Ejemplo n.º 1
0
/*
 Solution of a triangular and banded set of equations.

 Tbsv(A, X, uplo=PLower, trans=PNoTrans, diag=PNonDiag, n=A.Cols,
 k=max(0,A.Rows-1), ldA=A.size[0], incx=1, offsetA=0, offsetx=0)

PURPOSE
  X := A^{-1}*X, if trans is PNoTrans
  X := A^{-T}*X, if trans is PTrans
  X := A^{-H}*X, if trans is PConjTrans

 A is banded triangular of order n and with bandwidth k.

 ARGUMENTS
  A         float or complex m*k matrix.
  X         float or complex k*1 matrix. Must have the same type as A.

 OPTIONS
  uplo      PLower   or PUpper
  trans     PNoTrans, PTrans or PConjTrans
  diag      PNoNUnit or PUnit
  n         nonnegative integer.  If negative, the default value is used.
  k         nonnegative integer.  If negative, the default value is used.
  ldA       nonnegative integer.  ldA >= 1+k.
            If zero the default value is used.
  incx      nonzero integer
  offsetA   nonnegative integer
  offsetx   nonnegative integer;
*/
func Tbsv(A, X matrix.Matrix, opts ...linalg.Option) (err error) {

	var params *linalg.Parameters
	if !matrix.EqualTypes(A, X) {
		err = errors.New("Parameters not of same type")
		return
	}
	params, err = linalg.GetParameters(opts...)
	if err != nil {
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level2_func(ind, ftbsv, X, nil, A, params)
	if err != nil {
		return
	}
	if ind.N == 0 {
		return
	}
	switch X.(type) {
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Aa := A.FloatArray()
		uplo := linalg.ParamString(params.Uplo)
		trans := linalg.ParamString(params.Trans)
		diag := linalg.ParamString(params.Diag)
		dtbsv(uplo, trans, diag, ind.N, ind.K,
			Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX)
	case *matrix.ComplexMatrix:
		return errors.New("Not implemented yet for complx.Matrix")
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 2
0
func checkSyevd(ind *linalg.IndexOpts, A, W matrix.Matrix) error {
	if ind.N < 0 {
		ind.N = A.Rows()
		if ind.N != A.Cols() {
			return errors.New("Syevd: A not square")
		}
	}
	if ind.N == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, ind.N) {
		return errors.New("Syevd: lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("Syevd: offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("Syevd: sizeA")
	}
	if ind.OffsetW < 0 {
		return errors.New("Syevd: offsetW")
	}
	sizeW := W.NumElements()
	if sizeW < ind.OffsetW+ind.N {
		return errors.New("Syevd: sizeW")
	}
	return nil
}
Ejemplo n.º 3
0
/*
 Symmetric rank-2 update.
 syr2(x, y, A, uplo='L', alpha=1.0, n=A.size[0], incx=1, incy=1,
     ldA=max(1,A.size[0]), offsetx=0, offsety=0, offsetA=0)
 PURPOSE
 Computes A := A + alpha*(x*y^T + y*x^T) with A real symmetric matrix of order n.
 ARGUMENTS
 x         float matrix
 y         float matrix
 A         float matrix
 alpha     real number (int or float)

 OPTIONS
 uplo      'L' or 'U'
 n         integer.  If negative, the default value is used.
 incx      nonzero integer
 incy      nonzero integer
 ldA       nonnegative integer.  ldA >= max(1,n).
           If zero the default value is used.
 offsetx   nonnegative integer
 offsety   nonnegative integer
 offsetA   nonnegative integer;
*/
func Syr2(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {

	var params *linalg.Parameters
	params, err = linalg.GetParameters(opts...)
	if err != nil {
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level2_func(ind, fsyr2, X, Y, A, params)
	if err != nil {
		return
	}
	if !matrix.EqualTypes(A, X, Y) {
		return errors.New("Parameters not of same type")
	}
	switch X.(type) {
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := X.FloatArray()
		Aa := A.FloatArray()
		aval := alpha.Float()
		if math.IsNaN(aval) {
			return errors.New("alpha not a number")
		}
		uplo := linalg.ParamString(params.Uplo)
		dsyr2(uplo, ind.N, aval, Xa[ind.OffsetX:], ind.IncX,
			Ya[ind.OffsetY:], ind.IncY,
			Aa[ind.OffsetA:], ind.LDa)
	case *matrix.ComplexMatrix:
		return errors.New("Not implemented yet for complx.Matrix")
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 4
0
// Scales a vector by a constant (X := alpha*X).
//
// ARGUMENTS
//  X         float or complex matrix
//  alpha     number (float or complex singleton matrix).  Complex alpha is only
//            allowed if X is complex.
// 
// OPTIONS
//  n         integer.  If n<0, the default value of n is used.
//            The default value is equal to 1+(len(x)-offset-1)/inc or 0
//            if len(x) > offset+1.
//  inc       positive integer, default = 1
//  offset    nonnegative integer, default = 0
//
func Scal(X matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
	ind := linalg.GetIndexOpts(opts...)
	err = check_level1_func(ind, fscal, X, nil)
	if err != nil {
		return
	}
	if ind.Nx == 0 {
		return
	}
	switch X.(type) {
	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		cval := alpha.Complex()
		zscal(ind.Nx, cval, Xa[ind.OffsetX:], ind.IncX)
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		rval := alpha.Float()
		if math.IsNaN(rval) {
			return errors.New("alpha not float value")
		}
		dscal(ind.Nx, rval, Xa[ind.OffsetX:], ind.IncX)
	default:
		err = errors.New("not implemented for parameter types", )
	}
	return
}
Ejemplo n.º 5
0
/*
 Inverse of a real or complex matrix.

 Getri(A, ipiv, n=A.Rows, ldA = max(1,A.Rows), offsetA=0)

 PURPOSE

 Computes the inverse of real or complex matrix of order n.  On
 entry, A and ipiv contain the LU factorization, as returned by
 gesv() or getrf().  On exit A is replaced by the inverse.

 ARGUMENTS
  A         float or complex matrix
  ipiv      int vector

 OPTIONS
  n         nonnegative integer.  If negative, the default value is used.
  ldA       positive integer.  ldA >= max(1,n).  If zero, the default
            value is used.
  offsetA   nonnegative integer;
*/
func Getri(A matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
	ind := linalg.GetIndexOpts(opts...)
	if ind.N < 0 {
		ind.N = A.Cols()
	}
	if ind.N == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.OffsetA < 0 {
		return errors.New("lda")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("sizeA")
	}
	if ipiv != nil && len(ipiv) < ind.N {
		return errors.New("size ipiv")
	}
	info := -1
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		info = dgetri(ind.N, Aa[ind.OffsetA:], ind.LDa, ipiv)
	case *matrix.ComplexMatrix:
	}
	if info != 0 {
		return errors.New("Getri call error")
	}
	return nil
}
Ejemplo n.º 6
0
// Returns Y = X^H*Y for real or complex X, Y.
//
// ARGUMENTS
//  X         float or complex matrix
//  Y         float or complex matrix.  Must have the same type as X.
//
// OPTIONS
//  n         integer.  If n<0, the default value of n is used.
//            The default value is equal to nx = 1+(len(x)-offsetx-1)/incx or 0 if
//            len(x) > offsetx+1.  If the default value is used, it must be equal to
//            ny = 1+(len(y)-offsetx-1)/|incy| or 0 if len(y) > offsety+1
//  incx      nonzero integer [default=1]
//  incy      nonzero integer [default=1]
//  offsetx   nonnegative integer [default=0]
//  offsety   nonnegative integer [default=0]
//
func Dot(X, Y matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) {
	v = matrix.FScalar(math.NaN())
	//cv = cmplx.NaN()
	ind := linalg.GetIndexOpts(opts...)
	err := check_level1_func(ind, fdot, X, Y)
	if err != nil {
		return
	}
	if ind.Nx == 0 {
		return matrix.FScalar(0.0)
	}
	sameType := matrix.EqualTypes(X, Y)
	if ! sameType {
		err = errors.New("arrays not of same type")
		return
	}
	switch X.(type) {
	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		Ya := Y.ComplexArray()
		v = matrix.CScalar(zdotc(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY))
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		v = matrix.FScalar(ddot(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY))
	//default:
	//	err = errors.New("not implemented for parameter types", )
	}
	return
}
Ejemplo n.º 7
0
// Copies a vector X to a vector Y (Y := X).
//
// ARGUMENTS
//  X         float or complex matrix
//  Y         float or complex matrix.  Must have the same type as X.
//
// OPTIONS
//  n         integer.  If n<0, the default value of n is used.
//            The default value is given by 1+(len(x)-offsetx-1)/incx or 0
//            if len(x) > offsetx+1
//  incx      nonzero integer
//  incy      nonzero integer
//  offsetx   nonnegative integer
//  offsety   nonnegative integer;
//
func Copy(X, Y matrix.Matrix, opts ...linalg.Option) (err error) {
	ind := linalg.GetIndexOpts(opts...)
	err = check_level1_func(ind, fcopy, X, Y)
	if err != nil {
		return
	}
	if ind.Nx == 0 {
		return
	}
	sameType := matrix.EqualTypes(X, Y)
	if ! sameType {
		err = errors.New("arrays not same type")
		return
	}
	switch X.(type) {
	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		Ya := Y.ComplexArray()
		zcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		dcopy(ind.Nx, Xa[ind.OffsetX:], ind.IncX, Ya[ind.OffsetY:], ind.IncY)
	default:
		err = errors.New("not implemented for parameter types", )
	}
	return
}
Ejemplo n.º 8
0
func checkSytrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error {
	if ind.N < 0 {
		ind.N = A.Rows()
		if ind.N != A.Cols() {
			return errors.New("A not square")
		}
	}
	if ind.N == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, ind.N) {
		return errors.New("Sytrf: lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("Sytrf: offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("Sytrf: sizeA")
	}
	if ipiv != nil && len(ipiv) < ind.N {
		return errors.New("Sytrf: size ipiv")
	}
	return nil
}
Ejemplo n.º 9
0
// Returns ||Re x||_1 + ||Im x||_1.
//
// ARGUMENTS
//  X       float or complex matrix
// 
// OPTIONS
//  n       integer.  If n<0, the default value of n is used.
//          The default value is equal to n = 1+(len(x)-offset-1)/inc or 0 if
//          len(x) > offset+1
//  inc     positive integer
//  offset  nonnegative integer
//
func Asum(X matrix.Matrix, opts ...linalg.Option) (v matrix.Scalar) {
	v = matrix.FScalar(math.NaN())
	ind := linalg.GetIndexOpts(opts...)
	err := check_level1_func(ind, fasum, X, nil)
	if err != nil {
		return
	}
	if ind.Nx == 0 {
		return
	}
	switch X.(type) {
	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		v = matrix.FScalar(dzasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX))
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		v =  matrix.FScalar(dasum(ind.Nx, Xa[ind.OffsetX:], ind.IncX))
	//default:
	//	err = errors.New("not implemented for parameter types", )
	}
	return
}
Ejemplo n.º 10
0
/*
 Rank-k update of symmetric matrix. (L3)

 Herk(A, C, alpha, beta, uplo=PLower, trans=PNoTrans,  n=-1,
 k=-1, ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetB=0)

 Computes
  C := alpha*A*A^T + beta*C, if trans is PNoTrans
  C := alpha*A^T*A + beta*C, if trans is PTrans

 C is symmetric (real or complex) of order n. The inner dimension of the matrix
 product is k.  If k=0 this is interpreted as C := beta*C.

 ARGUMENTS
  A         float or complex matrix.
  C         float or complex matrix.  Must have the same type as A.
  alpha     number (float or complex singleton matrix).  Complex alpha is only
            allowed if A is complex.
  beta      number (float or complex singleton matrix).  Complex beta is only
            allowed if A is complex.

 OPTIONS
  uplo      PLower or PUpper
  trans     PNoTrans or PTrans
  n         integer.  If negative, the default value is used.
            The default value is n = A.Rows or if trans == PNoTrans n = A.Cols.
  k         integer.  If negative, the default value is used.
            The default value is k =  A.Cols, or if trans == PNoTrans k = A.Rows.
  ldA       nonnegative integer.
            ldA >= max(1,n) or if trans != PNoTrans ldA >= max(1,k).
            If zero, the default value is used.
  ldC       nonnegative integer.  ldC >= max(1,n).
            If zero, the default value is used.
  offsetA   nonnegative integer
  offsetC   nonnegative integer;
*/
func Herk(A, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {

	params, e := linalg.GetParameters(opts...)
	if e != nil {
		err = e
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level3_func(ind, fsyrk, A, nil, C, params)
	if e != nil || err != nil {
		return
	}
	if !matrix.EqualTypes(A, C) {
		return errors.New("Parameters not of same type")
	}
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ca := C.FloatArray()
		aval := alpha.Float()
		bval := beta.Float()
		if math.IsNaN(aval) || math.IsNaN(bval) {
			return errors.New("alpha or beta not a number")
		}
		uplo := linalg.ParamString(params.Uplo)
		trans := linalg.ParamString(params.Trans)
		dsyrk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
			Ca[ind.OffsetC:], ind.LDc)
	case *matrix.ComplexMatrix:
		Aa := A.ComplexArray()
		Ca := C.ComplexArray()
		aval := alpha.Complex()
		if cmplx.IsNaN(aval) {
			return errors.New("alpha not a real or complex number")
		}
		bval := beta.Float()
		if math.IsNaN(bval) {
			return errors.New("beta not a real number")
		}
		uplo := linalg.ParamString(params.Uplo)
		trans := linalg.ParamString(params.Trans)
		zherk(uplo, trans, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa, bval,
			Ca[ind.OffsetC:], ind.LDc)
	default:
		return errors.New("Unknown type, not implemented")
	}

	return
}
Ejemplo n.º 11
0
/*
 Solution of a triangular system of equations with multiple righthand sides. (L3)

 Trsm(A, B, alpha, side=PLeft, uplo=PLower, transA=PNoTrans, diag=PNonUnit,
 m=-1, n=-1, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)

 Computes
  B := alpha*A^{-1}*B if transA is PNoTrans   and side = PLeft
  B := alpha*B*A^{-1} if transA is PNoTrans   and side = PRight
  B := alpha*A^{-T}*B if transA is PTrans     and side = PLeft
  B := alpha*B*A^{-T} if transA is PTrans     and side = PRight
  B := alpha*A^{-H}*B if transA is PConjTrans and side = PLeft
  B := alpha*B*A^{-H} if transA is PConjTrans and side = PRight

 B is m by n and A is triangular.  The code does not verify whether A is nonsingular.

 ARGUMENTS
  A         float or complex matrix.
  B         float or complex matrix.  Must have the same type as A.
  alpha     number (float or complex).  Complex alpha is only
            allowed if A is complex.

 OPTIONS
  side      PLeft or PRight
  uplo      PLower or PUpper
  transA    PNoTrans or PTrans
  diag      PNonUnit or PUnit
  m         integer.  If negative, the default value is used.
            The default value is m = A.Rows or if side == PRight m = B.Rows
            If the default value is used and side is PLeft, m must be equal to A.Cols.
  n         integer.  If negative, the default value is used.
            The default value is n = B.Cols or if side )= PRight n = A.Rows.
            If the default value is used and side is PRight, n must be equal to A.Cols.
  ldA       nonnegative integer.
            ldA >= max(1,m) of if  side == PRight lda >= max(1,n).
            If zero, the default value is used.
  ldB       nonnegative integer.  ldB >= max(1,m).
            If zero, the default value is used.
  offsetA   nonnegative integer
  offsetB   nonnegative integer
*/
func Trsm(A, B matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {

	params, e := linalg.GetParameters(opts...)
	if e != nil {
		err = e
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level3_func(ind, ftrsm, A, B, nil, params)
	if err != nil {
		return
	}
	if !matrix.EqualTypes(A, B) {
		return errors.New("Parameters not of same type")
	}
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ba := B.FloatArray()
		aval := alpha.Float()
		if math.IsNaN(aval) {
			return errors.New("alpha or beta not a number")
		}
		uplo := linalg.ParamString(params.Uplo)
		transA := linalg.ParamString(params.TransA)
		side := linalg.ParamString(params.Side)
		diag := linalg.ParamString(params.Diag)
		dtrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
			Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
	case *matrix.ComplexMatrix:
		Aa := A.ComplexArray()
		Ba := B.ComplexArray()
		aval := alpha.Complex()
		if cmplx.IsNaN(aval) {
			return errors.New("alpha  not a number")
		}
		uplo := linalg.ParamString(params.Uplo)
		transA := linalg.ParamString(params.TransA)
		side := linalg.ParamString(params.Side)
		diag := linalg.ParamString(params.Diag)
		ztrsm(side, uplo, transA, diag, ind.M, ind.N, aval,
			Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb)
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 12
0
// Constant times a vector plus a vector (Y := alpha*X+Y).
//
// ARGUMENTS
//   X         float or complex matrix
//   Y         float or complex matrix.  Must have the same type as X.
//   alpha     number (float or complex singleton matrix).  Complex alpha is only
//             allowed if x is complex.
//
// OPTIONS
//   n         integer.  If n<0, the default value of n is used.
//             The default value is equal to 1+(len(x)-offsetx-1)/incx 
//             or 0 if  len(x) >= offsetx+1 
//   incx      nonzero integer
//   incy      nonzero integer
//   offsetx   nonnegative integer
//   offsety   nonnegative integer;
//
func Axpy(X, Y matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {
	ind := linalg.GetIndexOpts(opts...)
	err = check_level1_func(ind, faxpy, X, Y)
	if err != nil {
		return
	}
	if ind.Nx == 0 {
		return
	}
	sameType := matrix.EqualTypes(X, Y)
	if ! sameType {
		err = errors.New("arrays not same type")
		return
	}
	switch X.(type) {
	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		Ya := Y.ComplexArray()
		aval := alpha.Complex()
		if cmplx.IsNaN(aval) {
			return errors.New("alpha not complex value")
		}
		zaxpy(ind.Nx, aval, Xa[ind.OffsetX:],
			ind.IncX, Ya[ind.OffsetY:], ind.IncY)
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		aval := alpha.Float()
		if math.IsNaN(aval) {
			return errors.New("alpha not float value")
		}
		daxpy(ind.Nx, aval, Xa[ind.OffsetX:],
			ind.IncX, Ya[ind.OffsetY:], ind.IncY)
	default:
		err = errors.New("not implemented for parameter types", )
	}
	return
}
Ejemplo n.º 13
0
func checkGbtrf(ind *linalg.IndexOpts, A matrix.Matrix, ipiv []int32) error {
	if ind.M < 0 {
		return errors.New("Gbtrf: illegal m")
	}
	if ind.Kl < 0 {
		return errors.New("GBtrf: illegal kl")
	}
	if ind.N < 0 {
		ind.N = A.Rows()
	}
	if ind.M == 0 || ind.N == 0 {
		return nil
	}
	if ind.Ku < 0 {
		ind.Ku = A.Rows() - 2*ind.Kl - 1
	}
	if ind.Ku < 0 {
		return errors.New("Gbtrf: invalid ku")
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < 2*ind.Kl+ind.Ku+1 {
		return errors.New("Gbtrf: lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("Gbtrf: offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
		return errors.New("Gbtrf: sizeA")
	}
	if ipiv != nil && len(ipiv) < min(ind.N, ind.M) {
		return errors.New("Gbtrf: size ipiv")
	}
	return nil
}
Ejemplo n.º 14
0
func checkPotrf(ind *linalg.IndexOpts, A matrix.Matrix) error {
	if ind.N < 0 {
		ind.N = A.Rows()
		if ind.N != A.Cols() {
			return errors.New("Potrf: not square")
		}
	}
	if ind.N == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, ind.N) {
		return errors.New("Potrf: lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("Potrf: offsetA")
	}
	if A.NumElements() < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("Potrf: sizeA")
	}
	return nil
}
Ejemplo n.º 15
0
/*
 Matrix-vector product with a general banded matrix. (L2)

 Computes
   Y := alpha*A*X + beta*Y,   if trans = PNoTrans
   Y := alpha*A^T*X + beta*Y, if trans = PTrans
   Y := beta*y,               if n=0, m>0, and trans = PNoTrans
   Y := beta*y,               if n>0, m=0, and trans = PTrans

 The matrix A is m by n with upper bandwidth ku and lower bandwidth kl.
 Returns immediately if n=0 and trans is 'Trans', or if m=0 and trans is 'N'.


 ARGUMENTS
   X         float n*1 matrix.
   Y         float m*1 matrix
   A         float m*n matrix.
   alpha     number (float).
   beta      number (float).

 OPTIONS
   trans     NoTrans or Trans
   m         nonnegative integer, default A.Rows()
   kl        nonnegative integer
   n         nonnegative integer.  If negative, the default value is used.
   ku        nonnegative integer.  If negative, the default value is used.
   ldA       positive integer.  ldA >= kl+ku+1. If zero, the default value is used.
   incx      nonzero integer, default =1
   incy      nonzero integer, default =1
   offsetA   nonnegative integer, default =0
   offsetx   nonnegative integer, default =0
   offsety   nonnegative integer, default =0

*/
func Gbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {

	var params *linalg.Parameters
	params, err = linalg.GetParameters(opts...)
	if err != nil {
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level2_func(ind, fgbmv, X, Y, A, params)
	if err != nil {
		return
	}
	if ind.M == 0 && ind.N == 0 {
		return
	}
	if !matrix.EqualTypes(A, X, Y) {
		return errors.New("Parameters not of same type")
	}
	switch X.(type) {
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		Aa := A.FloatArray()
		aval := alpha.Float()
		bval := beta.Float()
		if math.IsNaN(aval) || math.IsNaN(bval) {
			return errors.New("alpha or beta not a number")
		}
		if params.Trans == linalg.PNoTrans && ind.N == 0 {
			dscal(ind.M, bval, Ya[ind.OffsetY:], ind.IncY)
		} else if params.Trans == linalg.PTrans && ind.M == 0 {
			dscal(ind.N, bval, Ya[ind.OffsetY:], ind.IncY)
		} else {
			trans := linalg.ParamString(params.Trans)
			dgbmv(trans, ind.M, ind.N, ind.Kl, ind.Ku,
				aval, Aa[ind.OffsetA:], ind.LDa, Xa[ind.OffsetX:], ind.IncX,
				bval, Ya[ind.OffsetY:], ind.IncY)
		}
	case *matrix.ComplexMatrix:
		return errors.New("Not implemented yet for complx.Matrix")
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 16
0
func check_level2_func(ind *linalg.IndexOpts, fn funcNum, X, Y, A matrix.Matrix, pars *linalg.Parameters) error {
	if ind.IncX <= 0 {
		return errors.New("incX")
	}
	if ind.IncY <= 0 {
		return errors.New("incY")
	}

	sizeA := A.NumElements()
	switch fn {
	case fgemv: // general matrix
		if ind.M < 0 {
			ind.M = A.Rows()
		}
		if ind.N < 0 {
			ind.N = A.Cols()
		}
		if ind.LDa == 0 {
			ind.LDa = max(1, A.Rows())
		}
		if ind.OffsetA < 0 {
			return errors.New("offsetA")
		}
		if ind.N > 0 && ind.M > 0 &&
			sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M {
			return errors.New("sizeA")
		}
		if ind.OffsetX < 0 {
			return errors.New("offsetX")
		}
		if ind.OffsetY < 0 {
			return errors.New("offsetY")
		}
		sizeX := X.NumElements()
		sizeY := Y.NumElements()
		if pars.Trans == linalg.PNoTrans {
			if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if ind.M > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 {
				return errors.New("sizeY")
			}
		} else {
			if ind.M > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
				return errors.New("sizeY")
			}
		}
	case fger:
		if ind.M < 0 {
			ind.M = A.Rows()
		}
		if ind.N < 0 {
			ind.N = A.Cols()
		}
		if ind.M == 0 || ind.N == 0 {
			return nil
		}
		if ind.M > 0 && ind.N > 0 {
			if ind.LDa == 0 {
				ind.LDa = max(1, A.Rows())
			}
			if ind.LDa < max(1, ind.M) {
				return errors.New("ldA")
			}
			if ind.OffsetA < 0 {
				return errors.New("offsetA")
			}
			if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M {
				return errors.New("sizeA")
			}
			if ind.OffsetX < 0 {
				return errors.New("offsetX")
			}
			if ind.OffsetY < 0 {
				return errors.New("offsetY")
			}
			sizeX := X.NumElements()
			if sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			sizeY := Y.NumElements()
			if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
				return errors.New("sizeY")
			}
		}
	case fgbmv: // general banded
		if ind.M < 0 {
			ind.M = A.Rows()
		}
		if ind.N < 0 {
			ind.N = A.Cols()
		}
		if ind.Kl < 0 {
			return errors.New("kl")
		}
		if ind.Ku < 0 {
			ind.Ku = A.Rows() - 1 - ind.Kl
		}
		if ind.Ku < 0 {
			return errors.New("ku")
		}
		if ind.LDa == 0 {
			ind.LDa = max(1, A.Rows())
		}
		if ind.LDa < ind.Kl+ind.Ku+1 {
			return errors.New("ldA")
		}
		if ind.OffsetA < 0 {
			return errors.New("offsetA")
		}
		sizeA := A.NumElements()
		if ind.N > 0 && ind.M > 0 &&
			sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.Kl+ind.Ku+1 {
			return errors.New("sizeA")
		}
		if ind.OffsetX < 0 {
			return errors.New("offsetX")
		}
		if ind.OffsetY < 0 {
			return errors.New("offsetY")
		}
		sizeX := X.NumElements()
		sizeY := Y.NumElements()
		if pars.Trans == linalg.PNoTrans {
			if ind.N > 0 && sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if ind.N > 0 && sizeY < ind.OffsetY+(ind.M-1)*abs(ind.IncY)+1 {
				return errors.New("sizeY")
			}
		} else {
			if ind.N > 0 && sizeX < ind.OffsetX+(ind.M-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if ind.N > 0 && sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
				return errors.New("sizeY")
			}
		}
	case ftrmv, ftrsv:
		// ftrmv = triangular
		// ftrsv = triangular solve
		if ind.N < 0 {
			if A.Rows() != A.Cols() {
				return errors.New("A not square")
			}
			ind.N = A.Rows()
		}
		if ind.N > 0 {
			if ind.LDa == 0 {
				ind.LDa = max(1, A.Rows())
			}
			if ind.LDa < max(1, ind.N) {
				return errors.New("ldA")
			}
			if ind.OffsetA < 0 {
				return errors.New("offsetA")
			}
			sizeA := A.NumElements()
			if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
				return errors.New("sizeA")
			}
			sizeX := X.NumElements()
			if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
		}
	case ftbmv, ftbsv, fsbmv:
		// ftbmv = triangular banded
		// ftbsv = triangular banded solve
		// fsbmv = symmetric banded product
		if ind.N < 0 {
			ind.N = A.Rows()
		}
		if ind.N > 0 {
			if ind.K < 0 {
				ind.K = max(0, A.Rows()-1)
			}
			if ind.LDa == 0 {
				ind.LDa = max(1, A.Rows())
			}
			if ind.LDa < ind.K+1 {
				return errors.New("ldA")
			}
			if ind.OffsetA < 0 {
				return errors.New("offsetA")
			}
			sizeA := A.NumElements()
			if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.K+1 {
				return errors.New("sizeA")
			}
			sizeX := X.NumElements()
			if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if Y != nil {
				sizeY := Y.NumElements()
				if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
					return errors.New("sizeY")
				}
			}
		}
	case fsymv, fsyr, fsyr2:
		// fsymv = symmetric product
		// fsyr = symmetric rank update
		// fsyr2 = symmetric rank-2 update
		if ind.N < 0 {
			if A.Rows() != A.Cols() {
				return errors.New("A not square")
			}
			ind.N = A.Rows()
		}
		if ind.N > 0 {
			if ind.LDa == 0 {
				ind.LDa = max(1, A.Rows())
			}
			if ind.LDa < max(1, ind.N) {
				return errors.New("ldA")
			}
			if ind.OffsetA < 0 {
				return errors.New("offsetA")
			}
			sizeA := A.NumElements()
			if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
				return errors.New("sizeA")
			}
			if ind.OffsetX < 0 {
				return errors.New("offsetX")
			}
			sizeX := X.NumElements()
			if sizeX < ind.OffsetX+(ind.N-1)*abs(ind.IncX)+1 {
				return errors.New("sizeX")
			}
			if Y != nil {
				if ind.OffsetY < 0 {
					return errors.New("offsetY")
				}
				sizeY := Y.NumElements()
				if sizeY < ind.OffsetY+(ind.N-1)*abs(ind.IncY)+1 {
					return errors.New("sizeY")
				}
			}
		}
	case fspr, fdspr2, ftpsv, fspmv, ftpmv:
		// ftpsv = triangular packed solve
		// fspmv = symmetric packed product
		// ftpmv = triangular packed
	}
	return nil
}
Ejemplo n.º 17
0
/*
 General matrix-matrix product. (L3)

 PURPOSE
 Computes
  C := alpha*A*B + beta*C     if transA = PNoTrans   and transB = PNoTrans.
  C := alpha*A^T*B + beta*C   if transA = PTrans     and transB = PNoTrans.
  C := alpha*A^H*B + beta*C   if transA = PConjTrans and transB = PNoTrans.
  C := alpha*A*B^T + beta*C   if transA = PNoTrans   and transB = PTrans.
  C := alpha*A^T*B^T + beta*C if transA = PTrans     and transB = PTrans.
  C := alpha*A^H*B^T + beta*C if transA = PConjTrans and transB = PTrans.
  C := alpha*A*B^H + beta*C   if transA = PNoTrans   and transB = PConjTrans.
  C := alpha*A^T*B^H + beta*C if transA = PTrans     and transB = PConjTrans.
  C := alpha*A^H*B^H + beta*C if transA = PConjTrans and transB = PConjTrans.

 The number of rows of the matrix product is m.  The number of  columns is n.
 The inner dimension is k.  If k=0, this reduces  to C := beta*C.

 ARGUMENTS
  A         float or complex matrix, m*k
  B         float or complex matrix, k*n
  C         float or complex matrix, m*n
  alpha     number (float or complex singleton matrix)
  beta      number (float or complex singleton matrix)

 OPTIONS
  transA    PNoTrans, PTrans or PConjTrans
  transB    PNoTrans, PTrans or PConjTrans
  m         integer.  If negative, the default value is used. The default value is
            m = A.Rows of if transA != PNoTrans m = A.Cols.
  n         integer.  If negative, the default value is used. The default value is
            n = (transB == PNoTrans) ? B.Cols : B.Rows.
  k         integer.  If negative, the default value is used. The default value is
            k=A.Cols or if transA != PNoTrans) k = A.Rows, transA=PNoTrans.
            If the default value is used it should also be equal to
            (transB == PNoTrans) ? B.Rows : B.Cols.
  ldA       nonnegative integer.  ldA >= max(1,m) of if transA != NoTrans max(1,k).
            If zero, the default value is used.
  ldB       nonnegative integer.  ldB >= max(1,k) or if transB != NoTrans max(1,n).
            If zero, the default value is used.
  ldC       nonnegative integer.  ldC >= max(1,m).
            If zero, the default value is used.
  offsetA   nonnegative integer
  offsetB   nonnegative integer
  offsetC   nonnegative integer;
*/
func Gemm(A, B, C matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {

	params, e := linalg.GetParameters(opts...)
	if e != nil {
		err = e
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level3_func(ind, fgemm, A, B, C, params)
	if err != nil {
		return
	}
	if ind.M == 0 || ind.N == 0 {
		return
	}
	if !matrix.EqualTypes(A, B, C) {
		return errors.New("Parameters not of same type")
	}
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ba := B.FloatArray()
		Ca := C.FloatArray()
		aval := alpha.Float()
		bval := beta.Float()
		if math.IsNaN(aval) || math.IsNaN(bval) {
			return errors.New("alpha or beta not a number")
		}
		transB := linalg.ParamString(params.TransB)
		transA := linalg.ParamString(params.TransA)
		dgemm(transA, transB, ind.M, ind.N, ind.K, aval,
			Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
			Ca[ind.OffsetC:], ind.LDc)

	case *matrix.ComplexMatrix:
		Aa := A.ComplexArray()
		Ba := B.ComplexArray()
		Ca := C.ComplexArray()
		aval := alpha.Complex()
		if cmplx.IsNaN(aval) {
			return errors.New("alpha not a number")
		}
		bval := beta.Complex()
		if cmplx.IsNaN(bval) {
			return errors.New("beta not a number")
		}
		transB := linalg.ParamString(params.TransB)
		transA := linalg.ParamString(params.TransA)
		zgemm(transA, transB, ind.M, ind.N, ind.K, aval,
			Aa[ind.OffsetA:], ind.LDa, Ba[ind.OffsetB:], ind.LDb, bval,
			Ca[ind.OffsetC:], ind.LDc)
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 18
0
func check_level1_func(ind *linalg.IndexOpts, fn funcNum, X, Y matrix.Matrix) error {

	nX, nY := 0, 0
	// this is adapted from cvxopt:blas.c python blas interface
	switch fn {
	case fnrm2, fasum, fiamax, fscal, fset:
		if ind.IncX <= 0 {
			return errors.New("incX illegal, <=0")
		}
		if ind.OffsetX < 0 {
			return errors.New("offsetX illegal, <0")
		}
		sizeX := X.NumElements()
		if sizeX >= ind.OffsetX+1 {
			// calculate default size for N based on X size
			nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX
		}
		if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) {
			return errors.New("X size error")
		}
		if ind.Nx < 0 {
			ind.Nx = nX
		}

	case fdot, fswap, fcopy, faxpy, faxpby:
		// vector X
		if ind.IncX <= 0 {
			return errors.New("incX illegal, <=0")
		}
		if ind.OffsetX < 0 {
			return errors.New("offsetX illegal, <0")
		}
		sizeX := X.NumElements()
		if sizeX >= ind.OffsetX+1 {
			// calculate default size for N based on X size
			nX = 1 + (sizeX-ind.OffsetX-1)/ind.IncX
		}
		if sizeX < ind.OffsetX+1+(ind.Nx-1)*abs(ind.IncX) {
			return errors.New("X size error")
		}
		if ind.Nx < 0 {
			ind.Nx = nX
		}
		// vector Y
		if ind.IncY <= 0 {
			return errors.New("incY illegal, <=0")
		}
		if ind.OffsetY < 0 {
			return errors.New("offsetY illegal, <0")
		}
		sizeY := Y.NumElements()
		if sizeY >= ind.OffsetY+1 {
			// calculate default size for N based on Y size
			nY = 1 + (sizeY-ind.OffsetY-1)/ind.IncY
		}
		if ind.Ny < 0 {
			ind.Ny = nY
		}
		if sizeY < ind.OffsetY+1+(ind.Ny-1)*abs(ind.IncY) {
			fmt.Printf("sizeY=%d, inds: %#v\n", sizeY, ind)
			return errors.New("Y size error")
		}

	case frotg, frotmg, frot, frotm:
	}
	return nil
}
Ejemplo n.º 19
0
func check_level3_func(ind *linalg.IndexOpts, fn funcNum, A, B, C matrix.Matrix,
	pars *linalg.Parameters) (err error) {

	switch fn {
	case fgemm:
		if ind.M < 0 {
			if pars.TransA == linalg.PNoTrans {
				ind.M = A.Rows()
			} else {
				ind.M = A.Cols()
			}
		}
		if ind.N < 0 {
			if pars.TransB == linalg.PNoTrans {
				ind.N = A.Cols()
			} else {
				ind.N = A.Rows()
			}
		}
		if ind.K < 0 {
			if pars.TransA == linalg.PNoTrans {
				ind.K = A.Cols()
			} else {
				ind.K = A.Rows()
			}
			if pars.TransB == linalg.PNoTrans && ind.K != B.Rows() ||
				pars.TransB != linalg.PNoTrans && ind.K != B.Cols() {
				return errors.New("dimensions of A and B do not match")
			}
		}
		if ind.OffsetB < 0 {
			return errors.New("offsetB illegal, <0")
		}
		if ind.LDa == 0 {
			ind.LDa = max(1, A.Rows())
		}
		if ind.K > 0 {
			if (pars.TransA == linalg.PNoTrans && ind.LDa < max(1, ind.M)) ||
				(pars.TransA != linalg.PNoTrans && ind.LDa < max(1, ind.K)) {
				return errors.New("inconsistent ldA")
			}
			sizeA := A.NumElements()
			if (pars.TransA == linalg.PNoTrans &&
				sizeA < ind.OffsetA+(ind.K-1)*ind.LDa+ind.M) ||
				(pars.TransA != linalg.PNoTrans &&
					sizeA < ind.OffsetA+(ind.M-1)*ind.LDa+ind.K) {
				return errors.New("sizeA")
			}
		}
		// B matrix
		if B != nil {
			if ind.OffsetB < 0 {
				return errors.New("offsetB illegal, <0")
			}
			if ind.LDb == 0 {
				ind.LDb = max(1, B.Rows())
			}
			if ind.K > 0 {
				if (pars.TransB == linalg.PNoTrans && ind.LDb < max(1, ind.K)) ||
					(pars.TransB != linalg.PNoTrans && ind.LDb < max(1, ind.N)) {
					return errors.New("inconsistent ldB")
				}
				sizeB := B.NumElements()
				if (pars.TransB == linalg.PNoTrans &&
					sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.K) ||
					(pars.TransB != linalg.PNoTrans &&
						sizeB < ind.OffsetB+(ind.K-1)*ind.LDb+ind.N) {
					return errors.New("sizeB")
				}
			}
		}
		// C matrix
		if C != nil {
			if ind.OffsetC < 0 {
				return errors.New("offsetC illegal, <0")
			}
			if ind.LDc == 0 {
				ind.LDb = max(1, C.Rows())
			}
			if ind.LDc < max(1, ind.M) {
				return errors.New("inconsistent ldC")
			}
			sizeC := C.NumElements()
			if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.M {
				return errors.New("sizeC")
			}
		}

	case fsymm, ftrmm, ftrsm:
		if ind.M < 0 {
			ind.M = B.Rows()
			if pars.Side == linalg.PLeft && (ind.M != A.Rows() || ind.M != A.Cols()) {
				return errors.New("dimensions of A and B do not match")
			}
		}
		if ind.N < 0 {
			ind.N = B.Cols()
			if pars.Side == linalg.PRight && (ind.N != A.Rows() || ind.N != A.Cols()) {
				return errors.New("dimensions of A and B do not match")
			}
		}
		if ind.M == 0 || ind.N == 0 {
			return
		}
		// check A
		if ind.OffsetB < 0 {
			return errors.New("offsetB illegal, <0")
		}
		if ind.LDa == 0 {
			ind.LDa = max(1, A.Rows())
		}
		if pars.Side == linalg.PLeft && ind.LDa < max(1, ind.M) || ind.LDa < max(1, ind.N) {
			return errors.New("ldA")
		}
		sizeA := A.NumElements()
		if (pars.Side == linalg.PLeft && sizeA < ind.OffsetA+(ind.M-1)*ind.LDa+ind.M) ||
			(pars.Side == linalg.PRight && sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N) {
			return errors.New("sizeA")
		}

		if B != nil {
			if ind.OffsetB < 0 {
				return errors.New("offsetB illegal, <0")
			}
			if ind.LDb == 0 {
				ind.LDb = max(1, B.Rows())
			}
			if ind.LDb < max(1, ind.M) {
				return errors.New("ldB")
			}
			sizeB := B.NumElements()
			if sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.M {
				return errors.New("sizeB")
			}
		}

		if C != nil {
			if ind.OffsetC < 0 {
				return errors.New("offsetC illegal, <0")
			}
			if ind.LDc == 0 {
				ind.LDc = max(1, C.Rows())
			}
			if ind.LDc < max(1, ind.M) {
				return errors.New("ldC")
			}
			sizeC := C.NumElements()
			if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.M {
				return errors.New("sizeC")
			}
		}
	case fsyrk, fsyr2k:
		if ind.N < 0 {
			if pars.Trans == linalg.PNoTrans {
				ind.N = B.Rows()
			} else {
				ind.N = B.Cols()
			}
		}
		if ind.K < 0 {
			if pars.Trans == linalg.PNoTrans {
				ind.K = A.Cols()
			} else {
				ind.K = A.Rows()
			}
		}
		if ind.N == 0 {
			return
		}
		if ind.LDa == 0 {
			ind.LDa = max(1, A.Rows())
		}
		if ind.K > 0 {
			if (pars.Trans == linalg.PNoTrans && ind.LDa < max(1, ind.N)) ||
				(pars.Trans != linalg.PNoTrans && ind.LDa < max(1, ind.K)) {
				return errors.New("inconsistent ldA")
			}
			sizeA := A.NumElements()
			if (pars.Trans == linalg.PNoTrans &&
				sizeA < ind.OffsetA+(ind.K-1)*ind.LDa+ind.N) ||
				(pars.TransA != linalg.PNoTrans &&
					sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.K) {
				return errors.New("sizeA")
			}
		}
		if B != nil {
			if ind.OffsetB < 0 {
				return errors.New("offsetB illegal, <0")
			}
			if ind.LDb == 0 {
				ind.LDb = max(1, B.Rows())
			}
			if ind.K > 0 {
				if (pars.Trans == linalg.PNoTrans && ind.LDb < max(1, ind.N)) ||
					(pars.Trans != linalg.PNoTrans && ind.LDb < max(1, ind.K)) {
					return errors.New("ldB")
				}
				sizeB := B.NumElements()
				if (pars.Trans == linalg.PNoTrans &&
					sizeB < ind.OffsetB+(ind.K-1)*ind.LDb+ind.N) ||
					(pars.Trans != linalg.PNoTrans &&
						sizeB < ind.OffsetB+(ind.N-1)*ind.LDb+ind.K) {
					return errors.New("sizeB")
				}
			}
		}

		if C != nil {
			if ind.OffsetC < 0 {
				return errors.New("offsetC illegal, <0")
			}
			if ind.LDc == 0 {
				ind.LDc = max(1, C.Rows())
			}
			if ind.LDc < max(1, ind.N) {
				return errors.New("ldC")
			}
			sizeC := C.NumElements()
			if sizeC < ind.OffsetC+(ind.N-1)*ind.LDc+ind.N {
				return errors.New("sizeC")
			}
		}
	}
	err = nil
	return
}
Ejemplo n.º 20
0
/*
 Solution of a triangular set of equations with multiple righthand
 sides.

 Trtrs(A, B, uplo=PLower, trans=PNoTrans, diag=PNonUnit, n=A.Rows,
 nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)

 PURPOSE
 Solves set of equations
  A*X = B,   if trans is PNoTrans
  A^T*X = B, if trans is PTrans
  A^H*X = B, if trans is PConjTrans

 B is n by nrhs and A is triangular of order n.

 ARGUMENTS
  A         float or complex matrix
  B         float or complex matrix.  Must have the same type as A.

 OPTIONS
  uplo      PLower or PUpper
  trans     PNoTrans, PTrans, PConjTrans
  diag      PNonUnit, PUnit
  n         nonnegative integer.  If negative, the default value is used.
  nrhs      nonnegative integer.  If negative, the default value is used.
  ldA       positive integer.  ldA >= max(1,n).  If zero, the default
            value is used.
  ldB       positive integer.  ldB >= max(1,n).  If zero, the default
            value is used.
  offsetA   nonnegative integer
  offsetB   nonnegative integer;

*/
func Trtrs(A, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
	pars, err := linalg.GetParameters(opts...)
	if err != nil {
		return err
	}
	ind := linalg.GetIndexOpts(opts...)
	if ind.N < 0 {
		ind.N = A.Rows()
		if ind.N != A.Cols() {
			return errors.New("A not square")
		}
	}
	if ind.Nrhs < 0 {
		ind.Nrhs = B.Cols()
	}
	if ind.N == 0 || ind.Nrhs == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, ind.N) {
		return errors.New("lda")
	}
	if ind.LDb == 0 {
		ind.LDb = max(1, B.Rows())
	}
	if ind.LDb < max(1, ind.N) {
		return errors.New("ldb")
	}
	if ind.OffsetA < 0 {
		return errors.New("offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("sizeA")
	}
	if ind.OffsetB < 0 {
		return errors.New("offsetB")
	}
	sizeB := B.NumElements()
	if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
		return errors.New("sizeB")
	}
	info := -1
	uplo := linalg.ParamString(pars.Uplo)
	trans := linalg.ParamString(pars.Trans)
	diag := linalg.ParamString(pars.Diag)
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ba := B.FloatArray()
		info = dtrtrs(uplo, trans, diag, ind.N, ind.Nrhs, Aa[ind.OffsetA:], ind.LDa,
			Ba[ind.OffsetB:], ind.LDb)
	case *matrix.ComplexMatrix:
	}
	if info != 0 {
		return errors.New("sytrf failed")
	}
	return nil
}
Ejemplo n.º 21
0
/*
 LU factorization of a real or complex tridiagonal matrix.

 Gttrf(dl, d, du, du2, ipiv, n=len(d)-offsetd, offsetdl=0, offsetd=0, offsetdu=0)

 PURPOSE

 Factors an n by n real or complex tridiagonal matrix A as A = P*L*U.

 A is specified by its lower diagonal dl, diagonal d, and upper
 diagonal du.  On exit dl, d, du, du2 and ipiv contain the details
 of the factorization.

 ARGUMENTS.
  DL        float or complex matrix
  D         float or complex matrix.  Must have the same type as DL.
  DU        float or complex matrix.  Must have the same type as DL.
  DU2       float or complex matrix of length at least n-2.  Must have the
            same type as DL.
  ipiv      int vector of length at least n

 OPTIONS
  n         nonnegative integer.  If negative, the default value is used.
  offsetdl  nonnegative integer
  offsetd   nonnegative integer
  offsetdu  nonnegative integer
*/
func Gtrrf(DL, D, DU, DU2 matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
	ind := linalg.GetIndexOpts(opts...)
	if ind.OffsetD < 0 {
		return errors.New("offset D")
	}
	if ind.N < 0 {
		ind.N = D.NumElements() - ind.OffsetD
	}
	if ind.N < 0 {
		return errors.New("size D")
	}
	if ind.N == 0 {
		return nil
	}
	if ind.OffsetDL < 0 {
		return errors.New("offset DL")
	}
	sizeDL := DL.NumElements()
	if sizeDL < ind.OffsetDL+ind.N-1 {
		return errors.New("sizeDL")
	}
	if ind.OffsetDU < 0 {
		return errors.New("offset DU")
	}
	sizeDU := DU.NumElements()
	if sizeDU < ind.OffsetDU+ind.N-1 {
		return errors.New("sizeDU")
	}
	sizeDU2 := DU2.NumElements()
	if sizeDU2 < ind.N-2 {
		return errors.New("sizeDU2")
	}
	if len(ipiv) < ind.N {
		return errors.New("size ipiv")
	}
	info := -1
	switch DL.(type) {
	case *matrix.FloatMatrix:
		DLa := DL.FloatArray()
		Da := D.FloatArray()
		DUa := DU.FloatArray()
		DU2a := DU2.FloatArray()
		info = dgttrf(ind.N, DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:],
			DU2a, ipiv)
	case *matrix.ComplexMatrix:
	}
	if info != 0 {
		return errors.New("Gttrf call error")
	}
	return nil
}
Ejemplo n.º 22
0
/*
 QR factorization.

 Geqrf(A, tau, m=A.Rows, n=A.Cols, ldA=max(1,A.Rows), offsetA=0)

 PURPOSE

 QR factorization of an m by n real or complex matrix A:

 A = Q*R = [Q1 Q2] * [R1; 0] if m >= n
 A = Q*R = Q * [R1 R2]       if m <= n,

 where Q is m by m and orthogonal/unitary and R is m by n with R1
 upper triangular.  On exit, R is stored in the upper triangular
 part of A.  Q is stored as a product of k=min(m,n) elementary
 reflectors.  The parameters of the reflectors are stored in the
 first k entries of tau and in the lower triangular part of the
 first k columns of A.

 ARGUMENTS
  A         float or complex matrix
  tau       float or complex  matrix of length at least min(m,n).  Must
            have the same type as A.
  m         integer.  If negative, the default value is used.
  n         integer.  If negative, the default value is used.
  ldA       nonnegative integer.  ldA >= max(1,m).  If zero, the
            default value is used.
  offsetA   nonnegative integer

*/
func Geqrf(A, tau matrix.Matrix, opts ...linalg.Option) error {
	ind := linalg.GetIndexOpts(opts...)
	if ind.N < 0 {
		ind.N = A.Rows()
	}
	if ind.M < 0 {
		ind.M = A.Cols()
	}
	if ind.N == 0 || ind.M == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, ind.M) {
		return errors.New("lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("offsetA")
	}
	if A.NumElements() < ind.OffsetA+ind.K*ind.LDa {
		return errors.New("sizeA")
	}
	if tau.NumElements() < min(ind.M, ind.N) {
		return errors.New("sizeTau")
	}
	if !matrix.EqualTypes(A, tau) {
		return errors.New("not same type")
	}
	info := -1
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		taua := tau.FloatArray()
		info = dgeqrf(ind.M, ind.N, Aa[ind.OffsetA:], ind.LDa, taua)
	case *matrix.ComplexMatrix:
		return errors.New("ComplexMatrx: not implemented yet")
	}
	if info != 0 {
		return errors.New("Geqrf failed")
	}
	return nil
}
Ejemplo n.º 23
0
func Gtrrs(DL, D, DU, DU2, B matrix.Matrix, ipiv []int32, opts ...linalg.Option) error {
	pars, err := linalg.GetParameters(opts...)
	if err != nil {
		return err
	}
	ind := linalg.GetIndexOpts(opts...)
	if ind.OffsetD < 0 {
		return errors.New("offset D")
	}
	if ind.N < 0 {
		ind.N = D.NumElements() - ind.OffsetD
	}
	if ind.N < 0 {
		return errors.New("size D")
	}
	if ind.N == 0 {
		return nil
	}
	if ind.OffsetDL < 0 {
		return errors.New("offset DL")
	}
	sizeDL := DL.NumElements()
	if sizeDL < ind.OffsetDL+ind.N-1 {
		return errors.New("sizeDL")
	}
	if ind.OffsetDU < 0 {
		return errors.New("offset DU")
	}
	sizeDU := DU.NumElements()
	if sizeDU < ind.OffsetDU+ind.N-1 {
		return errors.New("sizeDU")
	}
	sizeDU2 := DU2.NumElements()
	if sizeDU2 < ind.N-2 {
		return errors.New("sizeDU2")
	}
	if ind.Nrhs < 0 {
		ind.Nrhs = B.Cols()
	}
	if ind.Nrhs == 0 {
		return nil
	}
	if ind.LDb == 0 {
		ind.LDb = max(1, B.Rows())
	}
	if ind.LDb < max(1, ind.N) {
		return errors.New("ldB")
	}
	if ind.OffsetB < 0 {
		return errors.New("offset B")
	}
	sizeB := B.NumElements()
	if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
		return errors.New("sizeB")
	}
	if len(ipiv) < ind.N {
		return errors.New("size ipiv")
	}
	DLa := DL.FloatArray()
	Da := D.FloatArray()
	DUa := DU.FloatArray()
	DU2a := DU2.FloatArray()
	Ba := B.FloatArray()
	trans := linalg.ParamString(pars.Trans)
	info := dgttrs(trans, ind.N, ind.Nrhs,
		DLa[ind.OffsetDL:], Da[ind.OffsetD:], DUa[ind.OffsetDU:], DU2a,
		ipiv, Ba[ind.OffsetB:], ind.LDb)
	if info != 0 {
		return errors.New("dgttrs call error")
	}
	return nil
}
Ejemplo n.º 24
0
func checkGbtrs(ind *linalg.IndexOpts, A, B matrix.Matrix, ipiv []int32) error {
	if ind.Kl < 0 {
		return errors.New("Gbtrs: invalid kl")
	}
	if ind.N < 0 {
		ind.N = A.Rows()
	}
	if ind.Nrhs < 0 {
		ind.Nrhs = A.Cols()
	}
	if ind.N == 0 || ind.Nrhs == 0 {
		return nil
	}
	if ind.Ku < 0 {
		ind.Ku = A.Rows() - 2*ind.Kl - 1
	}
	if ind.Ku < 0 {
		return errors.New("Gbtrs: invalid ku")
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < 2*ind.Kl+ind.Ku+1 {
		return errors.New("Gbtrs: lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("Gbtrs: offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
		return errors.New("Gbtrs: sizeA")
	}
	if ind.LDb == 0 {
		ind.LDb = max(1, B.Rows())
	}
	if ind.OffsetB < 0 {
		return errors.New("Gbtrs: offsetB")
	}
	sizeB := B.NumElements()
	if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
		return errors.New("Gbtrs: sizeB")
	}
	if ipiv != nil && len(ipiv) < ind.N {
		return errors.New("Gbtrs: size ipiv")
	}
	return nil
}
Ejemplo n.º 25
0
/*
 General rank-1 update. (L2)

 Geru(X, Y, A, alpha=1.0, m=A.Rows, n=A.Cols, incx=1,
 incy=1, ldA=max(1,A.Rows), offsetx=0, offsety=0, offsetA=0)

 COMPUTES
  A := A + alpha*X*Y^T with A m*n, real or complex.

 ARGUMENTS
  X         float or complex matrix.
  Y         float or complex matrix. Must have the same type as X.
  A         float or complex matrix. Must have the same type as X.
  alpha     number (float or complex singleton matrix).

 OPTIONS
  m         integer.  If negative, the default value is used.
  n         integer.  If negative, the default value is used.
  incx      nonzero integer
  incy      nonzero integer
  ldA       nonnegative integer.  ldA >= max(1,m).
            If zero, the default value is used.
  offsetx   nonnegative integer
  offsety   nonnegative integer
  offsetA   nonnegative integer;

*/
func Geru(X, Y, A matrix.Matrix, alpha matrix.Scalar, opts ...linalg.Option) (err error) {

	var params *linalg.Parameters
	params, err = linalg.GetParameters(opts...)
	if err != nil {
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level2_func(ind, fger, X, Y, A, params)
	if err != nil {
		return
	}
	if ind.M == 0 || ind.N == 0 {
		return
	}
	if !matrix.EqualTypes(A, X, Y) {
		return errors.New("Parameters not of same type")
	}
	switch X.(type) {
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		Aa := A.FloatArray()
		aval := alpha.Float()
		if math.IsNaN(aval) {
			return errors.New("alpha not a number")
		}
		dger(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX,
			Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa)

	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		Ya := Y.ComplexArray()
		Aa := A.ComplexArray()
		aval := alpha.Complex()
		if cmplx.IsNaN(aval) {
			return errors.New("alpha not a number")
		}
		zgeru(ind.M, ind.N, aval, Xa[ind.OffsetX:], ind.IncX,
			Ya[ind.OffsetY:], ind.IncY, Aa[ind.OffsetA:], ind.LDa)

	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 26
0
/*
 Solves a real or complex set of linear equations with a banded
 coefficient matrix, given the LU factorization computed by gbtrf()
 or gbsv().

 Gbtrs(A, B, ipiv, kl, trans=PNoTrans, n=A.Cols, ku=A.Rows-2*kl-1,
 nrhs=B.Cols, ldA=max(1,A.Rows), ldB=max(1,B.Rows), offsetA=0, offsetB=0)

 PURPOSE

 Solves linear equations
  A*X = B,   if trans is PNoTrans
  A^T*X = B, if trans is PTrans
  A^H*X = B, if trans is PConjTrans

 On entry, A and ipiv contain the LU factorization of an n by n
 band matrix A as computed by Getrf() or Gbsv().  On exit B is
 replaced by the solution X.

 ARGUMENTS
  A         float or complex matrix
  B         float or complex  matrix.  Must have the same type as A.
  ipiv      int vector
  kl        nonnegative integer

 OPTIONS
  trans     PNoTrans, PTrans or PConjTrans
  n         nonnegative integer.  If negative, the default value is used.
  ku        nonnegative integer.  If negative, the default value is used.
  nrhs      nonnegative integer.  If negative, the default value is used.
  ldA       positive integer, ldA >= 2*kl+ku+1. If zero, the  default value is used.
  ldB       positive integer, ldB >= max(1,n). If zero, the default value is used.
  offsetA   nonnegative integer
  offsetB   nonnegative integer;
*/
func Gbtrs(A, B matrix.Matrix, ipiv []int32, KL int, opts ...linalg.Option) error {
	pars, err := linalg.GetParameters(opts...)
	if err != nil {
		return err
	}
	ind := linalg.GetIndexOpts(opts...)
	//err = lapack_check(ind, fgbtrs, A, B, ipiv, pars)
	ind.Kl = KL
	if ind.Kl < 0 {
		return errors.New("invalid kl")
	}
	if ind.N < 0 {
		ind.N = A.Rows()
	}
	if ind.Nrhs < 0 {
		ind.Nrhs = A.Cols()
	}
	if ind.N == 0 || ind.Nrhs == 0 {
		return nil
	}
	if ind.Ku < 0 {
		ind.Ku = A.Rows() - 2*ind.Kl - 1
	}
	if ind.Ku < 0 {
		return errors.New("invalid ku")
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < 2*ind.Kl+ind.Ku+1 {
		return errors.New("lda")
	}
	if ind.OffsetA < 0 {
		return errors.New("offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+2*ind.Kl+ind.Ku+1 {
		return errors.New("sizeA")
	}
	if ind.LDb == 0 {
		ind.LDb = max(1, B.Rows())
	}
	if ind.OffsetB < 0 {
		return errors.New("offsetB")
	}
	sizeB := B.NumElements()
	if sizeB < ind.OffsetB+(ind.Nrhs-1)*ind.LDb+ind.N {
		return errors.New("sizeB")
	}
	if ipiv != nil && len(ipiv) < ind.N {
		return errors.New("size ipiv")
	}

	info := -1
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ba := B.FloatArray()
		trans := linalg.ParamString(pars.Trans)
		info = dgbtrs(trans, ind.N, ind.Kl, ind.Ku, ind.Nrhs,
			Aa[ind.OffsetA:], ind.LDa, ipiv, Ba[ind.OffsetB:], ind.LDb)
	case *matrix.ComplexMatrix:
		return errors.New("Gbtrs for complex not yet implemented")
	}
	if info != 0 {
		return errors.New("gbtrs call error")
	}
	return nil
}
Ejemplo n.º 27
0
func checkGesvd(ind *linalg.IndexOpts, pars *linalg.Parameters, A, S, U, Vt matrix.Matrix) error {
	if ind.M < 0 {
		ind.M = A.Rows()
	}
	if ind.N < 0 {
		ind.N = A.Cols()
	}
	if ind.M == 0 || ind.N == 0 {
		return nil
	}
	if pars.Jobu == linalg.PJobO && pars.Jobvt == linalg.PJobO {
		return errors.New("Gesvd: jobu and jobvt cannot both have value PJobO")
	}
	if pars.Jobu == linalg.PJobAll || pars.Jobu == linalg.PJobS {
		if U == nil {
			return errors.New("Gesvd: missing matrix U")
		}
		if ind.LDu == 0 {
			ind.LDu = max(1, U.Rows())
		}
		if ind.LDu < max(1, ind.M) {
			return errors.New("Gesvd: ldU")
		}
	} else {
		if ind.LDu == 0 {
			ind.LDu = 1
		}
		if ind.LDu < 1 {
			return errors.New("Gesvd: ldU")
		}
	}
	if pars.Jobvt == linalg.PJobAll || pars.Jobvt == linalg.PJobS {
		if Vt == nil {
			return errors.New("Gesvd: missing matrix Vt")
		}
		if ind.LDvt == 0 {
			ind.LDvt = max(1, Vt.Rows())
		}
		if pars.Jobvt == linalg.PJobAll && ind.LDvt < max(1, ind.N) {
			return errors.New("Gesvd: ldVt")
		} else if pars.Jobvt != linalg.PJobAll && ind.LDvt < max(1, min(ind.M, ind.N)) {
			return errors.New("Gesvd: ldVt")
		}
	} else {
		if ind.LDvt == 0 {
			ind.LDvt = 1
		}
		if ind.LDvt < 1 {
			return errors.New("Gesvd: ldVt")
		}
	}
	if ind.OffsetA < 0 {
		return errors.New("Gesvd: offsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.M {
		return errors.New("Gesvd: sizeA")
	}

	if ind.OffsetS < 0 {
		return errors.New("Gesvd: offsetS")
	}
	sizeS := S.NumElements()
	if sizeS < ind.OffsetS+min(ind.M, ind.N) {
		return errors.New("Gesvd: sizeA")
	}

	/*
		if U != nil {
			if ind.OffsetU < 0 {
				return errors.New("Gesvd: OffsetU")
			}
			sizeU := U.NumElements()
			if pars.Jobu == linalg.PJobAll && sizeU < ind.LDu*(ind.M-1) {
				return errors.New("Gesvd: sizeU")
			} else if pars.Jobu == linalg.PJobS && sizeU < ind.LDu*(min(ind.M,ind.N)-1) {
				return errors.New("Gesvd: sizeU")
			}
		}

		if Vt != nil {
			if ind.OffsetVt < 0 {
				return errors.New("Gesvd: OffsetVt")
			}
			sizeVt := Vt.NumElements()
			if pars.Jobvt == linalg.PJobAll && sizeVt <  ind.N {
				return errors.New("Gesvd: sizeVt")
			} else if pars.Jobvt == linalg.PJobS && sizeVt < min(ind.M, ind.N) {
				return errors.New("Gesvd: sizeVt")
			}
		}
	*/
	return nil
}
Ejemplo n.º 28
0
func SyevrFloat(A, W, Z matrix.Matrix, abstol float64, vlimit []float64, ilimit []int, opts ...linalg.Option) error {
	var vl, vu float64
	var il, iu int

	pars, err := linalg.GetParameters(opts...)
	if err != nil {
		return err
	}
	ind := linalg.GetIndexOpts(opts...)
	if ind.N < 0 {
		ind.N = A.Rows()
		if ind.N != A.Cols() {
			return errors.New("Syevr: A not square")
		}
	}
	// Check indexes
	if ind.N == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDa < max(1, A.Rows()) {
		return errors.New("Syevr: lda")
	}
	if pars.Range == linalg.PRangeValue {
		if vlimit == nil {
			return errors.New("Syevr: vlimit is nil")
		}
		vl = vlimit[0]
		vu = vlimit[1]
		if vl >= vu {
			return errors.New("Syevr: must be: vl < vu")
		}
	} else if pars.Range == linalg.PRangeInt {
		if ilimit == nil {
			return errors.New("Syevr: ilimit is nil")
		}
		il = ilimit[0]
		iu = ilimit[1]
		if il < 1 || il > iu || iu > ind.N {
			return errors.New("Syevr: must be:1 <= il <= iu <= N")
		}
	}
	if pars.Jobz == linalg.PJobValue {
		if Z == nil {
			return errors.New("Syevr: Z is nil")
		}
		if ind.LDz == 0 {
			ind.LDz = max(1, Z.Rows())
		}
		if ind.LDz < max(1, ind.N) {
			return errors.New("Syevr: ldz")
		}
	} else {
		if ind.LDz == 0 {
			ind.LDz = 1
		}
		if ind.LDz < 1 {
			return errors.New("Syevr: ldz")
		}
	}
	if ind.OffsetA < 0 {
		return errors.New("Syevr: OffsetA")
	}
	sizeA := A.NumElements()
	if sizeA < ind.OffsetA+(ind.N-1)*ind.LDa+ind.N {
		return errors.New("Syevr: sizeA")
	}
	if ind.OffsetW < 0 {
		return errors.New("Syevr: OffsetW")
	}
	sizeW := W.NumElements()
	if sizeW < ind.OffsetW+ind.N {
		return errors.New("Syevr: sizeW")
	}
	if pars.Jobz == linalg.PJobValue {
		if ind.OffsetZ < 0 {
			return errors.New("Syevr: OffsetW")
		}
		minZ := ind.OffsetZ + (ind.N-1)*ind.LDz + ind.N
		if pars.Range == linalg.PRangeInt {
			minZ = ind.OffsetZ + (iu-il)*ind.LDz + ind.N
		}
		if Z.NumElements() < minZ {
			return errors.New("Syevr: sizeZ")
		}
	}

	Aa := A.FloatArray()
	Wa := W.FloatArray()
	var Za []float64
	if pars.Jobz == linalg.PJobValue {
		Za = Z.FloatArray()
	} else {
		Za = nil
	}
	jobz := linalg.ParamString(pars.Jobz)
	rnge := linalg.ParamString(pars.Range)
	uplo := linalg.ParamString(pars.Uplo)

	info := dsyevr(jobz, rnge, uplo, ind.N, Aa[ind.OffsetA:], ind.LDa,
		vl, vu, il, iu, ind.M, Wa[ind.OffsetW:], Za, ind.LDz)
	if info != 0 {
		return errors.New(fmt.Sprintf("Syevr: call failed %d", info))
	}
	return nil
}
Ejemplo n.º 29
0
/*
 Matrix-vector product with a real symmetric or complex hermitian band matrix.

 Computes with A real symmetric and  banded of order n and with bandwidth k.
  Y := alpha*A*X + beta*Y

 ARGUMENTS
  A         float or complex n*n matrix
  X         float or complex n*1 matrix
  Y         float or complex n*1 matrix
  alpha     number (float or complex singleton matrix)
  beta      number (float or complex singleton matrix)

 OPTIONS
  uplo      PLower or PUpper
  n         integer.  If negative, the default value is used.
  k         integer.  If negative, the default value is used.
            The default value is k = max(0,A.Rows()-1).
  ldA       nonnegative integer.  ldA >= k+1.
            If zero, the default vaule is used.
  incx      nonzero integer
  incy      nonzero integer
  offsetA   nonnegative integer
  offsetx   nonnegative integer
  offsety   nonnegative integer

*/
func Hbmv(A, X, Y matrix.Matrix, alpha, beta matrix.Scalar, opts ...linalg.Option) (err error) {

	var params *linalg.Parameters
	params, err = linalg.GetParameters(opts...)
	if err != nil {
		return
	}
	ind := linalg.GetIndexOpts(opts...)
	err = check_level2_func(ind, fsbmv, X, Y, A, params)
	if err != nil {
		return
	}
	if ind.N == 0 {
		return
	}
	if !matrix.EqualTypes(A, X, Y) {
		return errors.New("Parameters not of same type")
	}
	switch X.(type) {
	case *matrix.FloatMatrix:
		Xa := X.FloatArray()
		Ya := Y.FloatArray()
		Aa := A.FloatArray()
		aval := alpha.Float()
		bval := beta.Float()
		if math.IsNaN(aval) || math.IsNaN(bval) {
			return errors.New("alpha or beta not a number")
		}
		uplo := linalg.ParamString(params.Uplo)
		dsbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
			Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)

	case *matrix.ComplexMatrix:
		Xa := X.ComplexArray()
		Ya := Y.ComplexArray()
		Aa := A.ComplexArray()
		aval := alpha.Complex()
		bval := beta.Complex()
		uplo := linalg.ParamString(params.Uplo)
		zhbmv(uplo, ind.N, ind.K, aval, Aa[ind.OffsetA:], ind.LDa,
			Xa[ind.OffsetX:], ind.IncX, bval, Ya[ind.OffsetY:], ind.IncY)
		//zhbmv(uplo, ind.N, aval, Aa[ind.OffsetA:], ind.LDa,
		//	Xa[ind.OffsetX:], ind.IncX,
		//	bval, Ya[ind.OffsetY:], ind.IncY)
	default:
		return errors.New("Unknown type, not implemented")
	}
	return
}
Ejemplo n.º 30
0
/*
 Product with a real orthogonal matrix.

 Ormqr(A, tau, C, side='L', trans='N', m=C.Rows, n=C.Cols,
 k=len(tau), ldA=max(1,A.Rows), ldC=max(1,C.Rows), offsetA=0, offsetC=0)

 PURPOSE

 Computes
  C := Q*C   if side = PLeft  and trans = PNoTrans
  C := Q^T*C if side = PLeft  and trans = PTrans
  C := C*Q   if side = PRight and trans = PNoTrans
  C := C*Q^T if side = PRight and trans = PTrans

 C is m by n and Q is a square orthogonal matrix computed by geqrf.

 Q is defined as a product of k elementary reflectors, stored as
 the first k columns of A and the first k entries of tau.

 ARGUMENTS
  A         float matrix
  tau       float matrix of length at least k
  C         float matrix

 OPTIONS
  side      PLeft or PRight
  trans     PNoTrans or PTrans
  m         integer.  If negative, the default value is used.
  n         integer.  If negative, the default value is used.
  k         integer.  k <= m if side = PRight and k <= n if side = PLeft.
            If negative, the default value is used.
  ldA       nonnegative integer.  ldA >= max(1,m) if side = PLeft
            and ldA >= max(1,n) if side = PRight.  If zero, the
            default value is used.
  ldC       nonnegative integer.  ldC >= max(1,m).  If zero, the
            default value is used.
  offsetA   nonnegative integer
  offsetB   nonnegative integer

*/
func Ormqf(A, tau, C matrix.Matrix, opts ...linalg.Option) error {
	pars, err := linalg.GetParameters(opts...)
	if err != nil {
		return err
	}
	ind := linalg.GetIndexOpts(opts...)
	if ind.N < 0 {
		ind.N = C.Cols()
	}
	if ind.M < 0 {
		ind.M = C.Rows()
	}
	if ind.K < 0 {
		ind.K = tau.NumElements()
	}
	if ind.N == 0 || ind.M == 0 || ind.K == 0 {
		return nil
	}
	if ind.LDa == 0 {
		ind.LDa = max(1, A.Rows())
	}
	if ind.LDc == 0 {
		ind.LDc = max(1, C.Rows())
	}
	switch pars.Side {
	case linalg.PLeft:
		if ind.K > ind.M {
			errors.New("K")
		}
		if ind.LDa < max(1, ind.M) {
			return errors.New("lda")
		}
	case linalg.PRight:
		if ind.K > ind.N {
			errors.New("K")
		}
		if ind.LDa < max(1, ind.N) {
			return errors.New("lda")
		}
	}
	if ind.OffsetA < 0 {
		return errors.New("offsetA")
	}
	if A.NumElements() < ind.OffsetA+ind.K*ind.LDa {
		return errors.New("sizeA")
	}
	if ind.OffsetC < 0 {
		return errors.New("offsetC")
	}
	if C.NumElements() < ind.OffsetC+(ind.N-1)*ind.LDa+ind.M {
		return errors.New("sizeC")
	}
	if tau.NumElements() < ind.K {
		return errors.New("sizeTau")
	}
	if !matrix.EqualTypes(A, C, tau) {
		return errors.New("not same type")
	}
	info := -1
	side := linalg.ParamString(pars.Side)
	trans := linalg.ParamString(pars.Trans)
	switch A.(type) {
	case *matrix.FloatMatrix:
		Aa := A.FloatArray()
		Ca := C.FloatArray()
		taua := tau.FloatArray()
		info = dormqr(side, trans, ind.M, ind.N, ind.K, Aa[ind.OffsetA:], ind.LDa,
			taua, Ca[ind.OffsetC:], ind.LDc)
	case *matrix.ComplexMatrix:
		return errors.New("ComplexMatrx: not implemented yet")
	}
	if info != 0 {
		return errors.New("Ormqr failed")
	}
	return nil
}