Ejemplo n.º 1
0
func TestNull(t *testing.T) {
	db, _ := ethdb.NewMemDatabase()
	state, _ := New(common.Hash{}, db)

	address := common.HexToAddress("0x823140710bf13990e4500136726d8b55")
	state.CreateAccount(address)
	//value := common.FromHex("0x823140710bf13990e4500136726d8b55")
	var value common.Hash
	state.SetState(address, common.Hash{}, value)
	state.Commit()
	value = state.GetState(address, common.Hash{})
	if !common.EmptyHash(value) {
		t.Errorf("expected empty hash. got %x", value)
	}
}
Ejemplo n.º 2
0
// findAncestor tries to locate the common ancestor block of the local chain and
// a remote peers blockchain. In the general case when our node was in sync and
// on the correct chain, checking the top N blocks should already get us a match.
// In the rare scenario when we ended up on a long soft fork (i.e. none of the
// head blocks match), we do a binary search to find the common ancestor.
func (d *Downloader) findAncestor(p *peer) (uint64, error) {
	glog.V(logger.Debug).Infof("%v: looking for common ancestor", p)

	// Request out head blocks to short circuit ancestor location
	head := d.headBlock().NumberU64()
	from := int64(head) - int64(MaxHashFetch)
	if from < 0 {
		from = 0
	}
	go p.getAbsHashes(uint64(from), MaxHashFetch)

	// Wait for the remote response to the head fetch
	number, hash := uint64(0), common.Hash{}
	timeout := time.After(hashTTL)

	for finished := false; !finished; {
		select {
		case <-d.cancelCh:
			return 0, errCancelHashFetch

		case hashPack := <-d.hashCh:
			// Discard anything not from the origin peer
			if hashPack.peerId != p.id {
				glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId)
				break
			}
			// Make sure the peer actually gave something valid
			hashes := hashPack.hashes
			if len(hashes) == 0 {
				glog.V(logger.Debug).Infof("%v: empty head hash set", p)
				return 0, errEmptyHashSet
			}
			// Check if a common ancestor was found
			finished = true
			for i := len(hashes) - 1; i >= 0; i-- {
				if d.hasBlock(hashes[i]) {
					number, hash = uint64(from)+uint64(i), hashes[i]
					break
				}
			}

		case <-d.blockCh:
			// Out of bounds blocks received, ignore them

		case <-timeout:
			glog.V(logger.Debug).Infof("%v: head hash timeout", p)
			return 0, errTimeout
		}
	}
	// If the head fetch already found an ancestor, return
	if !common.EmptyHash(hash) {
		glog.V(logger.Debug).Infof("%v: common ancestor: #%d [%x]", p, number, hash[:4])
		return number, nil
	}
	// Ancestor not found, we need to binary search over our chain
	start, end := uint64(0), head
	for start+1 < end {
		// Split our chain interval in two, and request the hash to cross check
		check := (start + end) / 2

		timeout := time.After(hashTTL)
		go p.getAbsHashes(uint64(check), 1)

		// Wait until a reply arrives to this request
		for arrived := false; !arrived; {
			select {
			case <-d.cancelCh:
				return 0, errCancelHashFetch

			case hashPack := <-d.hashCh:
				// Discard anything not from the origin peer
				if hashPack.peerId != p.id {
					glog.V(logger.Debug).Infof("Received hashes from incorrect peer(%s)", hashPack.peerId)
					break
				}
				// Make sure the peer actually gave something valid
				hashes := hashPack.hashes
				if len(hashes) != 1 {
					glog.V(logger.Debug).Infof("%v: invalid search hash set (%d)", p, len(hashes))
					return 0, errBadPeer
				}
				arrived = true

				// Modify the search interval based on the response
				block := d.getBlock(hashes[0])
				if block == nil {
					end = check
					break
				}
				if block.NumberU64() != check {
					glog.V(logger.Debug).Infof("%v: non requested hash #%d [%x], instead of #%d", p, block.NumberU64(), block.Hash().Bytes()[:4], check)
					return 0, errBadPeer
				}
				start = check

			case <-d.blockCh:
				// Out of bounds blocks received, ignore them

			case <-timeout:
				glog.V(logger.Debug).Infof("%v: search hash timeout", p)
				return 0, errTimeout
			}
		}
	}
	return start, nil
}
Ejemplo n.º 3
0
// calculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for
// the operation. This does not reduce gas or resizes the memory.
func calculateGasAndSize(env Environment, contract *Contract, caller ContractRef, op OpCode, statedb Database, mem *Memory, stack *stack) (*big.Int, *big.Int, error) {
	var (
		gas                 = new(big.Int)
		newMemSize *big.Int = new(big.Int)
	)
	err := baseCheck(op, stack, gas)
	if err != nil {
		return nil, nil, err
	}

	// stack Check, memory resize & gas phase
	switch op {
	case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
		n := int(op - SWAP1 + 2)
		err := stack.require(n)
		if err != nil {
			return nil, nil, err
		}
		gas.Set(GasFastestStep)
	case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
		n := int(op - DUP1 + 1)
		err := stack.require(n)
		if err != nil {
			return nil, nil, err
		}
		gas.Set(GasFastestStep)
	case LOG0, LOG1, LOG2, LOG3, LOG4:
		n := int(op - LOG0)
		err := stack.require(n + 2)
		if err != nil {
			return nil, nil, err
		}

		mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1]

		gas.Add(gas, params.LogGas)
		gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(n)), params.LogTopicGas))
		gas.Add(gas, new(big.Int).Mul(mSize, params.LogDataGas))

		newMemSize = calcMemSize(mStart, mSize)
	case EXP:
		gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), params.ExpByteGas))
	case SSTORE:
		err := stack.require(2)
		if err != nil {
			return nil, nil, err
		}

		var g *big.Int
		y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
		val := statedb.GetState(contract.Address(), common.BigToHash(x))

		// This checks for 3 scenario's and calculates gas accordingly
		// 1. From a zero-value address to a non-zero value         (NEW VALUE)
		// 2. From a non-zero value address to a zero-value address (DELETE)
		// 3. From a nen-zero to a non-zero                         (CHANGE)
		if common.EmptyHash(val) && !common.EmptyHash(common.BigToHash(y)) {
			// 0 => non 0
			g = params.SstoreSetGas
		} else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
			statedb.AddRefund(params.SstoreRefundGas)

			g = params.SstoreClearGas
		} else {
			// non 0 => non 0 (or 0 => 0)
			g = params.SstoreClearGas
		}
		gas.Set(g)
	case SUICIDE:
		if !statedb.IsDeleted(contract.Address()) {
			statedb.AddRefund(params.SuicideRefundGas)
		}
	case MLOAD:
		newMemSize = calcMemSize(stack.peek(), u256(32))
	case MSTORE8:
		newMemSize = calcMemSize(stack.peek(), u256(1))
	case MSTORE:
		newMemSize = calcMemSize(stack.peek(), u256(32))
	case RETURN:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
	case SHA3:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])

		words := toWordSize(stack.data[stack.len()-2])
		gas.Add(gas, words.Mul(words, params.Sha3WordGas))
	case CALLDATACOPY:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

		words := toWordSize(stack.data[stack.len()-3])
		gas.Add(gas, words.Mul(words, params.CopyGas))
	case CODECOPY:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

		words := toWordSize(stack.data[stack.len()-3])
		gas.Add(gas, words.Mul(words, params.CopyGas))
	case EXTCODECOPY:
		newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4])

		words := toWordSize(stack.data[stack.len()-4])
		gas.Add(gas, words.Mul(words, params.CopyGas))

	case CREATE:
		newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3])
	case CALL, CALLCODE:
		gas.Add(gas, stack.data[stack.len()-1])

		if op == CALL {
			//if env.Db().GetStateObject(common.BigToAddress(stack.data[stack.len()-2])) == nil {
			if !env.Db().Exist(common.BigToAddress(stack.data[stack.len()-2])) {
				gas.Add(gas, params.CallNewAccountGas)
			}
		}

		if len(stack.data[stack.len()-3].Bytes()) > 0 {
			gas.Add(gas, params.CallValueTransferGas)
		}

		x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7])
		y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5])

		newMemSize = common.BigMax(x, y)
	}
	quadMemGas(mem, newMemSize, gas)

	return newMemSize, gas, nil
}
Ejemplo n.º 4
0
// jitCalculateGasAndSize calculates the required given the opcode and stack items calculates the new memorysize for
// the operation. This does not reduce gas or resizes the memory.
func jitCalculateGasAndSize(env Environment, context *Context, caller ContextRef, instr instruction, statedb *state.StateDB, mem *Memory, stack *stack) (*big.Int, *big.Int, error) {
	var (
		gas                 = new(big.Int)
		newMemSize *big.Int = new(big.Int)
	)
	err := jitBaseCheck(instr, stack, gas)
	if err != nil {
		return nil, nil, err
	}

	// stack Check, memory resize & gas phase
	switch op := instr.op; op {
	case SWAP1, SWAP2, SWAP3, SWAP4, SWAP5, SWAP6, SWAP7, SWAP8, SWAP9, SWAP10, SWAP11, SWAP12, SWAP13, SWAP14, SWAP15, SWAP16:
		n := int(op - SWAP1 + 2)
		err := stack.require(n)
		if err != nil {
			return nil, nil, err
		}
		gas.Set(GasFastestStep)
	case DUP1, DUP2, DUP3, DUP4, DUP5, DUP6, DUP7, DUP8, DUP9, DUP10, DUP11, DUP12, DUP13, DUP14, DUP15, DUP16:
		n := int(op - DUP1 + 1)
		err := stack.require(n)
		if err != nil {
			return nil, nil, err
		}
		gas.Set(GasFastestStep)
	case LOG0, LOG1, LOG2, LOG3, LOG4:
		n := int(op - LOG0)
		err := stack.require(n + 2)
		if err != nil {
			return nil, nil, err
		}

		mSize, mStart := stack.data[stack.len()-2], stack.data[stack.len()-1]

		add := new(big.Int)
		gas.Add(gas, params.LogGas)
		gas.Add(gas, add.Mul(big.NewInt(int64(n)), params.LogTopicGas))
		gas.Add(gas, add.Mul(mSize, params.LogDataGas))

		newMemSize = calcMemSize(mStart, mSize)
	case EXP:
		gas.Add(gas, new(big.Int).Mul(big.NewInt(int64(len(stack.data[stack.len()-2].Bytes()))), params.ExpByteGas))
	case SSTORE:
		err := stack.require(2)
		if err != nil {
			return nil, nil, err
		}

		var g *big.Int
		y, x := stack.data[stack.len()-2], stack.data[stack.len()-1]
		val := statedb.GetState(context.Address(), common.BigToHash(x))

		// This checks for 3 scenario's and calculates gas accordingly
		// 1. From a zero-value address to a non-zero value         (NEW VALUE)
		// 2. From a non-zero value address to a zero-value address (DELETE)
		// 3. From a nen-zero to a non-zero                         (CHANGE)
		if common.EmptyHash(val) && !common.EmptyHash(common.BigToHash(y)) {
			// 0 => non 0
			g = params.SstoreSetGas
		} else if !common.EmptyHash(val) && common.EmptyHash(common.BigToHash(y)) {
			statedb.Refund(params.SstoreRefundGas)

			g = params.SstoreClearGas
		} else {
			// non 0 => non 0 (or 0 => 0)
			g = params.SstoreClearGas
		}
		gas.Set(g)
	case SUICIDE:
		if !statedb.IsDeleted(context.Address()) {
			statedb.Refund(params.SuicideRefundGas)
		}
	case MLOAD:
		newMemSize = calcMemSize(stack.peek(), u256(32))
	case MSTORE8:
		newMemSize = calcMemSize(stack.peek(), u256(1))
	case MSTORE:
		newMemSize = calcMemSize(stack.peek(), u256(32))
	case RETURN:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])
	case SHA3:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-2])

		words := toWordSize(stack.data[stack.len()-2])
		gas.Add(gas, words.Mul(words, params.Sha3WordGas))
	case CALLDATACOPY:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

		words := toWordSize(stack.data[stack.len()-3])
		gas.Add(gas, words.Mul(words, params.CopyGas))
	case CODECOPY:
		newMemSize = calcMemSize(stack.peek(), stack.data[stack.len()-3])

		words := toWordSize(stack.data[stack.len()-3])
		gas.Add(gas, words.Mul(words, params.CopyGas))
	case EXTCODECOPY:
		newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-4])

		words := toWordSize(stack.data[stack.len()-4])
		gas.Add(gas, words.Mul(words, params.CopyGas))

	case CREATE:
		newMemSize = calcMemSize(stack.data[stack.len()-2], stack.data[stack.len()-3])
	case CALL, CALLCODE:
		gas.Add(gas, stack.data[stack.len()-1])

		if op == CALL {
			if env.State().GetStateObject(common.BigToAddress(stack.data[stack.len()-2])) == nil {
				gas.Add(gas, params.CallNewAccountGas)
			}
		}

		if len(stack.data[stack.len()-3].Bytes()) > 0 {
			gas.Add(gas, params.CallValueTransferGas)
		}

		x := calcMemSize(stack.data[stack.len()-6], stack.data[stack.len()-7])
		y := calcMemSize(stack.data[stack.len()-4], stack.data[stack.len()-5])

		newMemSize = common.BigMax(x, y)
	}

	if newMemSize.Cmp(common.Big0) > 0 {
		newMemSizeWords := toWordSize(newMemSize)
		newMemSize.Mul(newMemSizeWords, u256(32))

		if newMemSize.Cmp(u256(int64(mem.Len()))) > 0 {
			// be careful reusing variables here when changing.
			// The order has been optimised to reduce allocation
			oldSize := toWordSize(big.NewInt(int64(mem.Len())))
			pow := new(big.Int).Exp(oldSize, common.Big2, Zero)
			linCoef := oldSize.Mul(oldSize, params.MemoryGas)
			quadCoef := new(big.Int).Div(pow, params.QuadCoeffDiv)
			oldTotalFee := new(big.Int).Add(linCoef, quadCoef)

			pow.Exp(newMemSizeWords, common.Big2, Zero)
			linCoef = linCoef.Mul(newMemSizeWords, params.MemoryGas)
			quadCoef = quadCoef.Div(pow, params.QuadCoeffDiv)
			newTotalFee := linCoef.Add(linCoef, quadCoef)

			fee := newTotalFee.Sub(newTotalFee, oldTotalFee)
			gas.Add(gas, fee)
		}
	}

	return newMemSize, gas, nil
}