dofs[2].Eq
				chk.AnaNum(tst, "uz", tolu, dom.Sol.Y[iz], usg[2]*dmult, verbose)
			}
		}

		// check stresses
		if true {
			if verbose {
				io.Pfgreen(". . . checking stresses . . .\n")
			}
			for eid, sig := range cmp.Sigmas {
				if verbose {
					io.Pforan("eid = %d\n", eid)
				}
				if e, ok := dom.Cid2elem[eid].(*ElemU); ok {
					for ip, val := range sig {
						if verbose {
							io.Pfgrey2("ip = %d\n", ip)
						}
						σ := e.States[ip].Sig
						if len(val) == 6 {
							chk.AnaNum(tst, "sx ", tols, σ[0], val[0], verbose)
							chk.AnaNum(tst, "sy ", tols, σ[1], val[1], verbose)
						} else {
							chk.AnaNum(tst, "sx ", tols, σ[0], val[0], verbose)
							chk.AnaNum(tst, "sy ", tols, σ[1], val[1], verbose)
							chk.AnaNum(tst, "sxy", tols, σ[3]/SQ2, val[2], verbose)
							if len(val) > 3 { // sx, sy, sxy, sz
								chk.AnaNum(tst, "sz ", tols, σ[2], val[3], verbose)
							}
						}
					}
				}
				if e, ok := dom.Cid2elem[eid].(*Rod); ok {
					for ip, val := range sig {
						if verbose {
							io.Pfgrey2("ip = %d\n", ip)
						}
						σ := e.States[ip].Sig
						chk.AnaNum(tst, "sig", tols, σ, val[0], verbose)
					}
				}
				if e, ok := dom.Cid2elem[eid].(*ElastRod); ok {
					dat := e.OutIpsData()
					for ip, val := range sig {
						if verbose {
							io.Pfgrey2("ip = %d\n", ip)
						}
						res := dat[ip].Calc(dom.Sol)
						σ := res["sig"]
						chk.AnaNum(tst, "sig", tols, σ, val[0], verbose)
					}
				}
			}
		}
	}
}
Ejemplo n.º 18
0
func Test_int02(tst *testing.T) {

	//verbose()
	chk.PrintTitle("int02. TSP")

	// location / coordinates of stations
	locations := [][]float64{
		{60, 200}, {180, 200}, {80, 180}, {140, 180}, {20, 160}, {100, 160}, {200, 160},
		{140, 140}, {40, 120}, {100, 120}, {180, 100}, {60, 80}, {120, 80}, {180, 60},
		{20, 40}, {100, 40}, {200, 40}, {20, 20}, {60, 20}, {160, 20},
	}
	nstations := len(locations)

	// parameters
	C := NewConfParams()
	C.Nova = 1
	C.Noor = 0
	C.Nisl = 4
	C.Ninds = 24
	C.RegTol = 0.3
	C.RegPct = 0.2
	//C.Dtmig = 30
	C.GAtype = "crowd"
	C.ParetoPhi = 0.1
	C.Elite = false
	C.DoPlot = false //chk.Verbose
	//C.Rws = true
	C.SetIntOrd(nstations)
	C.CalcDerived()

	// initialise random numbers generator
	rnd.Init(0)

	// objective value function
	C.OvaOor = func(ind *Individual, idIsland, t int, report *bytes.Buffer) {
		L := locations
		ids := ind.Ints
		//io.Pforan("ids = %v\n", ids)
		dist := 0.0
		for i := 1; i < nstations; i++ {
			a, b := ids[i-1], ids[i]
			dist += math.Sqrt(math.Pow(L[b][0]-L[a][0], 2.0) + math.Pow(L[b][1]-L[a][1], 2.0))
		}
		a, b := ids[nstations-1], ids[0]
		dist += math.Sqrt(math.Pow(L[b][0]-L[a][0], 2.0) + math.Pow(L[b][1]-L[a][1], 2.0))
		ind.Ovas[0] = dist
		return
	}

	// evolver
	evo := NewEvolver(C)

	// print initial population
	pop := evo.Islands[0].Pop
	//io.Pf("\n%v\n", pop.Output(nil, false))

	// 0,4,8,11,14,17,18,15,12,19,13,16,10,6,1,3,7,9,5,2 894.363
	if false {
		for i, x := range []int{0, 4, 8, 11, 14, 17, 18, 15, 12, 19, 13, 16, 10, 6, 1, 3, 7, 9, 5, 2} {
			pop[0].Ints[i] = x
		}
		evo.Islands[0].CalcOvs(pop, 0)
		evo.Islands[0].CalcDemeritsAndSort(pop)
	}

	// check initial population
	ints := make([]int, nstations)
	if false {
		for i := 0; i < C.Ninds; i++ {
			for j := 0; j < nstations; j++ {
				ints[j] = pop[i].Ints[j]
			}
			sort.Ints(ints)
			chk.Ints(tst, "ints", ints, utl.IntRange(nstations))
		}
	}

	// run
	evo.Run()
	//io.Pf("%v\n", pop.Output(nil, false))
	io.Pfgreen("best = %v\n", evo.Best.Ints)
	io.Pfgreen("best OVA = %v  (871.117353844847)\n\n", evo.Best.Ovas[0])

	// best = [18 17 14 11 8 4 0 2 5 9 12 7 6 1 3 10 16 13 19 15]
	// best OVA = 953.4643474956656

	// best = [8 11 14 17 18 15 12 19 16 13 10 6 1 3 7 9 5 2 0 4]
	// best OVA = 871.117353844847

	// best = [5 2 0 4 8 11 14 17 18 15 12 19 16 13 10 6 1 3 7 9]
	// best OVA = 871.1173538448469

	// best = [6 10 13 16 19 15 18 17 14 11 8 4 0 2 5 9 12 7 3 1]
	// best OVA = 880.7760751923065

	// check final population
	if false {
		for i := 0; i < C.Ninds; i++ {
			for j := 0; j < nstations; j++ {
				ints[j] = pop[i].Ints[j]
			}
			sort.Ints(ints)
			chk.Ints(tst, "ints", ints, utl.IntRange(nstations))
		}
	}

	// plot travelling salesman path
	if C.DoPlot {
		plt.SetForEps(1, 300)
		X, Y := make([]float64, nstations), make([]float64, nstations)
		for k, id := range evo.Best.Ints {
			X[k], Y[k] = locations[id][0], locations[id][1]
			plt.PlotOne(X[k], Y[k], "'r.', ms=5, clip_on=0, zorder=20")
			plt.Text(X[k], Y[k], io.Sf("%d", id), "fontsize=7, clip_on=0, zorder=30")
		}
		plt.Plot(X, Y, "'b-', clip_on=0, zorder=10")
		plt.Plot([]float64{X[0], X[nstations-1]}, []float64{Y[0], Y[nstations-1]}, "'b-', clip_on=0, zorder=10")
		plt.Equal()
		plt.AxisRange(10, 210, 10, 210)
		plt.Gll("$x$", "$y$", "")
		plt.SaveD("/tmp/goga", "test_evo04.eps")
	}
}
Ejemplo n.º 19
0
// Run computes β starting witn an initial guess
func (o *ReliabFORM) Run(βtrial float64, verbose bool, args ...interface{}) (β float64, μ, σ, x []float64) {

	// initial random variables
	β = βtrial
	nx := len(o.μ)
	μ = make([]float64, nx) // mean values (equivalent normal value)
	σ = make([]float64, nx) // deviation values (equivalent normal value)
	x = make([]float64, nx) // current vector of random variables defining min(β)
	for i := 0; i < nx; i++ {
		μ[i] = o.μ[i]
		σ[i] = o.σ[i]
		x[i] = o.μ[i]
	}

	// lognormal distribution structure
	var lnd DistLogNormal

	// has lognormal random variable?
	haslrv := false
	for _, found := range o.lrv {
		if found {
			haslrv = true
			break
		}
	}

	// function to compute β with x-constant
	//  gβ(β) = g(μ - β・A・σ) = 0
	var err error
	gβfcn := func(fy, y []float64) error {
		βtmp := y[0]
		for i := 0; i < nx; i++ {
			o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i]
		}
		fy[0], err = o.gfcn(o.xtmp, args)
		if err != nil {
			chk.Panic("cannot compute gfcn(%v):\n%v", o.xtmp, err)
		}
		return nil
	}

	// derivative of gβ w.r.t β
	hβfcn := func(dfdy [][]float64, y []float64) error {
		βtmp := y[0]
		for i := 0; i < nx; i++ {
			o.xtmp[i] = μ[i] - βtmp*o.α[i]*σ[i]
		}
		err = o.hfcn(o.dgdx, o.xtmp, args)
		if err != nil {
			chk.Panic("cannot compute hfcn(%v):\n%v", o.xtmp, err)
		}
		dfdy[0][0] = 0
		for i := 0; i < nx; i++ {
			dfdy[0][0] -= o.dgdx[i] * o.α[i] * σ[i]
		}
		return nil
	}

	// nonlinear solver with y[0] = β
	// solving:  gβ(β) = g(μ - β・A・σ) = 0
	var nls num.NlSolver
	nls.Init(1, gβfcn, nil, hβfcn, true, false, nil)
	defer nls.Clean()

	// message
	if verbose {
		io.Pf("\n%s", io.StrThickLine(60))
	}

	// plotting
	plot := o.PlotFnk != ""
	if nx != 2 {
		plot = false
	}
	if plot {
		if o.PlotNp < 3 {
			o.PlotNp = 41
		}
		var umin, umax, vmin, vmax float64
		if o.PlotCf < 1 {
			o.PlotCf = 2
		}
		if len(o.PlotUrange) == 0 {
			umin, umax = μ[0]-o.PlotCf*μ[0], μ[0]+o.PlotCf*μ[0]
			vmin, vmax = μ[1]-o.PlotCf*μ[1], μ[1]+o.PlotCf*μ[1]
		} else {
			chk.IntAssert(len(o.PlotUrange), 2)
			chk.IntAssert(len(o.PlotVrange), 2)
			umin, umax = o.PlotUrange[0], o.PlotUrange[1]
			vmin, vmax = o.PlotVrange[0], o.PlotVrange[1]
		}
		o.PlotU, o.PlotV = utl.MeshGrid2D(umin, umax, vmin, vmax, o.PlotNp, o.PlotNp)
		o.PlotZ = la.MatAlloc(o.PlotNp, o.PlotNp)
		plt.SetForEps(0.8, 300)
		for i := 0; i < o.PlotNp; i++ {
			for j := 0; j < o.PlotNp; j++ {
				o.xtmp[0] = o.PlotU[i][j]
				o.xtmp[1] = o.PlotV[i][j]
				o.PlotZ[i][j], err = o.gfcn(o.xtmp, args)
				if err != nil {
					chk.Panic("cannot compute gfcn(%v):\n%v", x, err)
				}
			}
		}
		plt.Contour(o.PlotU, o.PlotV, o.PlotZ, "")
		plt.ContourSimple(o.PlotU, o.PlotV, o.PlotZ, true, 8, "levels=[0], colors=['yellow']")
		plt.PlotOne(x[0], x[1], "'ro', label='initial'")
	}

	// iterations to find β
	var dat VarData
	B := []float64{β}
	itB := 0
	for itB = 0; itB < o.NmaxItB; itB++ {

		// message
		if verbose {
			gx, err := o.gfcn(x, args)
			if err != nil {
				chk.Panic("cannot compute gfcn(%v):\n%v", x, err)
			}
			io.Pf("%s itB=%d β=%g g=%g\n", io.StrThinLine(60), itB, β, gx)
		}

		// plot
		if plot {
			plt.PlotOne(x[0], x[1], "'r.'")
		}

		// compute direction cosines
		itA := 0
		for itA = 0; itA < o.NmaxItA; itA++ {

			// has lognormal random variable (lrv)
			if haslrv {

				// find equivalent normal mean and std deviation for lognormal variables
				for i := 0; i < nx; i++ {
					if o.lrv[i] {

						// set distribution
						dat.M, dat.S = o.μ[i], o.σ[i]
						lnd.Init(&dat)

						// update μ and σ
						fx := lnd.Pdf(x[i])
						Φinvx := (math.Log(x[i]) - lnd.M) / lnd.S
						φx := math.Exp(-Φinvx*Φinvx/2.0) / math.Sqrt2 / math.SqrtPi
						σ[i] = φx / fx
						μ[i] = x[i] - Φinvx*σ[i]
					}
				}
			}

			// compute direction cosines
			err = o.hfcn(o.dgdx, x, args)
			if err != nil {
				chk.Panic("cannot compute hfcn(%v):\n%v", x, err)
			}
			den := 0.0
			for i := 0; i < nx; i++ {
				den += math.Pow(o.dgdx[i]*σ[i], 2.0)
			}
			den = math.Sqrt(den)
			αerr := 0.0 // difference on α
			for i := 0; i < nx; i++ {
				αnew := o.dgdx[i] * σ[i] / den
				αerr += math.Pow(αnew-o.α[i], 2.0)
				o.α[i] = αnew
			}
			αerr = math.Sqrt(αerr)

			// message
			if verbose {
				io.Pf(" itA=%d\n", itA)
				io.Pf("%12s%12s%12s%12s\n", "x", "μ", "σ", "α")
				for i := 0; i < nx; i++ {
					io.Pf("%12.3f%12.3f%12.3f%12.3f\n", x[i], μ[i], σ[i], o.α[i])
				}
			}

			// update x-star
			for i := 0; i < nx; i++ {
				x[i] = μ[i] - β*o.α[i]*σ[i]
			}

			// check convergence on α
			if itA > 1 && αerr < o.TolA {
				if verbose {
					io.Pfgrey(". . . converged on α with αerr=%g . . .\n", αerr)
				}
				break
			}
		}

		// failed to converge on α
		if itA == o.NmaxItA {
			chk.Panic("failed to convege on α")
		}

		// compute new β
		B[0] = β
		nls.Solve(B, o.NlsSilent)
		βerr := math.Abs(B[0] - β)
		β = B[0]
		if o.NlsCheckJ {
			nls.CheckJ(B, o.NlsCheckJtol, true, false)
		}

		// update x-star
		for i := 0; i < nx; i++ {
			x[i] = μ[i] - β*o.α[i]*σ[i]
		}

		// check convergence on β
		if βerr < o.TolB {
			if verbose {
				io.Pfgrey2(". . . converged on β with βerr=%g . . .\n", βerr)
			}
			break
		}
	}

	// failed to converge on β
	if itB == o.NmaxItB {
		chk.Panic("failed to converge on β")
	}

	// message
	if verbose {
		gx, err := o.gfcn(x, args)
		if err != nil {
			chk.Panic("cannot compute gfcn(%v):\n%v", x, err)
		}
		io.Pfgreen("x = %v\n", x)
		io.Pfgreen("g = %v\n", gx)
		io.PfGreen("β = %v\n", β)
	}

	// plot
	if plot {
		plt.Gll("$x_0$", "$x_1$", "")
		plt.Cross("")
		plt.SaveD("/tmp/gosl", "fig_form_"+o.PlotFnk+".eps")
	}
	return
}
Ejemplo n.º 20
0
// testing_compare_results_u compares results with u-formulation
func TestingCompareResultsU(tst *testing.T, simfname, cmpfname string, tolK, tolu, tols float64, skipK, verbose bool) {

	// only root can run this test
	if !Global.Root {
		return
	}

	// read summary
	sum := ReadSum(Global.Dirout, Global.Fnkey)
	if sum == nil {
		tst.Error("cannot read summary file for simulation=%q\n", simfname)
		return
	}

	// allocate domain
	distr := false
	d := NewDomain(Global.Sim.Regions[0], distr)
	if !d.SetStage(0, Global.Sim.Stages[0], distr) {
		tst.Errorf("TestingCompareResultsU: SetStage failed\n")
		return
	}

	// read file
	buf, err := io.ReadFile(cmpfname)
	if err != nil {
		tst.Errorf("TestingCompareResultsU: ReadFile failed\n")
		return
	}

	// unmarshal json
	var cmp_set T_results_set
	err = json.Unmarshal(buf, &cmp_set)
	if err != nil {
		tst.Errorf("TestingCompareResultsU: Unmarshal failed\n")
		return
	}

	// run comparisons
	dmult := 1.0
	for idx, cmp := range cmp_set {

		// displacements multiplier
		if idx == 0 && math.Abs(cmp.DispMult) > 1e-10 {
			dmult = cmp.DispMult
		}

		// time index
		tidx := idx + 1
		if verbose {
			io.PfYel("\n\ntidx = %d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\n", tidx)
		}

		// load gofem results
		if !d.In(sum, tidx, true) {
			tst.Errorf("TestingCompareResultsU: reading of results failed\n")
			return
		}
		if verbose {
			io.Pfyel("time = %v\n", d.Sol.T)
		}

		// check K matrices
		if !skipK {
			if verbose {
				io.Pfgreen(". . . checking K matrices . . .\n")
			}
			for eid, Ksg := range cmp.Kmats {
				if e, ok := d.Elems[eid].(*ElemU); ok {
					if !e.AddToKb(d.Kb, d.Sol, true) {
						tst.Errorf("TestingCompareResultsU: AddToKb failed\n")
						return
					}
					chk.Matrix(tst, io.Sf("K%d", eid), tolK, e.K, Ksg)
				}
			}
		}

		// check displacements
		if verbose {
			io.Pfgreen(". . . checking displacements . . .\n")
		}
		for nid, usg := range cmp.Disp {
			ix := d.Vid2node[nid].Dofs[0].Eq
			iy := d.Vid2node[nid].Dofs[1].Eq
			chk.AnaNum(tst, "ux", tolu, d.Sol.Y[ix], usg[0]*dmult, verbose)
			chk.AnaNum(tst, "uy", tolu, d.Sol.Y[iy], usg[1]*dmult, verbose)
			if len(usg) == 3 {
				iz := d.Vid2node[nid].Dofs[2].Eq
				chk.AnaNum(tst, "uz", tolu, d.Sol.Y[iz], usg[2]*dmult, verbose)
			}
		}

		// check stresses
		if true {
			if verbose {
				io.Pfgreen(". . . checking stresses . . .\n")
			}
			for eid, sig := range cmp.Sigmas {
				if verbose {
					io.Pforan("eid = %d\n", eid)
				}
				if e, ok := d.Cid2elem[eid].(*ElemU); ok {
					for ip, val := range sig {
						if verbose {
							io.Pfgrey2("ip = %d\n", ip)
						}
						σ := e.States[ip].Sig
						if len(val) == 6 {
							chk.AnaNum(tst, "sx ", tols, σ[0], val[0], verbose)
							chk.AnaNum(tst, "sy ", tols, σ[1], val[1], verbose)
						} else {
							chk.AnaNum(tst, "sx ", tols, σ[0], val[0], verbose)
							chk.AnaNum(tst, "sy ", tols, σ[1], val[1], verbose)
							chk.AnaNum(tst, "sxy", tols, σ[3]/SQ2, val[2], verbose)
							if len(val) > 3 { // sx, sy, sxy, sz
								chk.AnaNum(tst, "sz ", tols, σ[2], val[3], verbose)
							}
						}
					}
				}
			}
		}
	}
}
Ejemplo n.º 21
0
// InitC initialises a LinSolMumps data structure for Complex systems. It also performs some initial analyses.
func (o *LinSolMumps) InitC(tC *TripletC, symmetric, verbose, timing bool) (err error) {

	// check
	o.tC = tC
	if tC.pos == 0 {
		return chk.Err(_linsol_mumps_err04)
	}

	// flags
	o.name = "mumps"
	o.sym = symmetric
	o.cmplx = true
	o.verb = verbose
	o.ton = timing

	// start time
	if mpi.Rank() != 0 {
		o.verb = false
		o.ton = false
	}
	if o.ton {
		o.tini = time.Now()
	}

	// check xz
	if len(o.tC.xz) != 2*len(o.tC.i) {
		return chk.Err(_linsol_mumps_err05, len(o.tC.xz), len(o.tC.i))
	}

	// initialise Mumps
	o.mz.comm_fortran = -987654 // use Fortran communicator by default
	o.mz.par = 1                // host also works
	o.mz.sym = 0                // 0=unsymmetric, 1=sym(pos-def), 2=symmetric(undef)
	if symmetric {
		o.mz.sym = 2
	}
	o.mz.job = -1     // initialisation code
	C.zmumps_c(&o.mz) // initialise
	if o.mz.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err06, mumps_error(o.mz.info[1-1], o.mz.info[2-1]))
	}

	// convert indices to C.int (not C.long) and
	// increment indices since Mumps is 1-based (FORTRAN)
	o.mi, o.mj = make([]int32, o.tC.pos), make([]int32, o.tC.pos)
	for k := 0; k < tC.pos; k++ {
		o.mi[k] = int32(o.tC.i[k]) + 1
		o.mj[k] = int32(o.tC.j[k]) + 1
	}

	// set pointers
	o.mz.n = C.int(o.tC.m)
	o.mz.nz_loc = C.int(o.tC.pos)
	o.mz.irn_loc = (*C.int)(unsafe.Pointer(&o.mi[0]))
	o.mz.jcn_loc = (*C.int)(unsafe.Pointer(&o.mj[0]))
	o.mz.a_loc = (*C.ZMUMPS_COMPLEX)(unsafe.Pointer(&o.tC.xz[0]))

	// only proc # 0 needs the RHS
	if mpi.Rank() == 0 {
		o.xRC = make([]float64, 2*o.tC.n)
		o.mz.rhs = (*C.ZMUMPS_COMPLEX)(unsafe.Pointer(&o.xRC[0]))
	}

	// control
	if verbose {
		if mpi.Rank() == 0 {
			io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.InitC . . (MUMPS) . . . . . . . . . \n\n")
		}
		o.mz.icntl[1-1] = 6 // output stream for error messages
		o.mz.icntl[2-1] = 0 // output stream for statistics and warnings
		o.mz.icntl[3-1] = 6 // output stream for global information
		o.mz.icntl[4-1] = 2 // message level: 2==errors and warnings
	} else {
		o.mz.icntl[1-1] = -1 // no output messages
		o.mz.icntl[2-1] = -1 // no warnings
		o.mz.icntl[3-1] = -1 // no global information
		o.mz.icntl[4-1] = -1 // message level
	}
	o.mz.icntl[5-1] = 0     // assembled matrix (needed for distributed matrix)
	o.mz.icntl[6-1] = 7     // automatic (default) permuting strategy for diagonal terms
	o.mz.icntl[14-1] = 5000 // % increase of working space
	o.mz.icntl[18-1] = 3    // distributed matrix
	o.SetOrdScal("", "")

	// analysis step
	o.mz.job = 1      // analysis code
	C.zmumps_c(&o.mz) // analyse
	if o.mz.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err07, mumps_error(o.mz.info[1-1], o.mz.info[2-1]))
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.InitC = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 22
0
// Run runs optimisations
func (o *SimpleFltProb) Run(verbose bool) {

	// benchmark
	if verbose {
		time0 := time.Now()
		defer func() {
			io.Pfblue2("\ncpu time = %v\n", time.Now().Sub(time0))
		}()
	}

	// run all trials
	for itrial := 0; itrial < o.C.Ntrials; itrial++ {

		// reset populations
		if itrial > 0 {
			for id, isl := range o.Evo.Islands {
				isl.Pop = o.C.PopFltGen(id, o.C)
				isl.CalcOvs(isl.Pop, 0)
				isl.CalcDemeritsAndSort(isl.Pop)
			}
		}

		// run evolution
		o.Evo.Run()

		// results
		xbest := o.Evo.Best.GetFloats()
		o.Fcn(o.ff[0], o.gg[0], o.hh[0], xbest)

		// check if best is unfeasible
		unfeasible := false
		for _, g := range o.gg[0] {
			if g < 0 {
				unfeasible = true
				break
			}
		}
		for _, h := range o.hh[0] {
			if math.Abs(h) > o.C.Eps1 {
				unfeasible = true
				break
			}
		}

		// feasible results
		if !unfeasible {
			for i, x := range xbest {
				o.Xbest[o.Nfeasible][i] = x
			}
			o.Nfeasible++
		}

		// message
		if verbose {
			io.Pfyel("%3d x*="+o.NumfmtX+" f="+o.NumfmtF, itrial, xbest, o.ff[0])
			if unfeasible {
				io.Pfred(" unfeasible\n")
			} else {
				io.Pfgreen(" ok\n")
			}
		}

		// best populations
		if o.C.DoPlot {
			if o.Nfeasible == 1 {
				o.PopsBest = o.Evo.GetPopulations()
			} else {
				fcur := utl.DblCopy(o.ff[0])
				o.Fcn(o.ff[0], o.gg[0], o.hh[0], o.Xbest[o.Nfeasible-1])
				cur_dom, _ := utl.DblsParetoMin(fcur, o.ff[0])
				if cur_dom {
					o.PopsBest = o.Evo.GetPopulations()
				}
			}
		}
	}
}
Ejemplo n.º 23
0
// InitR initialises a LinSolMumps data structure for Real systems. It also performs some initial analyses.
func (o *LinSolMumps) InitR(tR *Triplet, symmetric, verbose, timing bool) (err error) {

	// check
	o.tR = tR
	if tR.pos == 0 {
		return chk.Err(_linsol_mumps_err01)
	}

	// flags
	o.name = "mumps"
	o.sym = symmetric
	o.cmplx = false
	o.verb = verbose
	o.ton = timing

	// start time
	if mpi.Rank() != 0 {
		o.verb = false
		o.ton = false
	}
	if o.ton {
		o.tini = time.Now()
	}

	// initialise Mumps
	o.m.comm_fortran = -987654 // use Fortran communicator by default
	o.m.par = 1                // host also works
	o.m.sym = 0                // 0=unsymmetric, 1=sym(pos-def), 2=symmetric(undef)
	if symmetric {
		o.m.sym = 2
	}
	o.m.job = -1     // initialisation code
	C.dmumps_c(&o.m) // initialise
	if o.m.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err02, mumps_error(o.m.info[1-1], o.m.info[2-1]))
	}

	// convert indices to C.int (not C.long) and
	// increment indices since Mumps is 1-based (FORTRAN)
	o.mi, o.mj = make([]int32, o.tR.pos), make([]int32, o.tR.pos)
	for k := 0; k < tR.pos; k++ {
		o.mi[k] = int32(o.tR.i[k]) + 1
		o.mj[k] = int32(o.tR.j[k]) + 1
	}

	// set pointers
	o.m.n = C.int(o.tR.m)
	o.m.nz_loc = C.int(o.tR.pos)
	o.m.irn_loc = (*C.int)(unsafe.Pointer(&o.mi[0]))
	o.m.jcn_loc = (*C.int)(unsafe.Pointer(&o.mj[0]))
	o.m.a_loc = (*C.double)(unsafe.Pointer(&o.tR.x[0]))

	// control
	if verbose {
		if mpi.Rank() == 0 {
			io.Pfgreen("\n . . . . . . . . . . . . . . LinSolMumps.InitR . . (MUMPS) . . . . . . . . . \n\n")
		}
		o.m.icntl[1-1] = 6 // output stream for error messages
		o.m.icntl[2-1] = 0 // output stream for statistics and warnings
		o.m.icntl[3-1] = 6 // output stream for global information
		o.m.icntl[4-1] = 2 // message level: 2==errors and warnings
	} else {
		o.m.icntl[1-1] = -1 // no output messages
		o.m.icntl[2-1] = -1 // no warnings
		o.m.icntl[3-1] = -1 // no global information
		o.m.icntl[4-1] = -1 // message level
	}
	o.m.icntl[5-1] = 0     // assembled matrix (needed for distributed matrix)
	o.m.icntl[6-1] = 7     // automatic (default) permuting strategy for diagonal terms
	o.m.icntl[14-1] = 5000 // % increase of working space
	o.m.icntl[18-1] = 3    // distributed matrix
	o.m.icntl[23-1] = 2000 // max 2000Mb per processor // TODO: check this
	o.SetOrdScal("", "")

	// analysis step
	o.m.job = 1      // analysis code
	C.dmumps_c(&o.m) // analyse
	if o.m.info[1-1] < 0 {
		return chk.Err(_linsol_mumps_err03, mumps_error(o.m.info[1-1], o.m.info[2-1]))
	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolMumps.InitR = %v\n", o.name, time.Now().Sub(o.tini))
	}

	// success
	o.is_initialised = true
	return
}
Ejemplo n.º 24
0
func (o *RichardsonExtrap) Run(d *Domain, s *Summary, DtOut fun.Func, time *float64, tf, tout float64, tidx *int) (ok bool) {

	// stat
	defer func() {
		if Global.Root {
			log.Printf("total number of steps             	= %d\n", o.nsteps)
			log.Printf("number of accepted steps          	= %d\n", o.naccept)
			log.Printf("number of rejected steps          	= %d\n", o.nreject)
			log.Printf("number of Gustaffson's corrections	= %d\n", o.ngustaf)
		}
	}()

	// constants
	atol := Global.Sim.Solver.REatol
	rtol := Global.Sim.Solver.RErtol
	mmin := Global.Sim.Solver.REmmin
	mmax := Global.Sim.Solver.REmmax
	mfac := Global.Sim.Solver.REmfac

	// time loop
	t := *time
	defer func() { *time = t }()
	var ΔtOld, rerrOld float64
	for t < tf {

		// check for continued divergence
		if LogErrCond(o.ndiverg >= Global.Sim.Solver.NdvgMax, "continuous divergence after %d steps reached", o.ndiverg) {
			return
		}

		// check time increment
		if LogErrCond(o.Δt < Global.Sim.Solver.DtMin, "Δt increment is too small: %g < %g", o.Δt, Global.Sim.Solver.DtMin) {
			return
		}

		// compute dynamic coefficients
		if LogErr(Global.DynCoefs.CalcBoth(o.Δt), "cannot compute dynamic coefficients") {
			return
		}

		// check for maximum number of substeps
		o.nsteps += 1
		if LogErrCond(o.nsteps >= Global.Sim.Solver.REnssmax, "RE: max number of steps reached: %d", o.nsteps) {
			return
		}

		// backup domain
		d.backup()

		// single step with Δt
		d.Sol.T = t + o.Δt
		o.diverging, ok = run_iterations(t+o.Δt, o.Δt, d, s)
		if !ok {
			return
		}
		if Global.Sim.Solver.DvgCtrl {
			if o.divergence_control(d, "big step") {
				continue
			}
		}

		// save intermediate state
		for i := 0; i < d.Ny; i++ {
			o.Y_big[i] = d.Sol.Y[i]
		}

		// restore initial state
		d.restore()

		// 1st halved step
		d.Sol.T = t + o.Δt/2.0
		o.diverging, ok = run_iterations(t+o.Δt/2.0, o.Δt/2.0, d, s)
		if !ok {
			break
		}
		if Global.Sim.Solver.DvgCtrl {
			if o.divergence_control(d, "1st half step") {
				continue
			}
		}

		// 2nd halved step
		d.Sol.T = t + o.Δt
		o.diverging, ok = run_iterations(t+o.Δt, o.Δt/2.0, d, s)
		if !ok {
			break
		}
		if Global.Sim.Solver.DvgCtrl {
			if o.divergence_control(d, "2nd half step") {
				continue
			}
		}

		// Richardson's extrapolation error
		rerr := la.VecRmsError(d.Sol.Y, o.Y_big, atol, rtol, d.Sol.Y) / 3.0

		// step size change
		m := min(mmax, max(mmin, mfac*math.Pow(1.0/rerr, 1.0/2.0)))
		ΔtNew := m * o.Δt

		// accepted
		if rerr < 1.0 {

			// update variables
			o.naccept += 1
			t += o.Δt
			d.Sol.T = t

			// output
			if Global.Verbose {
				if !Global.Sim.Data.ShowR && !Global.Debug {
					io.PfWhite("%30.15f\r", t)
				}
			}
			//if true {
			if t >= tout || o.laststep {
				s.OutTimes = append(s.OutTimes, t)
				if !d.Out(*tidx) {
					return
				}
				tout += DtOut.F(t, nil)
				*tidx += 1
			}

			// reached final time
			if o.laststep {
				if Global.Verbose {
					io.Pfgreen("\n\nRichardson extrapolation succeeded\n")
				}
				return true
			}

			// predictive controller of Gustafsson
			if !Global.Sim.Solver.REnogus {
				if o.naccept > 1 {
					m = mfac * (o.Δt / ΔtOld) * math.Sqrt(1.0/rerr) * math.Sqrt(rerrOld/rerr)
					if m*o.Δt < ΔtNew {
						o.ngustaf += 1
					}
					ΔtNew = min(ΔtNew, m*o.Δt)
				}
				ΔtOld = o.Δt
				rerrOld = max(0.9, rerr) // 1e-2
			}

			// next step size
			if o.reject { // do not alow Δt to grow if previous was a reject
				ΔtNew = min(o.Δt, ΔtNew)
			}
			o.reject = false
			o.Δt = ΔtNew
			if t+ΔtNew-tf >= 0.0 {
				o.laststep = true
				o.Δt = tf - t
			}

			// rejected
		} else {

			// restore state
			d.restore()

			// set flags
			o.nreject += 1
			o.reject = true
			o.laststep = false

			// next step size
			o.Δt = ΔtNew
			if t+o.Δt > tf {
				o.Δt = tf - t
			}
		}
	}
	return true
}
Ejemplo n.º 25
0
// Solve solves from (xa,ya) to (xb,yb) => find yb (stored in y)
func (o *ODE) Solve(y []float64, x, xb, Δx float64, fixstp bool, args ...interface{}) (err error) {

	// check
	if xb < x {
		err = chk.Err(_ode_err3, xb, x)
		return
	}

	// derived variables
	o.fnewt = max(10.0*o.ϵ/o.Rtol, min(0.03, math.Sqrt(o.Rtol)))

	// initial step size
	Δx = min(Δx, xb-x)
	if fixstp {
		o.h = Δx
	} else {
		o.h = min(Δx, o.IniH)
	}
	o.hprev = o.h

	// output initial state
	if o.out != nil {
		o.out(true, o.h, x, y, args...)
	}

	// stat variables
	o.nfeval = 0
	o.njeval = 0
	o.nsteps = 0
	o.naccepted = 0
	o.nrejected = 0
	o.ndecomp = 0
	o.nlinsol = 0
	o.nitmax = 0

	// control variables
	o.doinit = true
	o.first = true
	o.last = false
	o.reject = false
	o.diverg = false
	o.dvfac = 0
	o.η = 1.0
	o.jacIsOK = false
	o.reuseJdec = false
	o.reuseJ = false
	o.nit = 0
	o.hopt = o.h
	o.θ = o.θmax

	// local error indicator
	var rerr float64

	// linear solver
	lsname := "umfpack"
	if o.Distr {
		lsname = "mumps"
	}
	o.lsolR = la.GetSolver(lsname)
	o.lsolC = la.GetSolver(lsname)

	// clean up and show stat before leaving
	defer func() {
		o.lsolR.Clean()
		o.lsolC.Clean()
		if !o.silent {
			o.Stat()
		}
	}()

	// first scaling variable
	la.VecScaleAbs(o.scal, o.Atol, o.Rtol, y) // o.scal := o.Atol + o.Rtol * abs(y)

	// fixed steps
	if fixstp {
		la.VecCopy(o.w[0], 1, y) // copy initial values to worksapce
		if o.Verbose {
			io.Pfgreen("x = %v\n", x)
		}
		for x < xb {
			//if x + o.h > xb { o.h = xb - x }
			if o.jac == nil { // numerical Jacobian
				if o.method == "Radau5" {
					o.nfeval += 1
					o.fcn(o.f0, x, y, args...)
				}
			}
			o.reuseJdec = false
			o.reuseJ = false
			o.jacIsOK = false
			o.step(o, y, x, args...)
			o.nsteps += 1
			o.doinit = false
			o.first = false
			o.hprev = o.h
			x += o.h
			o.accept(o, y)
			if o.out != nil {
				o.out(false, o.h, x, y, args...)
			}
			if o.Verbose {
				io.Pfgreen("x = %v\n", x)
			}
		}
		return
	}

	// first function evaluation
	o.nfeval += 1
	o.fcn(o.f0, x, y, args...) // o.f0 := f(x,y)

	// time loop
	var dxmax, xstep, fac, div, dxnew, facgus, old_h, old_rerr float64
	var dxratio float64
	var failed bool
	for x < xb {
		dxmax, xstep = Δx, x+Δx
		failed = false
		for iss := 0; iss < o.NmaxSS+1; iss++ {

			// total number of substeps
			o.nsteps += 1

			// error: did not converge
			if iss == o.NmaxSS {
				failed = true
				break
			}

			// converged?
			if x-xstep >= 0.0 {
				break
			}

			// step update
			rerr, err = o.step(o, y, x, args...)

			// initialise only once
			o.doinit = false

			// iterations diverging ?
			if o.diverg {
				o.diverg = false
				o.reject = true
				o.last = false
				o.h = o.dvfac * o.h
				continue
			}

			// step size change
			fac = min(o.Mfac, o.Mfac*float64(1+2*o.NmaxIt)/float64(o.nit+2*o.NmaxIt))
			div = max(o.Mmin, min(o.Mmax, math.Pow(rerr, 0.25)/fac))
			dxnew = o.h / div

			// accepted
			if rerr < 1.0 {

				// set flags
				o.naccepted += 1
				o.first = false
				o.jacIsOK = false

				// update x and y
				o.hprev = o.h
				x += o.h
				o.accept(o, y)

				// output
				if o.out != nil {
					o.out(false, o.h, x, y, args...)
				}

				// converged ?
				if o.last {
					o.hopt = o.h // optimal h
					break
				}

				// predictive controller of Gustafsson
				if o.PredCtrl {
					if o.naccepted > 1 {
						facgus = (old_h / o.h) * math.Pow(math.Pow(rerr, 2.0)/old_rerr, 0.25) / o.Mfac
						facgus = max(o.Mmin, min(o.Mmax, facgus))
						div = max(div, facgus)
						dxnew = o.h / div
					}
					old_h = o.h
					old_rerr = max(1.0e-2, rerr)
				}

				// calc new scal and f0
				la.VecScaleAbs(o.scal, o.Atol, o.Rtol, y) // o.scal := o.Atol + o.Rtol * abs(y)
				o.nfeval += 1
				o.fcn(o.f0, x, y, args...) // o.f0 := f(x,y)

				// new step size
				dxnew = min(dxnew, dxmax)
				if o.reject { // do not alow o.h to grow if previous was a reject
					dxnew = min(o.h, dxnew)
				}
				o.reject = false

				// do not reuse current Jacobian and decomposition by default
				o.reuseJdec = false

				// last step ?
				if x+dxnew-xstep >= 0.0 {
					o.last = true
					o.h = xstep - x
				} else {
					dxratio = dxnew / o.h
					o.reuseJdec = (o.θ <= o.θmax && dxratio >= o.C1h && dxratio <= o.C2h)
					if !o.reuseJdec {
						o.h = dxnew
					}
				}

				// check θ to decide if at least the Jacobian can be reused
				if !o.reuseJdec {
					o.reuseJ = (o.θ <= o.θmax)
				}

				// rejected
			} else {
				// set flags
				if o.naccepted > 0 {
					o.nrejected += 1
				}
				o.reject = true
				o.last = false

				// new step size
				if o.first {
					o.h = 0.1 * o.h
				} else {
					o.h = dxnew
				}

				// last step
				if x+o.h > xstep {
					o.h = xstep - x
				}
			}
		}

		// sub-stepping failed
		if failed {
			err = chk.Err(_ode_err2, o.NmaxSS)
			break
		}
	}
	return
}
Ejemplo n.º 26
0
// Fact performs symbolic/numeric factorisation. This method also converts the triplet form
// to the column-compressed form, including the summation of duplicated entries
func (o *LinSolUmfpack) Fact() (err error) {

	// start time
	if o.ton {
		o.tini = time.Now()
	}

	// message
	if o.verb {
		io.Pfgreen("\n . . . . . . . . . . . . . . LinSolUmfpack.Fact . . . . . . . . . . . . . . . \n\n")
	}

	// factorisation
	if o.cmplx {

		// UMFPACK: convert triplet to column-compressed format
		st := C.umfpack_zl_triplet_to_col(C.LONG(o.tC.m), C.LONG(o.tC.n), C.LONG(o.tC.pos), o.ti, o.tj, o.tx, o.tz, o.ap, o.ai, o.ax, o.az, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err04, Uerr2Text[int(st)])
		}

		// UMFPACK: symbolic factorisation
		st = C.umfpack_zl_symbolic(C.LONG(o.tC.m), C.LONG(o.tC.n), o.ap, o.ai, o.ax, o.az, &o.usymb, o.uctrl, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err05, Uerr2Text[int(st)])
		}

		// UMFPACK: numeric factorisation
		st = C.umfpack_zl_numeric(o.ap, o.ai, o.ax, o.az, o.usymb, &o.unum, o.uctrl, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err06, Uerr2Text[int(st)])
		}

	} else {

		// UMFPACK: convert triplet to column-compressed format
		st := C.umfpack_dl_triplet_to_col(C.LONG(o.tR.m), C.LONG(o.tR.n), C.LONG(o.tR.pos), o.ti, o.tj, o.tx, o.ap, o.ai, o.ax, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err07, Uerr2Text[int(st)])
		}

		// UMFPACK: symbolic factorisation
		st = C.umfpack_dl_symbolic(C.LONG(o.tR.m), C.LONG(o.tR.n), o.ap, o.ai, o.ax, &o.usymb, o.uctrl, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err08, Uerr2Text[int(st)])
		}

		// UMFPACK: numeric factorisation
		st = C.umfpack_dl_numeric(o.ap, o.ai, o.ax, o.usymb, &o.unum, o.uctrl, nil)
		if st != C.UMFPACK_OK {
			return chk.Err(_linsol_umfpack_err09, Uerr2Text[int(st)])
		}

		return

	}

	// duration
	if o.ton {
		io.Pfcyan("%s: Time spent in LinSolUmfpack.Fact  = %v\n", o.name, time.Now().Sub(o.tini))
	}
	return
}
Ejemplo n.º 27
0
func (o *RichardsonExtrap) Run(tf float64, dtFunc, dtoFunc fun.Func, verbose bool, dbgKb DebugKb_t) (err error) {

	// constants
	dat := o.doms[0].Sim.Solver
	atol := dat.REatol
	rtol := dat.RErtol
	mmin := dat.REmmin
	mmax := dat.REmmax
	mfac := dat.REmfac

	// control
	t := o.doms[0].Sol.T
	tout := t + dtoFunc.F(t, nil)
	steady := o.doms[0].Sim.Data.Steady

	// first output
	if o.sum != nil {
		err = o.sum.SaveDomains(t, o.doms, false)
		if err != nil {
			return chk.Err("cannot save results:\n%v", err)
		}
	}

	// domain and variables
	d := o.doms[0]
	o.Y_big = make([]float64, d.Ny)

	// time loop
	o.Δt = dtFunc.F(t, nil)
	o.Δtcpy = o.Δt
	var ΔtOld, rerrOld float64
	for t < tf {

		// check for continued divergence
		if o.ndiverg >= dat.NdvgMax {
			return chk.Err("continuous divergence after %d steps reached", o.ndiverg)
		}

		// check time increment
		if o.Δt < dat.DtMin {
			return chk.Err("Δt increment is too small: %g < %g", o.Δt, dat.DtMin)
		}

		// dynamic coefficients
		if !steady {
			err = o.dc.CalcBoth(o.Δt)
			if err != nil {
				return chk.Err("cannot compute dynamic coefficients:\n%v", err)
			}
		}

		// check for maximum number of substeps
		o.nsteps += 1
		if o.nsteps >= dat.REnssmax {
			return chk.Err("RE: max number of steps reached: %d", o.nsteps)
		}

		// backup domain
		d.backup()

		// single step with Δt
		d.Sol.T = t + o.Δt
		d.Sol.Dt = o.Δt
		o.diverging, err = run_iterations(t+o.Δt, o.Δt, d, o.dc, o.sum, dbgKb)
		if err != nil {
			return chk.Err("single step with Δt: run_iterations failed:\n%v", err)
		}
		if dat.DvgCtrl {
			if o.divergence_control(d, "big step", verbose) {
				continue
			}
		}

		// save intermediate state
		for i := 0; i < d.Ny; i++ {
			o.Y_big[i] = d.Sol.Y[i]
		}

		// restore initial state
		d.restore()

		// 1st halved step
		d.Sol.T = t + o.Δt/2.0
		d.Sol.Dt = o.Δt / 2.0
		o.diverging, err = run_iterations(t+o.Δt/2.0, o.Δt/2.0, d, o.dc, o.sum, dbgKb)
		if err != nil {
			return chk.Err("1st halved step: run_iterations failed:\n%v", err)
		}
		if dat.DvgCtrl {
			if o.divergence_control(d, "1st half step", verbose) {
				continue
			}
		}

		// 2nd halved step
		d.Sol.T = t + o.Δt
		d.Sol.Dt = o.Δt
		o.diverging, err = run_iterations(t+o.Δt, o.Δt/2.0, d, o.dc, o.sum, dbgKb)
		if err != nil {
			return chk.Err("2nd halved step: run_iterations failed:\n%v", err)
		}
		if dat.DvgCtrl {
			if o.divergence_control(d, "2nd half step", verbose) {
				continue
			}
		}

		// Richardson's extrapolation error
		rerr := la.VecRmsError(d.Sol.Y, o.Y_big, atol, rtol, d.Sol.Y) / 3.0

		// step size change
		m := utl.Min(mmax, utl.Max(mmin, mfac*math.Pow(1.0/rerr, 1.0/2.0)))
		ΔtNew := m * o.Δt

		// accepted
		if rerr < 1.0 {

			// update variables
			o.naccept += 1
			t += o.Δt
			d.Sol.T = t

			// output
			if verbose {
				if !dat.ShowR {
					io.PfWhite("%30.15f\r", t)
				}
			}
			if t >= tout || o.laststep {
				if o.sum != nil {
					err = o.sum.SaveDomains(t, o.doms, false)
					if err != nil {
						return chk.Err("cannot save results:\n%v", err)
					}
				}
				tout += dtoFunc.F(t, nil)
			}

			// reached final time
			if o.laststep {
				if verbose {
					io.Pfgreen("\n\nRichardson extrapolation succeeded\n")
				}
				return
			}

			// predictive controller of Gustafsson
			if !dat.REnogus {
				if o.naccept > 1 {
					m = mfac * (o.Δt / ΔtOld) * math.Sqrt(1.0/rerr) * math.Sqrt(rerrOld/rerr)
					if m*o.Δt < ΔtNew {
						o.ngustaf += 1
					}
					ΔtNew = utl.Min(ΔtNew, m*o.Δt)
				}
				ΔtOld = o.Δt
				rerrOld = utl.Max(0.9, rerr) // 1e-2
			}

			// next step size
			if o.reject { // do not alow Δt to grow if previous was a reject
				ΔtNew = utl.Min(o.Δt, ΔtNew)
			}
			o.reject = false
			o.Δt = ΔtNew
			if t+ΔtNew-tf >= 0.0 {
				o.laststep = true
				o.Δt = tf - t
			}

			// rejected
		} else {

			// restore state
			d.restore()

			// set flags
			o.nreject += 1
			o.reject = true
			o.laststep = false

			// next step size
			o.Δt = ΔtNew
			if t+o.Δt > tf {
				o.Δt = tf - t
			}
		}
	}
	return
}
Ejemplo n.º 28
0
// Init initialises system
func (o *System) Init(Pdemand float64, lossless, check bool) {

	o.Pdemand = Pdemand
	o.Lossless = lossless

	// units:
	//  a [$ / (hMW²)]
	//  b [$ / (hMW)]
	//  c [$ / h]
	//  α [tons / (hMW²)]
	//  β [tons / (hMW)]
	//  γ [tons / h]
	//  ζ [tons / h]
	//  λ [MW⁻¹]
	//  Pmin [MW / 100]
	//  Pmax [MW / 100]

	o.G = []Generator{
		{a: 10, b: 200, c: 100, α: 4.091e-2, β: -5.554e-2, γ: 6.490e-2, ζ: 2.0e-4, λ: 2.857, Pmin: 0.05, Pmax: 0.5},
		{a: 10, b: 150, c: 120, α: 2.543e-2, β: -6.047e-2, γ: 5.638e-2, ζ: 5.0e-4, λ: 3.333, Pmin: 0.05, Pmax: 0.6},
		{a: 20, b: 180, c: 40., α: 4.258e-2, β: -5.094e-2, γ: 4.586e-2, ζ: 1.0e-6, λ: 8.000, Pmin: 0.05, Pmax: 1.0},
		{a: 10, b: 100, c: 60., α: 5.326e-2, β: -3.550e-2, γ: 3.380e-2, ζ: 2.0e-3, λ: 2.000, Pmin: 0.05, Pmax: 1.2},
		{a: 20, b: 180, c: 40., α: 4.258e-2, β: -5.094e-2, γ: 4.586e-2, ζ: 1.0e-6, λ: 8.000, Pmin: 0.05, Pmax: 1.0},
		{a: 10, b: 150, c: 100, α: 6.131e-2, β: -5.555e-2, γ: 5.151e-2, ζ: 1.0e-5, λ: 6.667, Pmin: 0.05, Pmax: 0.6},
	}

	o.B00 = 0.00098573
	o.B0 = []float64{-0.0107, +0.0060, -0.0017, +0.0009, +0.0002, +0.0030}
	o.B = [][]float64{
		{+0.1382, -0.0299, +0.0044, -0.0022, -0.0010, -0.0008},
		{-0.0299, +0.0487, -0.0025, +0.0004, +0.0016, +0.0041},
		{+0.0044, -0.0025, +0.0182, -0.0070, -0.0066, -0.0066},
		{-0.0022, +0.0004, -0.0070, +0.0137, +0.0050, +0.0033},
		{-0.0010, +0.0016, -0.0066, +0.0050, +0.0109, +0.0005},
		{-0.0008, +0.0041, -0.0066, +0.0033, +0.0005, +0.0244},
	}

	if check {

		// lossless and unsecured: cost only
		P_best_cost := []float64{0.10954, 0.29967, 0.52447, 1.01601, 0.52469, 0.35963}
		c := o.FuelCost(P_best_cost)
		e := o.Emission(P_best_cost)
		io.Pf("lossless and unsecured: cost only\n")
		io.Pforan("c = %.3f (600.114)\n", c)
		io.Pforan("e = %.5f (0.22214)\n", e)
		P_best_cost = []float64{0.1265, 0.2843, 0.5643, 1.0468, 0.5278, 0.2801}
		c = o.FuelCost(P_best_cost)
		io.Pfgreen("c = %.3f\n", c)
		Pdemand := 2.834
		o.PrintConstraints(P_best_cost, Pdemand, true)

		// lossless and unsecured: emission only
		P_best_emission := []float64{0.40584, 0.45915, 0.53797, 0.38300, 0.53791, 0.51012}
		c = o.FuelCost(P_best_emission)
		e = o.Emission(P_best_emission)
		io.Pf("\nlossless and unsecured: emission only\n")
		io.Pforan("c = %.3f (638.260)\n", c)
		io.Pforan("e = %.5f (0.19420)\n", e)

		P_best_cost = []float64{0.1500, 0.3000, 0.5500, 1.0500, 0.4600, 0.3500}
		c = o.FuelCost(P_best_cost)
		e = o.Emission(P_best_cost)
		io.Pforan("\nc = %.3f (606.314)\n", c)
		io.Pforan("e = %.5f (0.22330)\n", e)

		P_best_emission = []float64{0.4000, 0.4500, 0.5500, 0.4000, 0.5500, 0.5000}
		c = o.FuelCost(P_best_emission)
		e = o.Emission(P_best_emission)
		io.Pforan("\nc = %.3f (639.600)\n", c)
		io.Pforan("e = %.5f (0.19424)\n", e)
	}
	return
}
Ejemplo n.º 29
0
func Test_contact01b(tst *testing.T) {

	//verbose()
	chk.PrintTitle("contact01b")

	// start simulation
	analysis := NewFEM("data/contact01.sim", "", true, true, false, false, chk.Verbose, 0)

	// for debugging Kb
	//if true {
	if false {
		u_DebugKb(analysis, &testKb{
			tst: tst, eid: 3, tol: 1e-7, verb: chk.Verbose,
			ni: -1, nj: -1, itmin: 1, itmax: 1, tmin: 0.2, tmax: -1,
		})
	}

	// run simulation
	err := analysis.Run()
	if err != nil {
		io.PfRed("Run failed:\n%v", err)
		tst.Errorf("Run failed:\n%v", err)
		return
	}

	// check
	//if true {
	if false {

		// domain
		dom := analysis.Domains[0]

		// solution
		var sol ana.CteStressPstrain
		sol.Init(fun.Prms{
			&fun.Prm{N: "qnH", V: 0},
			&fun.Prm{N: "qnV", V: -100},
		})

		// check displacements
		t := dom.Sol.T
		tolu := 1e-16
		for _, n := range dom.Nodes {
			eqx := n.GetEq("ux")
			eqy := n.GetEq("uy")
			u := []float64{dom.Sol.Y[eqx], dom.Sol.Y[eqy]}
			io.Pfgreen("u = %v\n", u)
			sol.CheckDispl(tst, t, u, n.Vert.C, tolu)
		}

		// check stresses
		e := dom.Elems[3].(*ElemU)
		tols := 1e-13
		for idx, ip := range e.IpsElem {
			x := e.Cell.Shp.IpRealCoords(e.X, ip)
			σ := e.States[idx].Sig
			io.Pforan("σ = %v\n", σ)
			sol.CheckStress(tst, t, σ, x, tols)
		}
	}
}