Ejemplo n.º 1
0
func TestDaxpy(t *testing.T) {
	fmt.Printf("* L1 * test axpy: Y = alpha * X + Y\n")
	X := matrix.FloatVector([]float64{1, 1, 1})
	Y := matrix.FloatVector([]float64{0, 0, 0})
	fmt.Printf("before:\nX=\n%v\nY=\n%v\n", X, Y)
	Axpy(X, Y, matrix.FScalar(5.0))
	fmt.Printf("after:\nX=\n%v\nY=\n%v\n", X, Y)
}
Ejemplo n.º 2
0
func main() {

	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}

	gdata := [][]float64{
		[]float64{16., 7., 24., -8., 8., -1., 0., -1., 0., 0., 7.,
			-5., 1., -5., 1., -7., 1., -7., -4.},
		[]float64{-14., 2., 7., -13., -18., 3., 0., 0., -1., 0., 3.,
			13., -6., 13., 12., -10., -6., -10., -28.},
		[]float64{5., 0., -15., 12., -6., 17., 0., 0., 0., -1., 9.,
			6., -6., 6., -7., -7., -6., -7., -11.}}

	hdata := []float64{-3., 5., 12., -2., -14., -13., 10., 0., 0., 0., 68.,
		-30., -19., -30., 99., 23., -19., 23., 10.}

	c := matrix.FloatVector([]float64{-6., -4., -5.})
	G := matrix.FloatMatrixFromTable(gdata)
	h := matrix.FloatVector(hdata)

	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{2})
	dims.Set("q", []int{4, 4})
	dims.Set("s", []int{3})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true
	if maxIter > 0 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}
	sol, err := cvx.ConeLp(c, G, h, nil, nil, dims, &solopts, nil, nil)
	if err == nil {
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		fmt.Printf("Optimal\n")
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		fmt.Printf("s=\n%v\n", s.ToString("%.9f"))
		fmt.Printf("z=\n%v\n", z.ToString("%.9f"))
		check(x, s, z)
	} else {
		fmt.Printf("status: %s\n", err)
	}
}
Ejemplo n.º 3
0
func main() {
	flag.Parse()

	gdata0 := [][]float64{
		[]float64{12., 13., 12.},
		[]float64{6., -3., -12.},
		[]float64{-5., -5., 6.}}

	gdata1 := [][]float64{
		[]float64{3., 3., -1., 1.},
		[]float64{-6., -6., -9., 19.},
		[]float64{10., -2., -2., -3.}}

	c := matrix.FloatVector([]float64{-2.0, 1.0, 5.0})
	g0 := matrix.FloatMatrixFromTable(gdata0, matrix.ColumnOrder)
	g1 := matrix.FloatMatrixFromTable(gdata1, matrix.ColumnOrder)
	Ghq := sets.FloatSetNew("Gq", "hq")
	Ghq.Append("Gq", g0, g1)

	h0 := matrix.FloatVector([]float64{-12.0, -3.0, -2.0})
	h1 := matrix.FloatVector([]float64{27.0, 0.0, 3.0, -42.0})
	Ghq.Append("hq", h0, h1)

	var Gl, hl, A, b *matrix.FloatMatrix = nil, nil, nil, nil
	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true
	if maxIter > -1 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}

	sol, err := cvx.Socp(c, Gl, hl, A, b, Ghq, &solopts, nil, nil)
	fmt.Printf("status: %v\n", err)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		for i, m := range sol.Result.At("sq") {
			fmt.Printf("sq[%d]=\n%v\n", i, m.ToString("%.9f"))
		}
		for i, m := range sol.Result.At("zq") {
			fmt.Printf("zq[%d]=\n%v\n", i, m.ToString("%.9f"))
		}
		sq0 := sol.Result.At("sq")[0]
		sq1 := sol.Result.At("sq")[1]
		zq0 := sol.Result.At("zq")[0]
		zq1 := sol.Result.At("zq")[1]
		check(x, sq0, sq1, zq0, zq1)
	}
}
Ejemplo n.º 4
0
func TestAcent(t *testing.T) {
	// matrix string in row order presentation
	Adata := [][]float64{
		[]float64{-7.44e-01, 1.11e-01, 1.29e+00, 2.62e+00, -1.82e+00},
		[]float64{4.59e-01, 7.06e-01, 3.16e-01, -1.06e-01, 7.80e-01},
		[]float64{-2.95e-02, -2.22e-01, -2.07e-01, -9.11e-01, -3.92e-01},
		[]float64{-7.75e-01, 1.03e-01, -1.22e+00, -5.74e-01, -3.32e-01},
		[]float64{-1.80e+00, 1.24e+00, -2.61e+00, -9.31e-01, -6.38e-01}}

	bdata := []float64{
		8.38e-01, 9.92e-01, 9.56e-01, 6.14e-01, 6.56e-01,
		3.57e-01, 6.36e-01, 5.08e-01, 8.81e-03, 7.08e-02}

	// these are solution obtained from running cvxopt acent.py with above data
	solData := []float64{-11.59728373909344512, -1.35196389161339936,
		7.21894899350256303, -3.29159917142051528, 4.90454147385329176}

	ntData := []float64{
		1.5163484265903457, 1.2433928210771914, 1.0562922103520955, 0.8816246051011607,
		0.7271128861543598, 0.42725003346248974, 0.0816777301914883, 0.0005458037072843131,
		1.6259980735305693e-10}

	b := matrix.FloatVector(bdata)
	Al := matrix.FloatMatrixFromTable(Adata, matrix.RowOrder)
	Au := matrix.Scale(Al, -1.0)
	A := matrix.FloatZeros(2*Al.Rows(), Al.Cols())
	A.SetSubMatrix(0, 0, Al)
	A.SetSubMatrix(Al.Rows(), 0, Au)

	x, nt, err := acent(A, b, 10)
	if err != nil {
		t.Logf("Acent error: %s", err)
		t.Fail()
	}
	solref := matrix.FloatVector(solData)
	ntref := matrix.FloatVector(ntData)
	soldf := matrix.Minus(x, solref)
	ntdf := matrix.Minus(matrix.FloatVector(nt), ntref)
	solNrm := blas.Nrm2Float(soldf)
	ntNrm := blas.Nrm2Float(ntdf)
	t.Logf("x  [diff=%.2e]:\n%v\n", solNrm, x)
	t.Logf("nt [diff=%.2e]:\n%v\n", ntNrm, nt)

	if solNrm > TOL {
		t.Log("solution deviates too much from expected\n")
		t.Fail()
	}
}
Ejemplo n.º 5
0
func _TestRankSmall(t *testing.T) {
	bM := 5
	bN := 5
	//bP := 5
	Adata := [][]float64{
		[]float64{1.0, 1.0, 1.0, 1.0, 1.0},
		[]float64{2.0, 2.0, 2.0, 2.0, 2.0},
		[]float64{3.0, 3.0, 3.0, 3.0, 3.0},
		[]float64{4.0, 4.0, 4.0, 4.0, 4.0},
		[]float64{5.0, 5.0, 5.0, 5.0, 5.0}}

	A := matrix.FloatMatrixFromTable(Adata, matrix.RowOrder)
	A0 := matrix.FloatMatrixFromTable(Adata, matrix.RowOrder)
	X := matrix.FloatVector([]float64{1.0, 2.0, 3.0, 4.0, 5.0})
	Y := matrix.FloatWithValue(bN, 1, 2.0)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Yr := Y.FloatArray()

	blas.GerFloat(X, Y, A0, 1.0)

	DRankMV(Ar, Xr, Yr, 1.0, A.LeadingIndex(), 1, 1, 0, bN, 0, bM, 4, 4)
	ok := A0.AllClose(A)
	t.Logf("A0 == A1: %v\n", ok)
	if !ok {
		t.Logf("blas ger:\n%v\n", A0)
		t.Logf("A1: \n%v\n", A)
	}
}
Ejemplo n.º 6
0
// Dscal: X = alpha * X
func TestDscal(t *testing.T) {
	fmt.Printf("* L1 * test scal: X = alpha * X\n")
	alpha := matrix.FScalar(2.0)
	A := matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	Scal(A, alpha)
	fmt.Printf("Dscal 2.0 * A\n")
	fmt.Printf("%s\n", A)
	A = matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	Scal(A, alpha, &linalg.IOpt{"offset", 3})
	fmt.Printf("Dscal 2.0 * A[3:]\n")
	fmt.Printf("%s\n", A)
	A = matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	fmt.Printf("Dscal 2.0* A[::2]\n")
	Scal(A, alpha, &linalg.IOpt{"inc", 2})
	fmt.Printf("%s\n", A)
}
Ejemplo n.º 7
0
// v = X.T * Y
func TestDdot(t *testing.T) {
	fmt.Printf("* L1 * test dot: X.T*Y\n")
	A := matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	B := matrix.FloatVector([]float64{2.0, 2.0, 2.0, 2.0, 2.0, 2.0})
	v1 := Dot(A, B)
	v2 := Dot(A, B, &linalg.IOpt{"offset", 3})
	v3 := Dot(A, B, &linalg.IOpt{"inc", 2})
	fmt.Printf("Ddot: X.T * Y\n")
	fmt.Printf("%.3f\n", v1.Float())
	fmt.Printf("%.3f\n", v2.Float())
	fmt.Printf("%.3f\n", v3.Float())
	// Output:
	// 12.000
	// 6.000
	// 6.000
}
Ejemplo n.º 8
0
Archivo: gp.go Proyecto: hrautila/cvx
func (gp *gpConvexProg) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) {
	f = nil
	Df = nil
	err = nil
	f = matrix.FloatZeros(gp.mnl+1, 1)
	Df = matrix.FloatZeros(gp.mnl+1, gp.n)
	y := gp.g.Copy()
	blas.GemvFloat(gp.F, x, y, 1.0, 1.0)

	for i, s := range gp.ind {
		start := s[0]
		stop := s[1]
		// yi := exp(yi) = exp(Fi*x+gi)
		ymax := maxvec(y.FloatArray()[start:stop])
		// ynew = exp(y[start:stop] - ymax)
		ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax))
		y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...)

		// fi = log sum yi = log sum exp(Fi*x+gi)
		ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
		f.SetIndex(i, ymax+math.Log(ysum))

		blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
		blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start},
			&la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start},
			&la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i})
	}
	return
}
Ejemplo n.º 9
0
func main() {

	var A, b *matrix.FloatMatrix = nil, nil
	m, n := 20, 20

	blas.PanicOnError(true)
	matrix.PanicOnError(true)

	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}
	if len(AVal) > 0 {
		A, _ = matrix.FloatParse(AVal)
		if A == nil {
			fmt.Printf("could not parse:\n%s\n", AVal)
			return
		}
	} else {
		A = matrix.FloatNormal(m, n)
	}
	if len(bVal) > 0 {
		b, _ = matrix.FloatParse(bVal)
		if b == nil {
			fmt.Printf("could not parse:\n%s\n", bVal)
			return
		}
	} else {
		b = matrix.FloatNormal(m, 1)
	}

	sol, err := qcl1(A, b)
	if sol != nil {
		r := sol.Result.At("x")[0]
		x := matrix.FloatVector(r.FloatArray()[:A.Cols()])
		r = sol.Result.At("z")[0]
		z := matrix.FloatVector(r.FloatArray()[r.NumElements()-A.Rows():])
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		fmt.Printf("z=\n%v\n", z.ToString("%.9f"))
		check(x, z)
	} else {
		fmt.Printf("status: %v\n", err)
	}
}
Ejemplo n.º 10
0
func TestDgemv(t *testing.T) {
	fmt.Printf("* L2 * test gemv: Y = alpha * A * X + beta * Y\n")
	A := matrix.FloatNew(3, 2, []float64{1, 1, 1, 2, 2, 2})
	X := matrix.FloatVector([]float64{1, 1})
	Y := matrix.FloatVector([]float64{0, 0, 0})
	alpha := matrix.FScalar(1.0)
	beta := matrix.FScalar(0.0)
	fmt.Printf("before: alpha=1.0, beta=0.0\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
	err := Gemv(A, X, Y, alpha, beta)
	fmt.Printf("after:\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
	fmt.Printf("* L2 * test gemv: X = alpha * A.T * Y + beta * X\n")
	err = Gemv(A, Y, X, alpha, beta, linalg.OptTrans)
	if err != nil {
		fmt.Printf("error: %s\n", err)
	}
	fmt.Printf("after:\nA=\n%v\nX=\n%v\nY=\n%v\n", A, X, Y)
}
Ejemplo n.º 11
0
func main() {
	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}

	adata := [][]float64{
		[]float64{0.3, -0.4, -0.2, -0.4, 1.3},
		[]float64{0.6, 1.2, -1.7, 0.3, -0.3},
		[]float64{-0.3, 0.0, 0.6, -1.2, -2.0}}

	A := matrix.FloatMatrixFromTable(adata, matrix.ColumnOrder)
	b := matrix.FloatVector([]float64{1.5, 0.0, -1.2, -0.7, 0.0})

	_, n := A.Size()
	N := n + 1 + n

	h := matrix.FloatZeros(N, 1)
	h.SetIndex(n, 1.0)

	I0 := matrix.FloatDiagonal(n, -1.0)
	I1 := matrix.FloatIdentity(n)
	G, _ := matrix.FloatMatrixStacked(matrix.StackDown, I0, matrix.FloatZeros(1, n), I1)

	At := A.Transpose()
	P := At.Times(A)
	q := At.Times(b).Scale(-1.0)

	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{n})
	dims.Set("q", []int{n + 1})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 20
	solopts.ShowProgress = true
	if maxIter > 0 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}
	sol, err := cvx.ConeQp(P, q, G, h, nil, nil, dims, &solopts, nil)
	if err == nil {
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		fmt.Printf("Optimal\n")
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		fmt.Printf("s=\n%v\n", s.ToString("%.9f"))
		fmt.Printf("z=\n%v\n", z.ToString("%.9f"))
		check(x, s, z)
	}

}
Ejemplo n.º 12
0
func (p *floorPlan) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {
	f, Df, err = p.F1(x)
	x17 := matrix.FloatVector(x.FloatArray()[17:])
	tmp := matrix.Div(p.Amin, matrix.Pow(x17, 3.0))
	tmp = matrix.Mul(z, tmp).Scale(2.0)
	diag := matrix.FloatDiagonal(5, tmp.FloatArray()...)
	H = matrix.FloatZeros(22, 22)
	H.SetSubMatrix(17, 17, diag)
	return
}
Ejemplo n.º 13
0
func main() {
	flag.Parse()

	x := floorplan(matrix.FloatWithValue(5, 1, 100.0))
	if x != nil {
		W := x.GetIndex(0)
		H := x.GetIndex(1)
		xs := matrix.FloatVector(x.FloatArray()[2:7])
		ys := matrix.FloatVector(x.FloatArray()[7:12])
		ws := matrix.FloatVector(x.FloatArray()[12:17])
		hs := matrix.FloatVector(x.FloatArray()[17:])
		fmt.Printf("W = %.5f, H = %.5f\n", W, H)
		fmt.Printf("x = \n%v\n", xs.ToString("%.5f"))
		fmt.Printf("y = \n%v\n", ys.ToString("%.5f"))
		fmt.Printf("w = \n%v\n", ws.ToString("%.5f"))
		fmt.Printf("h = \n%v\n", hs.ToString("%.5f"))
		check(x)
	}
}
Ejemplo n.º 14
0
Archivo: misc.go Proyecto: hrautila/cvx
func sinv(x, y *matrix.FloatMatrix, dims *sets.DimensionSet, mnl int) (err error) {
	/*DEBUGGED*/

	err = nil

	// For the nonlinear and 'l' blocks:
	//
	//     yk o\ xk = yk .\ xk.

	ind := mnl + dims.At("l")[0]
	blas.Tbsv(y, x, &la_.IOpt{"n", ind}, &la_.IOpt{"k", 0}, &la_.IOpt{"ldA", 1})

	// For the 'q' blocks:
	//
	//                        [ l0   -l1'              ]
	//     yk o\ xk = 1/a^2 * [                        ] * xk
	//                        [ -l1  (a*I + l1*l1')/l0 ]
	//
	// where yk = (l0, l1) and a = l0^2 - l1'*l1.

	for _, m := range dims.At("q") {
		aa := blas.Nrm2Float(y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
		ee := y.GetIndex(ind)
		aa = (ee + aa) * (ee - aa)
		cc := x.GetIndex(ind)
		dd := blas.DotFloat(x, y, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offsetx", ind + 1},
			&la_.IOpt{"offsety", ind + 1})
		x.SetIndex(ind, cc*ee-dd)
		blas.ScalFloat(x, aa/ee, &la_.IOpt{"n", m - 1}, &la_.IOpt{"offset", ind + 1})
		blas.AxpyFloat(y, x, dd/ee-cc, &la_.IOpt{"n", m - 1},
			&la_.IOpt{"offsetx", ind + 1}, &la_.IOpt{"offsety", ind + 1})
		blas.ScalFloat(x, 1.0/aa, &la_.IOpt{"n", m}, &la_.IOpt{"offset", ind})
		ind += m
	}

	// For the 's' blocks:
	//
	//     yk o\ xk =  xk ./ gamma
	//
	// where gammaij = .5 * (yk_i + yk_j).

	ind2 := ind
	for _, m := range dims.At("s") {
		for j := 0; j < m; j++ {
			u := matrix.FloatVector(y.FloatArray()[ind2+j : ind2+m])
			u.Add(y.GetIndex(ind2 + j))
			u.Scale(0.5)
			blas.Tbsv(u, x, &la_.IOpt{"n", m - j}, &la_.IOpt{"k", 0}, &la_.IOpt{"lda", 1},
				&la_.IOpt{"offsetx", ind + j*(m+1)})
		}
		ind += m * m
		ind2 += m
	}
	return
}
Ejemplo n.º 15
0
func (p *floorPlan) F1(x *matrix.FloatMatrix) (f, Df *matrix.FloatMatrix, err error) {
	err = nil
	mn := x.Min(-1, -2, -3, -4, -5)
	if mn <= 0.0 {
		f, Df = nil, nil
		return
	}
	zeros := matrix.FloatZeros(5, 12)
	dk1 := matrix.FloatDiagonal(5, -1.0)
	dk2 := matrix.FloatZeros(5, 5)
	x17 := matrix.FloatVector(x.FloatArray()[17:])
	// -( Amin ./ (x17 .* x17) )
	diag := matrix.Div(p.Amin, matrix.Mul(x17, x17)).Scale(-1.0)
	dk2.SetIndexesFromArray(diag.FloatArray(), matrix.MakeDiagonalSet(5)...)
	Df, _ = matrix.FloatMatrixStacked(matrix.StackRight, zeros, dk1, dk2)

	x12 := matrix.FloatVector(x.FloatArray()[12:17])
	// f = -x[12:17] + div(Amin, x[17:]) == div(Amin, x[17:]) - x[12:17]
	f = matrix.Minus(matrix.Div(p.Amin, x17), x12)
	return
}
Ejemplo n.º 16
0
func main() {
	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}

	gdata := [][]float64{
		[]float64{2.0, 1.0, -1.0, 0.0},
		[]float64{1.0, 2.0, 0.0, -1.0}}

	c := matrix.FloatVector([]float64{-4.0, -5.0})
	G := matrix.FloatMatrixFromTable(gdata, matrix.ColumnOrder)
	h := matrix.FloatVector([]float64{3.0, 3.0, 0.0, 0.0})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true
	if maxIter > -1 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}
	sol, err := cvx.Lp(c, G, h, nil, nil, &solopts, nil, nil)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		fmt.Printf("s=\n%v\n", s.ToString("%.9f"))
		fmt.Printf("z=\n%v\n", z.ToString("%.9f"))
		check(x, s, z)
	} else {
		fmt.Printf("status: %v\n", err)
	}
}
Ejemplo n.º 17
0
// The analytic centering with cone constraints example of section 9.1
// (Problems with nonlinear objectives).
func TestCp(t *testing.T) {

	xref := []float64{0.41132359189354400, 0.55884774432611484, -0.72007090016957931}

	F := &acenterProg{3, 1}

	gdata := [][]float64{
		[]float64{0., -1., 0., 0., -21., -11., 0., -11., 10., 8., 0., 8., 5.},
		[]float64{0., 0., -1., 0., 0., 10., 16., 10., -10., -10., 16., -10., 3.},
		[]float64{0., 0., 0., -1., -5., 2., -17., 2., -6., 8., -17., -7., 6.}}

	G := matrix.FloatMatrixFromTable(gdata)
	h := matrix.FloatVector(
		[]float64{1.0, 0.0, 0.0, 0.0, 20., 10., 40., 10., 80., 10., 40., 10., 15.})

	var solopts SolverOptions
	solopts.MaxIter = 40
	solopts.ShowProgress = false

	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{0})
	dims.Set("q", []int{4})
	dims.Set("s", []int{3})

	sol, err := Cp(F, G, h, nil, nil, dims, &solopts)
	if err == nil && sol.Status == Optimal {
		x := sol.Result.At("x")[0]
		t.Logf("x = \n%v\n", x.ToString("%.9f"))
		xe, _ := nrmError(matrix.FloatVector(xref), x)
		if xe > TOL {
			t.Logf("x differs [%.3e] from exepted too much.", xe)
			t.Fail()
		}
	} else {
		t.Logf("result: %v\n", err)
		t.Fail()
	}
}
Ejemplo n.º 18
0
// a = sum(X)
func TestDasum(t *testing.T) {
	fmt.Printf("* L1 * test sum: sum(X)\n")
	A := matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	v1 := Asum(A, &linalg.IOpt{"offset", 0})
	v2 := Asum(A, &linalg.IOpt{"offset", 3})
	v3 := Asum(A, &linalg.IOpt{"inc", 2})
	fmt.Printf("Dasum\n")
	fmt.Printf("%.3f\n", v1.Float())
	fmt.Printf("%.3f\n", v2.Float())
	fmt.Printf("%.3f\n", v3.Float())
	// Output:
	// 6.000
	// 3.000
	// 3.000
}
Ejemplo n.º 19
0
// a = norm2(A)
func TestDnrm2(t *testing.T) {
	fmt.Printf("* L1 * test sum: nrm2(X)\n")
	A := matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	v1 := Nrm2(A, &linalg.IOpt{"offset", 0})
	v2 := Nrm2(A, &linalg.IOpt{"offset", 3})
	v3 := Nrm2(A, &linalg.IOpt{"inc", 2})
	fmt.Printf("Ddnrm2\n")
	fmt.Printf("%.3f\n", v1.Float())
	fmt.Printf("%.3f\n", v2.Float())
	fmt.Printf("%.3f\n", v3.Float())
	// Output:
	// 2.499
	// 1.732
	// 1.732
}
Ejemplo n.º 20
0
// The small GP of section 9.3 (Geometric programming).
func TestGp(t *testing.T) {

	xref := []float64{1.06032641296944741, 1.75347359157296845, 2.44603683900611868}

	aflr := 1000.0
	awall := 100.0
	alpha := 0.5
	beta := 2.0
	gamma := 0.5
	delta := 2.0

	fdata := [][]float64{
		[]float64{-1.0, 1.0, 1.0, 0.0, -1.0, 1.0, 0.0, 0.0},
		[]float64{-1.0, 1.0, 0.0, 1.0, 1.0, -1.0, 1.0, -1.0},
		[]float64{-1.0, 0.0, 1.0, 1.0, 0.0, 0.0, -1.0, 1.0}}

	gdata := []float64{1.0, 2.0 / awall, 2.0 / awall, 1.0 / aflr, alpha, 1.0 / beta, gamma, 1.0 / delta}

	g := matrix.FloatNew(8, 1, gdata).Log()
	F := matrix.FloatMatrixFromTable(fdata)
	K := []int{1, 2, 1, 1, 1, 1, 1}

	var solopts SolverOptions
	solopts.MaxIter = 40
	solopts.ShowProgress = false
	solopts.KKTSolverName = "ldl"
	sol, err := Gp(K, F, g, nil, nil, nil, nil, &solopts)
	if sol != nil && sol.Status == Optimal {
		x := sol.Result.At("x")[0]
		r := matrix.Exp(x)
		h := r.GetIndex(0)
		w := r.GetIndex(1)
		d := r.GetIndex(2)
		t.Logf("x=\n%v\n", x.ToString("%.9f"))
		t.Logf("h = %f,  w = %f, d = %f.\n", h, w, d)
		xe, _ := nrmError(matrix.FloatVector(xref), x)
		if xe > TOL {
			t.Logf("x differs [%.3e] from exepted too much.", xe)
			t.Fail()
		}
	} else {
		t.Logf("status: %v\n", err)
		t.Fail()
	}
}
Ejemplo n.º 21
0
Archivo: gp.go Proyecto: hrautila/cvx
func (gp *gpConvexProg) F2(x, z *matrix.FloatMatrix) (f, Df, H *matrix.FloatMatrix, err error) {

	err = nil
	f = matrix.FloatZeros(gp.mnl+1, 1)
	Df = matrix.FloatZeros(gp.mnl+1, gp.n)
	H = matrix.FloatZeros(gp.n, gp.n)
	y := gp.g.Copy()
	Fsc := matrix.FloatZeros(gp.maxK, gp.n)
	blas.GemvFloat(gp.F, x, y, 1.0, 1.0)
	//fmt.Printf("y=\n%v\n", y.ToString("%.3f"))

	for i, s := range gp.ind {
		start := s[0]
		stop := s[1]

		// yi := exp(yi) = exp(Fi*x+gi)
		ymax := maxvec(y.FloatArray()[start:stop])
		ynew := matrix.Exp(matrix.FloatVector(y.FloatArray()[start:stop]).Add(-ymax))
		y.SetIndexesFromArray(ynew.FloatArray(), matrix.Indexes(start, stop)...)

		// fi = log sum yi = log sum exp(Fi*x+gi)
		ysum := blas.AsumFloat(y, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})

		f.SetIndex(i, ymax+math.Log(ysum))
		blas.ScalFloat(y, 1.0/ysum, &la.IOpt{"n", stop - start}, &la.IOpt{"offset", start})
		blas.GemvFloat(gp.F, y, Df, 1.0, 0.0, la.OptTrans, &la.IOpt{"m", stop - start},
			&la.IOpt{"incy", gp.mnl + 1}, &la.IOpt{"offseta", start},
			&la.IOpt{"offsetx", start}, &la.IOpt{"offsety", i})

		Fsc.SetSubMatrix(0, 0, gp.F.GetSubMatrix(start, 0, stop-start))

		for k := start; k < stop; k++ {
			blas.AxpyFloat(Df, Fsc, -1.0, &la.IOpt{"n", gp.n},
				&la.IOpt{"incx", gp.mnl + 1}, &la.IOpt{"incy", Fsc.Rows()},
				&la.IOpt{"offsetx", i}, &la.IOpt{"offsety", k - start})
			blas.ScalFloat(Fsc, math.Sqrt(y.GetIndex(k)),
				&la.IOpt{"inc", Fsc.Rows()}, &la.IOpt{"offset", k - start})
		}
		// H += z[i]*Hi = z[i] *Fisc' * Fisc
		blas.SyrkFloat(Fsc, H, z.GetIndex(i), 1.0, la.OptTrans,
			&la.IOpt{"k", stop - start})
	}
	return
}
Ejemplo n.º 22
0
func acenter() *matrix.FloatMatrix {

	F := &acenterProg{3, 1}

	gdata := [][]float64{
		[]float64{0., -1., 0., 0., -21., -11., 0., -11., 10., 8., 0., 8., 5.},
		[]float64{0., 0., -1., 0., 0., 10., 16., 10., -10., -10., 16., -10., 3.},
		[]float64{0., 0., 0., -1., -5., 2., -17., 2., -6., 8., -17., -7., 6.}}

	G := matrix.FloatMatrixFromTable(gdata)
	h := matrix.FloatVector(
		[]float64{1.0, 0.0, 0.0, 0.0, 20., 10., 40., 10., 80., 10., 40., 10., 15.})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 40
	solopts.ShowProgress = true
	if maxIter > -1 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}

	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{0})
	dims.Set("q", []int{4})
	dims.Set("s", []int{3})

	var err error
	var sol *cvx.Solution

	sol, err = cvx.Cp(F, G, h, nil, nil, dims, &solopts)
	if err == nil && sol.Status == cvx.Optimal {
		return sol.Result.At("x")[0]
	} else {
		fmt.Printf("result: %v\n", err)
	}
	return nil
}
Ejemplo n.º 23
0
func _TestMultMVSmall(t *testing.T) {
	bM := 5
	bN := 4
	A := matrix.FloatNormal(bM, bN)
	X := matrix.FloatVector([]float64{1.0, 2.0, 3.0, 4.0})
	Y1 := matrix.FloatZeros(bM, 1)
	Y0 := matrix.FloatZeros(bM, 1)

	Ar := A.FloatArray()
	Xr := X.FloatArray()
	Y1r := Y1.FloatArray()

	blas.GemvFloat(A, X, Y0, 1.0, 1.0)

	DMultMV(Y1r, Ar, Xr, 1.0, 1.0, NOTRANS, 1, A.LeadingIndex(), 1, 0, bN, 0, bM, 4, 4)
	ok := Y0.AllClose(Y1)
	t.Logf("Y0 == Y1: %v\n", ok)
	if !ok {
		t.Logf("blas: Y=A*X\n%v\n", Y0)
		t.Logf("Y1: Y1 = A*X\n%v\n", Y1)
	}
}
Ejemplo n.º 24
0
// X <--> Y
func TestDswap(t *testing.T) {
	fmt.Printf("* L1 * test swap: X <--> Y\n")
	A := matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	B := matrix.FloatVector([]float64{2.0, 2.0, 2.0, 2.0, 2.0, 2.0})
	Swap(A, B)
	fmt.Printf("Dswap A, B\n")
	fmt.Printf("%s\n", A)
	A = matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	B = matrix.FloatVector([]float64{2.0, 2.0, 2.0, 2.0, 2.0, 2.0})
	Swap(A, B, &linalg.IOpt{"offset", 3})
	fmt.Printf("Dswap A[3:], B[3:]\n")
	fmt.Printf("%s\n", A)
	A = matrix.FloatVector([]float64{1.0, 1.0, 1.0, 1.0, 1.0, 1.0})
	B = matrix.FloatVector([]float64{2.0, 2.0, 2.0, 2.0, 2.0, 2.0})
	fmt.Printf("Dswap A[::2], B[::2]\n")
	Swap(A, B, &linalg.IOpt{"inc", 2})
	fmt.Printf("%s\n", A)
}
Ejemplo n.º 25
0
func main() {

	Sdata := [][]float64{
		[]float64{4e-2, 6e-3, -4e-3, 0.0},
		[]float64{6e-3, 1e-2, 0.0, 0.0},
		[]float64{-4e-3, 0.0, 2.5e-3, 0.0},
		[]float64{0.0, 0.0, 0.0, 0.0}}

	pbar := matrix.FloatVector([]float64{.12, .10, .07, .03})
	S := matrix.FloatMatrixFromTable(Sdata)
	n := pbar.Rows()
	G := matrix.FloatDiagonal(n, -1.0)
	h := matrix.FloatZeros(n, 1)
	A := matrix.FloatWithValue(1, n, 1.0)
	b := matrix.FloatNew(1, 1, []float64{1.0})

	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true

	mu := 1.0
	Smu := matrix.Scale(S, mu)
	pbarNeg := matrix.Scale(pbar, -1.0)
	fmt.Printf("Smu=\n%v\n", Smu.String())
	fmt.Printf("-pbar=\n%v\n", pbarNeg.String())

	sol, err := cvx.Qp(Smu, pbarNeg, G, h, A, b, &solopts, nil)

	fmt.Printf("status: %v\n", err)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		ret := blas.DotFloat(x, pbar)
		risk := math.Sqrt(blas.DotFloat(x, S.Times(x)))
		fmt.Printf("ret=%.3f, risk=%.3f\n", ret, risk)
		fmt.Printf("x=\n%v\n", x)
	}
}
Ejemplo n.º 26
0
// Solves a pair of primal and dual SDPs
//
//        minimize    c'*x
//        subject to  Gl*x + sl = hl
//                    mat(Gs[k]*x) + ss[k] = hs[k], k = 0, ..., N-1
//                    A*x = b
//                    sl >= 0,  ss[k] >= 0, k = 0, ..., N-1
//
//        maximize    -hl'*z - sum_k trace(hs[k]*zs[k]) - b'*y
//        subject to  Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + A'*y + c = 0
//                    zl >= 0,  zs[k] >= 0, k = 0, ..., N-1.
//
// The inequalities sl >= 0 and zl >= 0 are elementwise vector
// inequalities.  The inequalities ss[k] >= 0, zs[k] >= 0 are matrix
// inequalities, i.e., the symmetric matrices ss[k] and zs[k] must be
// positive semidefinite.  mat(Gs[k]*x) is the symmetric matrix X with
// X[:] = Gs[k]*x.  For a symmetric matrix, zs[k], vec(zs[k]) is the
// vector zs[k][:].
//
func Sdp(c, Gl, hl, A, b *matrix.FloatMatrix, Ghs *sets.FloatMatrixSet, solopts *SolverOptions,
	primalstart, dualstart *sets.FloatMatrixSet) (sol *Solution, err error) {
	if c == nil {
		err = errors.New("'c' must a column matrix")
		return
	}
	n := c.Rows()
	if n < 1 {
		err = errors.New("Number of variables must be at least 1")
		return
	}
	if Gl == nil {
		Gl = matrix.FloatZeros(0, n)
	}
	if Gl.Cols() != n {
		err = errors.New(fmt.Sprintf("'G' must be matrix with %d columns", n))
		return
	}
	ml := Gl.Rows()
	if hl == nil {
		hl = matrix.FloatZeros(0, 1)
	}
	if !hl.SizeMatch(ml, 1) {
		err = errors.New(fmt.Sprintf("'hl' must be matrix of size (%d,1)", ml))
		return
	}
	Gsset := Ghs.At("Gs")
	ms := make([]int, 0)
	for i, Gs := range Gsset {
		if Gs.Cols() != n {
			err = errors.New(fmt.Sprintf("'Gs' must be list of matrices with %d columns", n))
			return
		}
		sz := int(math.Sqrt(float64(Gs.Rows())))
		if Gs.Rows() != sz*sz {
			err = errors.New(fmt.Sprintf("the squareroot of the number of rows of 'Gq[%d]' is not an integer", i))
			return
		}
		ms = append(ms, sz)
	}

	hsset := Ghs.At("hs")
	if len(Gsset) != len(hsset) {
		err = errors.New(fmt.Sprintf("'hs' must be a list of %d matrices", len(Gsset)))
		return
	}
	for i, hs := range hsset {
		if !hs.SizeMatch(ms[i], ms[i]) {
			s := fmt.Sprintf("hq[%d] has size (%d,%d). Expected size is (%d,%d)",
				i, hs.Rows(), hs.Cols(), ms[i], ms[i])
			err = errors.New(s)
			return
		}
	}
	if A == nil {
		A = matrix.FloatZeros(0, n)
	}
	if A.Cols() != n {
		err = errors.New(fmt.Sprintf("'A' must be matrix with %d columns", n))
		return
	}
	p := A.Rows()
	if b == nil {
		b = matrix.FloatZeros(0, 1)
	}
	if !b.SizeMatch(p, 1) {
		err = errors.New(fmt.Sprintf("'b' must be matrix of size (%d,1)", p))
		return
	}
	dims := sets.NewDimensionSet("l", "q", "s")
	dims.Set("l", []int{ml})
	dims.Set("s", ms)
	N := dims.Sum("l") + dims.SumSquared("s")

	// Map hs matrices to h vector
	h := matrix.FloatZeros(N, 1)
	h.SetIndexesFromArray(hl.FloatArray()[:ml], matrix.MakeIndexSet(0, ml, 1)...)
	ind := ml
	for k, hs := range hsset {
		h.SetIndexesFromArray(hs.FloatArray(), matrix.MakeIndexSet(ind, ind+ms[k]*ms[k], 1)...)
		ind += ms[k] * ms[k]
	}

	Gargs := make([]*matrix.FloatMatrix, 0)
	Gargs = append(Gargs, Gl)
	Gargs = append(Gargs, Gsset...)
	G, sizeg := matrix.FloatMatrixStacked(matrix.StackDown, Gargs...)

	var pstart, dstart *sets.FloatMatrixSet = nil, nil
	if primalstart != nil {
		pstart = sets.NewFloatSet("x", "s")
		pstart.Set("x", primalstart.At("x")[0])
		slset := primalstart.At("sl")
		margs := make([]*matrix.FloatMatrix, 0, len(slset)+1)
		margs = append(margs, primalstart.At("s")[0])
		margs = append(margs, slset...)
		sl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...)
		pstart.Set("s", sl)
	}

	if dualstart != nil {
		dstart = sets.NewFloatSet("y", "z")
		dstart.Set("y", dualstart.At("y")[0])
		zlset := primalstart.At("zl")
		margs := make([]*matrix.FloatMatrix, 0, len(zlset)+1)
		margs = append(margs, dualstart.At("z")[0])
		margs = append(margs, zlset...)
		zl, _ := matrix.FloatMatrixStacked(matrix.StackDown, margs...)
		dstart.Set("z", zl)
	}

	//fmt.Printf("h=\n%v\n", h.ToString("%.3f"))
	//fmt.Printf("G=\n%v\n", G.ToString("%.3f"))

	sol, err = ConeLp(c, G, h, A, b, dims, solopts, pstart, dstart)
	// unpack sol.Result
	if err == nil {
		s := sol.Result.At("s")[0]
		sl := matrix.FloatVector(s.FloatArray()[:ml])
		sol.Result.Append("sl", sl)
		ind := ml
		for _, m := range ms {
			sk := matrix.FloatNew(m, m, s.FloatArray()[ind:ind+m*m])
			sol.Result.Append("ss", sk)
			ind += m * m
		}

		z := sol.Result.At("z")[0]
		zl := matrix.FloatVector(s.FloatArray()[:ml])
		sol.Result.Append("zl", zl)
		ind = ml
		for i, k := range sizeg[1:] {
			zk := matrix.FloatNew(ms[i], ms[i], z.FloatArray()[ind:ind+k])
			sol.Result.Append("zs", zk)
			ind += k
		}
	}
	sol.Result.Remove("s")
	sol.Result.Remove("z")

	return

}
Ejemplo n.º 27
0
func main() {
	flag.Parse()
	if len(spPath) > 0 {
		checkpnt.Reset(spPath)
		checkpnt.Activate()
		checkpnt.Verbose(spVerbose)
		checkpnt.Format("%.17f")
	}

	gdata0 := [][]float64{
		[]float64{-7., -11., -11., 3.},
		[]float64{7., -18., -18., 8.},
		[]float64{-2., -8., -8., 1.}}

	gdata1 := [][]float64{
		[]float64{-21., -11., 0., -11., 10., 8., 0., 8., 5.},
		[]float64{0., 10., 16., 10., -10., -10., 16., -10., 3.},
		[]float64{-5., 2., -17., 2., -6., 8., -17., -7., 6.}}

	hdata0 := [][]float64{
		[]float64{33., -9.},
		[]float64{-9., 26.}}

	hdata1 := [][]float64{
		[]float64{14., 9., 40.},
		[]float64{9., 91., 10.},
		[]float64{40., 10., 15.}}

	g0 := matrix.FloatMatrixFromTable(gdata0, matrix.ColumnOrder)
	g1 := matrix.FloatMatrixFromTable(gdata1, matrix.ColumnOrder)
	Ghs := sets.FloatSetNew("Gs", "hs")
	Ghs.Append("Gs", g0, g1)

	h0 := matrix.FloatMatrixFromTable(hdata0, matrix.ColumnOrder)
	h1 := matrix.FloatMatrixFromTable(hdata1, matrix.ColumnOrder)
	Ghs.Append("hs", h0, h1)

	c := matrix.FloatVector([]float64{1.0, -1.0, 1.0})

	var Gs, hs, A, b *matrix.FloatMatrix = nil, nil, nil, nil
	var solopts cvx.SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = true
	if maxIter > -1 {
		solopts.MaxIter = maxIter
	}
	if len(solver) > 0 {
		solopts.KKTSolverName = solver
	}

	sol, err := cvx.Sdp(c, Gs, hs, A, b, Ghs, &solopts, nil, nil)
	if sol != nil && sol.Status == cvx.Optimal {
		x := sol.Result.At("x")[0]
		fmt.Printf("x=\n%v\n", x.ToString("%.9f"))
		for i, m := range sol.Result.At("zs") {
			fmt.Printf("zs[%d]=\n%v\n", i, m.ToString("%.9f"))
		}
		ss0 := sol.Result.At("ss")[0]
		ss1 := sol.Result.At("ss")[1]
		zs0 := sol.Result.At("zs")[0]
		zs1 := sol.Result.At("zs")[1]
		check(x, ss0, ss1, zs0, zs1)
	} else {
		fmt.Printf("status: %v\n", err)
	}
	checkpnt.Report()
}
Ejemplo n.º 28
0
func TestConeLp(t *testing.T) {

	gdata := [][]float64{
		[]float64{16., 7., 24., -8., 8., -1., 0., -1., 0., 0., 7.,
			-5., 1., -5., 1., -7., 1., -7., -4.},
		[]float64{-14., 2., 7., -13., -18., 3., 0., 0., -1., 0., 3.,
			13., -6., 13., 12., -10., -6., -10., -28.},
		[]float64{5., 0., -15., 12., -6., 17., 0., 0., 0., -1., 9.,
			6., -6., 6., -7., -7., -6., -7., -11.}}

	hdata := []float64{-3., 5., 12., -2., -14., -13., 10., 0., 0., 0., 68.,
		-30., -19., -30., 99., 23., -19., 23., 10.}

	// these reference values obtained from running cvxopt conelp.py example
	xref := []float64{-1.22091525026262993, 0.09663323966626469, 3.57750155386611057}

	sref := []float64{
		0.00000172588537019, 13.35314040819201864,
		94.28805677232460880, -53.44110853283719109,
		18.97172963929198275, -75.32834138499130461,
		10.00000013568614321, -1.22091525026262993,
		0.09663323966626476, 3.57750155386611146,
		44.05899318373081286, -58.82581769017131990,
		4.26572401145687596, -58.82581769017131990,
		124.10382738701650851, 40.46243652188705653,
		4.26572401145687596, 40.46243652188705653,
		47.17458693781828316}

	zref := []float64{
		0.09299833991484617, 0.00000001060210894,
		0.23532251654806322, 0.13337937743566930,
		-0.04734875722474355, 0.18800192060450249,
		0.00000001245876667, 0.00000000007816348,
		-0.00000000039584268, -0.00000000183463577,
		0.12558704894101563, 0.08777794737598217,
		-0.08664401207348003, 0.08777794737598217,
		0.06135161787371416, -0.06055906182304811,
		-0.08664401207348003, -0.06055906182304811,
		0.05977675078191153}

	c := matrix.FloatVector([]float64{-6., -4., -5.})
	G := matrix.FloatMatrixFromTable(gdata)
	h := matrix.FloatVector(hdata)

	dims := sets.DSetNew("l", "q", "s")
	dims.Set("l", []int{2})
	dims.Set("q", []int{4, 4})
	dims.Set("s", []int{3})

	var solopts SolverOptions
	solopts.MaxIter = 30
	solopts.ShowProgress = false
	sol, err := ConeLp(c, G, h, nil, nil, dims, &solopts, nil, nil)
	if err == nil {
		fail := false
		x := sol.Result.At("x")[0]
		s := sol.Result.At("s")[0]
		z := sol.Result.At("z")[0]
		t.Logf("Optimal\n")
		t.Logf("x=\n%v\n", x.ToString("%.9f"))
		t.Logf("s=\n%v\n", s.ToString("%.9f"))
		t.Logf("z=\n%v\n", z.ToString("%.9f"))
		xe, _ := nrmError(matrix.FloatVector(xref), x)
		if xe > TOL {
			t.Logf("x differs [%.3e] from exepted too much.", xe)
			fail = true
		}
		se, _ := nrmError(matrix.FloatVector(sref), s)
		if se > TOL {
			t.Logf("s differs [%.3e] from exepted too much.", se)
			fail = true
		}
		ze, _ := nrmError(matrix.FloatVector(zref), z)
		if ze > TOL {
			t.Logf("z differs [%.3e] from exepted too much.", ze)
			fail = true
		}
		if fail {
			t.Fail()
		}
	} else {
		t.Logf("status: %s\n", err)
		t.Fail()
	}
}
Ejemplo n.º 29
0
func main() {
	m := 6
	Vdata := [][]float64{
		[]float64{1.0, -1.0, -2.0, -2.0, 0.0, 1.5, 1.0},
		[]float64{1.0, 2.0, 1.0, -1.0, -2.0, -1.0, 1.0}}

	V := matrix.FloatMatrixFromTable(Vdata, matrix.RowOrder)

	// V[1, :m] - V[1,1:]
	a0 := matrix.Minus(V.GetSubMatrix(1, 0, 1, m), V.GetSubMatrix(1, 1, 1))
	// V[0, :m] - V[0,1:]
	a1 := matrix.Minus(V.GetSubMatrix(0, 0, 1, m), V.GetSubMatrix(0, 1, 1))
	A0, _ := matrix.FloatMatrixStacked(matrix.StackDown, a0.Scale(-1.0), a1)
	A0 = A0.Transpose()
	b0 := matrix.Mul(A0, V.GetSubMatrix(0, 0, 2, m).Transpose())
	b0 = matrix.Times(b0, matrix.FloatWithValue(2, 1, 1.0))

	A := make([]*matrix.FloatMatrix, 0)
	b := make([]*matrix.FloatMatrix, 0)
	A = append(A, A0)
	b = append(b, b0)

	// List of symbols
	C := make([]*matrix.FloatMatrix, 0)
	C = append(C, matrix.FloatZeros(2, 1))
	var row *matrix.FloatMatrix = nil
	for k := 0; k < m; k++ {
		row = A0.GetRow(k, row)
		nrm := blas.Nrm2Float(row)
		row.Scale(2.0 * b0.GetIndex(k) / (nrm * nrm))
		C = append(C, row.Transpose())
	}

	// Voronoi set around C[1]
	A1 := matrix.FloatZeros(3, 2)
	A1.SetSubMatrix(0, 0, A0.GetSubMatrix(0, 0, 1).Scale(-1.0))
	A1.SetSubMatrix(1, 0, matrix.Minus(C[m], C[1]).Transpose())
	A1.SetSubMatrix(2, 0, matrix.Minus(C[2], C[1]).Transpose())
	b1 := matrix.FloatZeros(3, 1)
	b1.SetIndex(0, -b0.GetIndex(0))
	v := matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[m], C[1])).Float() * 0.5
	b1.SetIndex(1, v)
	v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[2], C[1])).Float() * 0.5
	b1.SetIndex(2, v)
	A = append(A, A1)
	b = append(b, b1)

	// Voronoi set around C[2] ... C[5]
	for k := 2; k < 6; k++ {
		A1 = matrix.FloatZeros(3, 2)
		A1.SetSubMatrix(0, 0, A0.GetSubMatrix(k-1, 0, 1).Scale(-1.0))
		A1.SetSubMatrix(1, 0, matrix.Minus(C[k-1], C[k]).Transpose())
		A1.SetSubMatrix(2, 0, matrix.Minus(C[k+1], C[k]).Transpose())
		b1 = matrix.FloatZeros(3, 1)
		b1.SetIndex(0, -b0.GetIndex(k-1))
		v := matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[k-1], C[k])).Float() * 0.5
		b1.SetIndex(1, v)
		v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[k+1], C[k])).Float() * 0.5
		b1.SetIndex(2, v)
		A = append(A, A1)
		b = append(b, b1)
	}

	// Voronoi set around C[6]
	A1 = matrix.FloatZeros(3, 2)
	A1.SetSubMatrix(0, 0, A0.GetSubMatrix(5, 0, 1).Scale(-1.0))
	A1.SetSubMatrix(1, 0, matrix.Minus(C[1], C[6]).Transpose())
	A1.SetSubMatrix(2, 0, matrix.Minus(C[5], C[6]).Transpose())
	b1 = matrix.FloatZeros(3, 1)
	b1.SetIndex(0, -b0.GetIndex(5))
	v = matrix.Times(A1.GetRow(1, nil), matrix.Plus(C[1], C[6])).Float() * 0.5
	b1.SetIndex(1, v)
	v = matrix.Times(A1.GetRow(2, nil), matrix.Plus(C[5], C[6])).Float() * 0.5
	b1.SetIndex(2, v)

	A = append(A, A1)
	b = append(b, b1)

	P := matrix.FloatIdentity(2)
	q := matrix.FloatZeros(2, 1)
	solopts := &cvx.SolverOptions{ShowProgress: false, MaxIter: 30}
	ovals := make([]float64, 0)
	for k := 1; k < 7; k++ {
		sol, err := cvx.Qp(P, q, A[k], b[k], nil, nil, solopts, nil)
		_ = err
		x := sol.Result.At("x")[0]
		ovals = append(ovals, math.Pow(blas.Nrm2Float(x), 2.0))
	}

	optvals := matrix.FloatVector(ovals)
	//fmt.Printf("optvals=\n%v\n", optvals)

	rangeFunc := func(n int) []float64 {
		r := make([]float64, 0)
		for i := 0; i < n; i++ {
			r = append(r, float64(i))
		}
		return r
	}

	nopts := 200
	sigmas := matrix.FloatVector(rangeFunc(nopts))
	sigmas.Scale((0.5 - 0.2) / float64(nopts)).Add(0.2)

	bndsVal := func(sigma float64) float64 {
		// 1.0 - sum(exp( -optvals/(2*sigma**2)))
		return 1.0 - matrix.Exp(matrix.Scale(optvals, -1.0/(2*sigma*sigma))).Sum()
	}
	bnds := matrix.FloatZeros(sigmas.NumElements(), 1)
	for j, v := range sigmas.FloatArray() {
		bnds.SetIndex(j, bndsVal(v))
	}
	plotData("plot.png", sigmas.FloatArray(), bnds.FloatArray())
}
Ejemplo n.º 30
0
Archivo: cpl.go Proyecto: hrautila/cvx
// Internal CPL solver for CP and CLP problems. Everything is wrapped to proper interfaces
func cpl_solver(F ConvexVarProg, c MatrixVariable, G MatrixVarG, h *matrix.FloatMatrix,
	A MatrixVarA, b MatrixVariable, dims *sets.DimensionSet, kktsolver KKTCpSolverVar,
	solopts *SolverOptions, x0 MatrixVariable, mnl int) (sol *Solution, err error) {

	const (
		STEP              = 0.99
		BETA              = 0.5
		ALPHA             = 0.01
		EXPON             = 3
		MAX_RELAXED_ITERS = 8
	)

	var refinement int

	sol = &Solution{Unknown,
		nil,
		0.0, 0.0, 0.0, 0.0, 0.0,
		0.0, 0.0, 0.0, 0.0, 0.0, 0}

	feasTolerance := FEASTOL
	absTolerance := ABSTOL
	relTolerance := RELTOL
	maxIter := MAXITERS
	if solopts.FeasTol > 0.0 {
		feasTolerance = solopts.FeasTol
	}
	if solopts.AbsTol > 0.0 {
		absTolerance = solopts.AbsTol
	}
	if solopts.RelTol > 0.0 {
		relTolerance = solopts.RelTol
	}
	if solopts.Refinement > 0 {
		refinement = solopts.Refinement
	} else {
		refinement = 1
	}
	if solopts.MaxIter > 0 {
		maxIter = solopts.MaxIter
	}

	if x0 == nil {
		mnl, x0, err = F.F0()
		if err != nil {
			return
		}
	}

	if c == nil {
		err = errors.New("Must define objective.")
		return
	}

	if h == nil {
		h = matrix.FloatZeros(0, 1)
	}
	if dims == nil {
		err = errors.New("Problem dimensions not defined.")
		return
	}
	if err = checkConeLpDimensions(dims); err != nil {
		return
	}

	cdim := dims.Sum("l", "q") + dims.SumSquared("s")
	cdim_diag := dims.Sum("l", "q", "s")

	if h.Rows() != cdim {
		err = errors.New(fmt.Sprintf("'h' must be float matrix of size (%d,1)", cdim))
		return
	}

	if G == nil {
		err = errors.New("'G' must be non-nil MatrixG interface.")
		return
	}
	fG := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return G.Gf(x, y, alpha, beta, trans)
	}

	// Check A and set defaults if it is nil
	if A == nil {
		err = errors.New("'A' must be non-nil MatrixA interface.")
		return
	}
	fA := func(x, y MatrixVariable, alpha, beta float64, trans la.Option) error {
		return A.Af(x, y, alpha, beta, trans)
	}

	if b == nil {
		err = errors.New("'b' must be non-nil MatrixVariable interface.")
		return
	}

	if kktsolver == nil {
		err = errors.New("nil kktsolver not allowed.")
		return
	}

	x := x0.Copy()
	y := b.Copy()
	y.Scal(0.0)
	z := matrix.FloatZeros(mnl+cdim, 1)
	s := matrix.FloatZeros(mnl+cdim, 1)
	ind := mnl + dims.At("l")[0]
	z.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...)
	s.SetIndexes(1.0, matrix.MakeIndexSet(0, ind, 1)...)
	for _, m := range dims.At("q") {
		z.SetIndexes(1.0, ind)
		s.SetIndexes(1.0, ind)
		ind += m
	}
	for _, m := range dims.At("s") {
		iset := matrix.MakeIndexSet(ind, ind+m*m, m+1)
		z.SetIndexes(1.0, iset...)
		s.SetIndexes(1.0, iset...)
		ind += m * m
	}

	rx := x0.Copy()
	ry := b.Copy()
	dx := x.Copy()
	dy := y.Copy()
	rznl := matrix.FloatZeros(mnl, 1)
	rzl := matrix.FloatZeros(cdim, 1)
	dz := matrix.FloatZeros(mnl+cdim, 1)
	ds := matrix.FloatZeros(mnl+cdim, 1)
	lmbda := matrix.FloatZeros(mnl+cdim_diag, 1)
	lmbdasq := matrix.FloatZeros(mnl+cdim_diag, 1)
	sigs := matrix.FloatZeros(dims.Sum("s"), 1)
	sigz := matrix.FloatZeros(dims.Sum("s"), 1)

	dz2 := matrix.FloatZeros(mnl+cdim, 1)
	ds2 := matrix.FloatZeros(mnl+cdim, 1)

	newx := x.Copy()
	newy := y.Copy()
	newrx := x0.Copy()

	newz := matrix.FloatZeros(mnl+cdim, 1)
	news := matrix.FloatZeros(mnl+cdim, 1)
	newrznl := matrix.FloatZeros(mnl, 1)

	rx0 := rx.Copy()
	ry0 := ry.Copy()
	rznl0 := matrix.FloatZeros(mnl, 1)
	rzl0 := matrix.FloatZeros(cdim, 1)

	x0, dx0 := x.Copy(), dx.Copy()
	y0, dy0 := y.Copy(), dy.Copy()

	z0 := matrix.FloatZeros(mnl+cdim, 1)
	dz0 := matrix.FloatZeros(mnl+cdim, 1)
	dz20 := matrix.FloatZeros(mnl+cdim, 1)

	s0 := matrix.FloatZeros(mnl+cdim, 1)
	ds0 := matrix.FloatZeros(mnl+cdim, 1)
	ds20 := matrix.FloatZeros(mnl+cdim, 1)

	checkpnt.AddMatrixVar("z", z)
	checkpnt.AddMatrixVar("s", s)
	checkpnt.AddMatrixVar("dz", dz)
	checkpnt.AddMatrixVar("ds", ds)
	checkpnt.AddMatrixVar("rznl", rznl)
	checkpnt.AddMatrixVar("rzl", rzl)
	checkpnt.AddMatrixVar("lmbda", lmbda)
	checkpnt.AddMatrixVar("lmbdasq", lmbdasq)
	checkpnt.AddMatrixVar("z0", z0)
	checkpnt.AddMatrixVar("dz0", dz0)
	checkpnt.AddVerifiable("c", c)
	checkpnt.AddVerifiable("x", x)
	checkpnt.AddVerifiable("rx", rx)
	checkpnt.AddVerifiable("dx", dx)
	checkpnt.AddVerifiable("newrx", newrx)
	checkpnt.AddVerifiable("newx", newx)
	checkpnt.AddVerifiable("x0", x0)
	checkpnt.AddVerifiable("dx0", dx0)
	checkpnt.AddVerifiable("rx0", rx0)
	checkpnt.AddVerifiable("y", y)
	checkpnt.AddVerifiable("dy", dy)

	W0 := sets.NewFloatSet("d", "di", "dnl", "dnli", "v", "r", "rti", "beta")
	W0.Set("dnl", matrix.FloatZeros(mnl, 1))
	W0.Set("dnli", matrix.FloatZeros(mnl, 1))
	W0.Set("d", matrix.FloatZeros(dims.At("l")[0], 1))
	W0.Set("di", matrix.FloatZeros(dims.At("l")[0], 1))
	W0.Set("beta", matrix.FloatZeros(len(dims.At("q")), 1))
	for _, n := range dims.At("q") {
		W0.Append("v", matrix.FloatZeros(n, 1))
	}
	for _, n := range dims.At("s") {
		W0.Append("r", matrix.FloatZeros(n, n))
		W0.Append("rti", matrix.FloatZeros(n, n))
	}
	lmbda0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1)
	lmbdasq0 := matrix.FloatZeros(mnl+dims.Sum("l", "q", "s"), 1)

	var f MatrixVariable = nil
	var Df MatrixVarDf = nil
	var H MatrixVarH = nil

	var ws3, wz3, wz2l, wz2nl *matrix.FloatMatrix
	var ws, wz, wz2, ws2 *matrix.FloatMatrix
	var wx, wx2, wy, wy2 MatrixVariable
	var gap, gap0, theta1, theta2, theta3, ts, tz, phi, phi0, mu, sigma, eta float64
	var resx, resy, reszl, resznl, pcost, dcost, dres, pres, relgap float64
	var resx0, resznl0, dres0, pres0 float64
	var dsdz, dsdz0, step, step0, dphi, dphi0, sigma0, eta0 float64
	var newresx, newresznl, newgap, newphi float64
	var W *sets.FloatMatrixSet
	var f3 KKTFuncVar

	checkpnt.AddFloatVar("gap", &gap)
	checkpnt.AddFloatVar("pcost", &pcost)
	checkpnt.AddFloatVar("dcost", &dcost)
	checkpnt.AddFloatVar("pres", &pres)
	checkpnt.AddFloatVar("dres", &dres)
	checkpnt.AddFloatVar("relgap", &relgap)
	checkpnt.AddFloatVar("step", &step)
	checkpnt.AddFloatVar("dsdz", &dsdz)
	checkpnt.AddFloatVar("resx", &resx)
	checkpnt.AddFloatVar("resy", &resy)
	checkpnt.AddFloatVar("reszl", &reszl)
	checkpnt.AddFloatVar("resznl", &resznl)

	// Declare fDf and fH here, they bind to Df and H as they are already declared.
	// ??really??

	var fDf func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error = nil
	var fH func(u, v MatrixVariable, alpha, beta float64) error = nil

	relaxed_iters := 0
	for iters := 0; iters <= maxIter+1; iters++ {
		checkpnt.MajorNext()
		checkpnt.Check("loopstart", 10)

		checkpnt.MinorPush(10)
		if refinement != 0 || solopts.Debug {
			f, Df, H, err = F.F2(x, matrix.FloatVector(z.FloatArray()[:mnl]))
			fDf = func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error {
				return Df.Df(u, v, alpha, beta, trans)
			}
			fH = func(u, v MatrixVariable, alpha, beta float64) error {
				return H.Hf(u, v, alpha, beta)
			}
		} else {
			f, Df, err = F.F1(x)
			fDf = func(u, v MatrixVariable, alpha, beta float64, trans la.Option) error {
				return Df.Df(u, v, alpha, beta, trans)
			}
		}
		checkpnt.MinorPop()

		gap = sdot(s, z, dims, mnl)

		// these are helpers, copies of parts of z,s
		z_mnl := matrix.FloatVector(z.FloatArray()[:mnl])
		z_mnl2 := matrix.FloatVector(z.FloatArray()[mnl:])
		s_mnl := matrix.FloatVector(s.FloatArray()[:mnl])
		s_mnl2 := matrix.FloatVector(s.FloatArray()[mnl:])

		// rx = c + A'*y + Df'*z[:mnl] + G'*z[mnl:]
		// -- y, rx MatrixArg
		mCopy(c, rx)
		fA(y, rx, 1.0, 1.0, la.OptTrans)
		fDf(&matrixVar{z_mnl}, rx, 1.0, 1.0, la.OptTrans)
		fG(&matrixVar{z_mnl2}, rx, 1.0, 1.0, la.OptTrans)
		resx = math.Sqrt(rx.Dot(rx))

		// rznl = s[:mnl] + f
		blas.Copy(s_mnl, rznl)
		blas.AxpyFloat(f.Matrix(), rznl, 1.0)
		resznl = blas.Nrm2Float(rznl)

		// rzl = s[mnl:] + G*x - h
		blas.Copy(s_mnl2, rzl)
		blas.AxpyFloat(h, rzl, -1.0)
		fG(x, &matrixVar{rzl}, 1.0, 1.0, la.OptNoTrans)
		reszl = snrm2(rzl, dims, 0)

		// Statistics for stopping criteria
		// pcost = c'*x
		// dcost = c'*x + y'*(A*x-b) + znl'*f(x) + zl'*(G*x-h)
		//       = c'*x + y'*(A*x-b) + znl'*(f(x)+snl) + zl'*(G*x-h+sl)
		//         - z'*s
		//       = c'*x + y'*ry + znl'*rznl + zl'*rzl - gap
		//pcost = blas.DotFloat(c, x)
		pcost = c.Dot(x)
		dcost = pcost + blas.DotFloat(y.Matrix(), ry.Matrix()) + blas.DotFloat(z_mnl, rznl)
		dcost += sdot(z_mnl2, rzl, dims, 0) - gap

		if pcost < 0.0 {
			relgap = gap / -pcost
		} else if dcost > 0.0 {
			relgap = gap / dcost
		} else {
			relgap = math.NaN()
		}
		pres = math.Sqrt(resy*resy + resznl*resznl + reszl*reszl)
		dres = resx
		if iters == 0 {
			resx0 = math.Max(1.0, resx)
			resznl0 = math.Max(1.0, resznl)
			pres0 = math.Max(1.0, pres)
			dres0 = math.Max(1.0, dres)
			gap0 = gap
			theta1 = 1.0 / gap0
			theta2 = 1.0 / resx0
			theta3 = 1.0 / resznl0
		}
		phi = theta1*gap + theta2*resx + theta3*resznl
		pres = pres / pres0
		dres = dres / dres0

		if solopts.ShowProgress {
			if iters == 0 {
				// some headers
				fmt.Printf("% 10s% 12s% 10s% 8s% 7s\n",
					"pcost", "dcost", "gap", "pres", "dres")
			}
			fmt.Printf("%2d: % 8.4e % 8.4e % 4.0e% 7.0e% 7.0e\n",
				iters, pcost, dcost, gap, pres, dres)
		}

		checkpnt.Check("checkgap", 50)
		// Stopping criteria
		if (pres <= feasTolerance && dres <= feasTolerance &&
			(gap <= absTolerance || (!math.IsNaN(relgap) && relgap <= relTolerance))) ||
			iters == maxIter {

			if iters == maxIter {
				s := "Terminated (maximum number of iterations reached)"
				if solopts.ShowProgress {
					fmt.Printf(s + "\n")
				}
				err = errors.New(s)
				sol.Status = Unknown
			} else {
				err = nil
				sol.Status = Optimal
			}
			sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl")
			sol.Result.Set("x", x.Matrix())
			sol.Result.Set("y", y.Matrix())
			sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl]))
			sol.Result.Set("zl", matrix.FloatVector(z.FloatArray()[mnl:]))
			sol.Result.Set("sl", matrix.FloatVector(s.FloatArray()[mnl:]))
			sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl]))
			sol.Gap = gap
			sol.RelativeGap = relgap
			sol.PrimalObjective = pcost
			sol.DualObjective = dcost
			sol.PrimalInfeasibility = pres
			sol.DualInfeasibility = dres
			sol.PrimalSlack = -ts
			sol.DualSlack = -tz
			return
		}

		// Compute initial scaling W:
		//
		//     W * z = W^{-T} * s = lambda.
		//
		// lmbdasq = lambda o lambda
		if iters == 0 {
			W, _ = computeScaling(s, z, lmbda, dims, mnl)
			checkpnt.AddScaleVar(W)
		}
		ssqr(lmbdasq, lmbda, dims, mnl)
		checkpnt.Check("lmbdasq", 90)

		// f3(x, y, z) solves
		//
		//     [ H   A'  GG'*W^{-1} ] [ ux ]   [ bx ]
		//     [ A   0   0          ] [ uy ] = [ by ].
		//     [ GG  0  -W'         ] [ uz ]   [ bz ]
		//
		// On entry, x, y, z contain bx, by, bz.
		// On exit, they contain ux, uy, uz.
		checkpnt.MinorPush(95)
		f3, err = kktsolver(W, x, z_mnl)
		checkpnt.MinorPop()
		checkpnt.Check("f3", 100)
		if err != nil {
			// ?? z_mnl is really copy of z[:mnl] ... should we copy here back to z??
			singular_kkt_matrix := false
			if iters == 0 {
				err = errors.New("Rank(A) < p or Rank([H(x); A; Df(x); G] < n")
				return
			} else if relaxed_iters > 0 && relaxed_iters < MAX_RELAXED_ITERS {
				// The arithmetic error may be caused by a relaxed line
				// search in the previous iteration.  Therefore we restore
				// the last saved state and require a standard line search.
				phi, gap = phi0, gap0
				mu = gap / float64(mnl+dims.Sum("l", "s")+len(dims.At("q")))
				blas.Copy(W0.At("dnl")[0], W.At("dnl")[0])
				blas.Copy(W0.At("dnli")[0], W.At("dnli")[0])
				blas.Copy(W0.At("d")[0], W.At("d")[0])
				blas.Copy(W0.At("di")[0], W.At("di")[0])
				blas.Copy(W0.At("beta")[0], W.At("beta")[0])
				for k, _ := range dims.At("q") {
					blas.Copy(W0.At("v")[k], W.At("v")[k])
				}
				for k, _ := range dims.At("s") {
					blas.Copy(W0.At("r")[k], W.At("r")[k])
					blas.Copy(W0.At("rti")[k], W.At("rti")[k])
				}
				//blas.Copy(x0, x)
				//x0.CopyTo(x)
				mCopy(x0, x)
				//blas.Copy(y0, y)
				mCopy(y0, y)
				blas.Copy(s0, s)
				blas.Copy(z0, z)
				blas.Copy(lmbda0, lmbda)
				blas.Copy(lmbdasq0, lmbdasq) // ???
				//blas.Copy(rx0, rx)
				//rx0.CopyTo(rx)
				mCopy(rx0, rx)
				//blas.Copy(ry0, ry)
				mCopy(ry0, ry)
				//resx = math.Sqrt(blas.DotFloat(rx, rx))
				resx = math.Sqrt(rx.Dot(rx))
				blas.Copy(rznl0, rznl)
				blas.Copy(rzl0, rzl)
				resznl = blas.Nrm2Float(rznl)

				relaxed_iters = -1

				// How about z_mnl here???
				checkpnt.MinorPush(120)
				f3, err = kktsolver(W, x, z_mnl)
				checkpnt.MinorPop()
				if err != nil {
					singular_kkt_matrix = true
				}
			} else {
				singular_kkt_matrix = true
			}

			if singular_kkt_matrix {
				msg := "Terminated (singular KKT matrix)."
				if solopts.ShowProgress {
					fmt.Printf(msg + "\n")
				}
				zl := matrix.FloatVector(z.FloatArray()[mnl:])
				sl := matrix.FloatVector(s.FloatArray()[mnl:])
				ind := dims.Sum("l", "q")
				for _, m := range dims.At("s") {
					symm(sl, m, ind)
					symm(zl, m, ind)
					ind += m * m
				}
				ts, _ = maxStep(s, dims, mnl, nil)
				tz, _ = maxStep(z, dims, mnl, nil)

				err = errors.New(msg)
				sol.Status = Unknown
				sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl")
				sol.Result.Set("x", x.Matrix())
				sol.Result.Set("y", y.Matrix())
				sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl]))
				sol.Result.Set("zl", zl)
				sol.Result.Set("sl", sl)
				sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl]))
				sol.Gap = gap
				sol.RelativeGap = relgap
				sol.PrimalObjective = pcost
				sol.DualObjective = dcost
				sol.PrimalInfeasibility = pres
				sol.DualInfeasibility = dres
				sol.PrimalSlack = -ts
				sol.DualSlack = -tz
				return
			}
		}

		// f4_no_ir(x, y, z, s) solves
		//
		//     [ 0     ]   [ H   A'  GG' ] [ ux        ]   [ bx ]
		//     [ 0     ] + [ A   0   0   ] [ uy        ] = [ by ]
		//     [ W'*us ]   [ GG  0   0   ] [ W^{-1}*uz ]   [ bz ]
		//
		//     lmbda o (uz + us) = bs.
		//
		// On entry, x, y, z, x, contain bx, by, bz, bs.
		// On exit, they contain ux, uy, uz, us.

		if iters == 0 {
			ws3 = matrix.FloatZeros(mnl+cdim, 1)
			wz3 = matrix.FloatZeros(mnl+cdim, 1)
			checkpnt.AddMatrixVar("ws3", ws3)
			checkpnt.AddMatrixVar("wz3", wz3)
		}

		f4_no_ir := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) {
			// Solve
			//
			//     [ H  A'  GG'  ] [ ux        ]   [ bx                    ]
			//     [ A  0   0    ] [ uy        ] = [ by                    ]
			//     [ GG 0  -W'*W ] [ W^{-1}*uz ]   [ bz - W'*(lmbda o\ bs) ]
			//
			//     us = lmbda o\ bs - uz.

			err = nil
			// s := lmbda o\ s
			//    = lmbda o\ bs
			sinv(s, lmbda, dims, mnl)

			// z := z - W'*s
			//    = bz - W' * (lambda o\ bs)
			blas.Copy(s, ws3)

			scale(ws3, W, true, false)
			blas.AxpyFloat(ws3, z, -1.0)

			// Solve for ux, uy, uz
			err = f3(x, y, z)

			// s := s - z
			//    = lambda o\ bs - z.
			blas.AxpyFloat(z, s, -1.0)
			return
		}

		if iters == 0 {
			wz2nl = matrix.FloatZeros(mnl, 1)
			wz2l = matrix.FloatZeros(cdim, 1)
			checkpnt.AddMatrixVar("wz2nl", wz2nl)
			checkpnt.AddMatrixVar("wz2l", wz2l)
		}

		res := func(ux, uy MatrixVariable, uz, us *matrix.FloatMatrix, vx, vy MatrixVariable, vz, vs *matrix.FloatMatrix) (err error) {

			// Evaluates residuals in Newton equations:
			//
			//     [ vx ]     [ 0     ]   [ H  A' GG' ] [ ux        ]
			//     [ vy ] -=  [ 0     ] + [ A  0  0   ] [ uy        ]
			//     [ vz ]     [ W'*us ]   [ GG 0  0   ] [ W^{-1}*uz ]
			//
			//     vs -= lmbda o (uz + us).
			err = nil
			minor := checkpnt.MinorTop()
			// vx := vx - H*ux - A'*uy - GG'*W^{-1}*uz
			fH(ux, vx, -1.0, 1.0)
			fA(uy, vx, -1.0, 1.0, la.OptTrans)
			blas.Copy(uz, wz3)
			scale(wz3, W, false, true)
			wz3_nl := matrix.FloatVector(wz3.FloatArray()[:mnl])
			wz3_l := matrix.FloatVector(wz3.FloatArray()[mnl:])
			fDf(&matrixVar{wz3_nl}, vx, -1.0, 1.0, la.OptTrans)
			fG(&matrixVar{wz3_l}, vx, -1.0, 1.0, la.OptTrans)

			checkpnt.Check("10res", minor+10)

			// vy := vy - A*ux
			fA(ux, vy, -1.0, 1.0, la.OptNoTrans)

			// vz := vz - W'*us - GG*ux
			err = fDf(ux, &matrixVar{wz2nl}, 1.0, 0.0, la.OptNoTrans)
			checkpnt.Check("15res", minor+10)
			blas.AxpyFloat(wz2nl, vz, -1.0)
			fG(ux, &matrixVar{wz2l}, 1.0, 0.0, la.OptNoTrans)
			checkpnt.Check("20res", minor+10)
			blas.AxpyFloat(wz2l, vz, -1.0, &la.IOpt{"offsety", mnl})
			blas.Copy(us, ws3)
			scale(ws3, W, true, false)
			blas.AxpyFloat(ws3, vz, -1.0)

			checkpnt.Check("30res", minor+10)

			// vs -= lmbda o (uz + us)
			blas.Copy(us, ws3)
			blas.AxpyFloat(uz, ws3, 1.0)
			sprod(ws3, lmbda, dims, mnl, &la.SOpt{"diag", "D"})
			blas.AxpyFloat(ws3, vs, -1.0)

			checkpnt.Check("90res", minor+10)
			return
		}

		// f4(x, y, z, s) solves the same system as f4_no_ir, but applies
		// iterative refinement.

		if iters == 0 {
			if refinement > 0 || solopts.Debug {
				wx = c.Copy()
				wy = b.Copy()
				wz = z.Copy()
				ws = s.Copy()
				checkpnt.AddVerifiable("wx", wx)
				checkpnt.AddMatrixVar("ws", ws)
				checkpnt.AddMatrixVar("wz", wz)
			}
			if refinement > 0 {
				wx2 = c.Copy()
				wy2 = b.Copy()
				wz2 = matrix.FloatZeros(mnl+cdim, 1)
				ws2 = matrix.FloatZeros(mnl+cdim, 1)
				checkpnt.AddVerifiable("wx2", wx2)
				checkpnt.AddMatrixVar("ws2", ws2)
				checkpnt.AddMatrixVar("wz2", wz2)
			}
		}

		f4 := func(x, y MatrixVariable, z, s *matrix.FloatMatrix) (err error) {
			if refinement > 0 || solopts.Debug {
				mCopy(x, wx)
				mCopy(y, wy)
				blas.Copy(z, wz)
				blas.Copy(s, ws)
			}
			minor := checkpnt.MinorTop()
			checkpnt.Check("0_f4", minor+100)
			checkpnt.MinorPush(minor + 100)

			err = f4_no_ir(x, y, z, s)

			checkpnt.MinorPop()
			checkpnt.Check("1_f4", minor+200)
			for i := 0; i < refinement; i++ {
				mCopy(wx, wx2)
				mCopy(wy, wy2)
				blas.Copy(wz, wz2)
				blas.Copy(ws, ws2)

				checkpnt.Check("2_f4", minor+(1+i)*200)
				checkpnt.MinorPush(minor + (1+i)*200)

				res(x, y, z, s, wx2, wy2, wz2, ws2)
				checkpnt.MinorPop()
				checkpnt.Check("3_f4", minor+(1+i)*200+100)

				err = f4_no_ir(wx2, wy2, wz2, ws2)
				checkpnt.MinorPop()
				checkpnt.Check("4_f4", minor+(1+i)*200+199)
				wx2.Axpy(x, 1.0)
				wy2.Axpy(y, 1.0)
				blas.AxpyFloat(wz2, z, 1.0)
				blas.AxpyFloat(ws2, s, 1.0)
			}
			if solopts.Debug {
				res(x, y, z, s, wx, wy, wz, ws)
				fmt.Printf("KKT residuals:\n")
			}
			return
		}

		sigma, eta = 0.0, 0.0

		for i := 0; i < 2; i++ {
			minor := (i + 2) * 1000
			checkpnt.MinorPush(minor)
			checkpnt.Check("loop01", minor)

			// Solve
			//
			//     [ 0     ]   [ H  A' GG' ] [ dx        ]
			//     [ 0     ] + [ A  0  0   ] [ dy        ] = -(1 - eta)*r
			//     [ W'*ds ]   [ GG 0  0   ] [ W^{-1}*dz ]
			//
			//     lmbda o (dz + ds) = -lmbda o lmbda + sigma*mu*e.
			//

			mu = gap / float64(mnl+dims.Sum("l", "s")+len(dims.At("q")))
			blas.ScalFloat(ds, 0.0)
			blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", mnl + dims.Sum("l", "q")})

			ind = mnl + dims.At("l")[0]
			iset := matrix.MakeIndexSet(0, ind, 1)
			ds.Add(sigma*mu, iset...)
			for _, m := range dims.At("q") {
				ds.Add(sigma*mu, ind)
				ind += m
			}
			ind2 := ind
			for _, m := range dims.At("s") {
				blas.AxpyFloat(lmbdasq, ds, -1.0, &la.IOpt{"n", m}, &la.IOpt{"offsetx", ind2},
					&la.IOpt{"offsety", ind}, &la.IOpt{"incy", m + 1})
				ds.Add(sigma*mu, matrix.MakeIndexSet(ind, ind+m*m, m+1)...)
				ind += m * m
				ind2 += m
			}

			dx.Scal(0.0)
			rx.Axpy(dx, -1.0+eta)
			dy.Scal(0.0)
			ry.Axpy(dy, -1.0+eta)
			dz.Scale(0.0)
			blas.AxpyFloat(rznl, dz, -1.0+eta)
			blas.AxpyFloat(rzl, dz, -1.0+eta, &la.IOpt{"offsety", mnl})
			//fmt.Printf("dx=\n%v\n", dx)
			//fmt.Printf("dz=\n%v\n", dz.ToString("%.7f"))
			//fmt.Printf("ds=\n%v\n", ds.ToString("%.7f"))

			checkpnt.Check("pref4", minor)
			checkpnt.MinorPush(minor)
			err = f4(dx, dy, dz, ds)
			if err != nil {
				if iters == 0 {
					s := fmt.Sprintf("Rank(A) < p or Rank([H(x); A; Df(x); G] < n (%s)", err)
					err = errors.New(s)
					return
				}
				msg := "Terminated (singular KKT matrix)."
				if solopts.ShowProgress {
					fmt.Printf(msg + "\n")
				}
				zl := matrix.FloatVector(z.FloatArray()[mnl:])
				sl := matrix.FloatVector(s.FloatArray()[mnl:])
				ind := dims.Sum("l", "q")
				for _, m := range dims.At("s") {
					symm(sl, m, ind)
					symm(zl, m, ind)
					ind += m * m
				}
				ts, _ = maxStep(s, dims, mnl, nil)
				tz, _ = maxStep(z, dims, mnl, nil)

				err = errors.New(msg)
				sol.Status = Unknown
				sol.Result = sets.NewFloatSet("x", "y", "znl", "zl", "snl", "sl")
				sol.Result.Set("x", x.Matrix())
				sol.Result.Set("y", y.Matrix())
				sol.Result.Set("znl", matrix.FloatVector(z.FloatArray()[:mnl]))
				sol.Result.Set("zl", zl)
				sol.Result.Set("sl", sl)
				sol.Result.Set("snl", matrix.FloatVector(s.FloatArray()[:mnl]))
				sol.Gap = gap
				sol.RelativeGap = relgap
				sol.PrimalObjective = pcost
				sol.DualObjective = dcost
				sol.PrimalInfeasibility = pres
				sol.DualInfeasibility = dres
				sol.PrimalSlack = -ts
				sol.DualSlack = -tz
				return
			}

			checkpnt.MinorPop()
			checkpnt.Check("postf4", minor+400)

			// Inner product ds'*dz and unscaled steps are needed in the
			// line search.
			dsdz = sdot(ds, dz, dims, mnl)
			blas.Copy(dz, dz2)
			scale(dz2, W, false, true)
			blas.Copy(ds, ds2)
			scale(ds2, W, true, false)

			checkpnt.Check("dsdz", minor+400)

			// Maximum steps to boundary.
			//
			// Also compute the eigenvalue decomposition of 's' blocks in
			// ds, dz.  The eigenvectors Qs, Qz are stored in ds, dz.
			// The eigenvalues are stored in sigs, sigz.

			scale2(lmbda, ds, dims, mnl, false)
			ts, _ = maxStep(ds, dims, mnl, sigs)
			scale2(lmbda, dz, dims, mnl, false)
			tz, _ = maxStep(dz, dims, mnl, sigz)
			t := maxvec([]float64{0.0, ts, tz})
			if t == 0 {
				step = 1.0
			} else {
				step = math.Min(1.0, STEP/t)
			}

			checkpnt.Check("maxstep", minor+400)

			var newDf MatrixVarDf = nil
			var newf MatrixVariable = nil

			// Backtrack until newx is in domain of f.
			backtrack := true
			for backtrack {
				mCopy(x, newx)
				dx.Axpy(newx, step)
				newf, newDf, err = F.F1(newx)
				if newf != nil {
					backtrack = false
				} else {
					step *= BETA
				}
			}

			// Merit function
			//
			//     phi = theta1 * gap + theta2 * norm(rx) +
			//         theta3 * norm(rznl)
			//
			// and its directional derivative dphi.

			phi = theta1*gap + theta2*resx + theta3*resznl
			if i == 0 {
				dphi = -phi
			} else {
				dphi = -theta1*(1-sigma)*gap - theta2*(1-eta)*resx - theta3*(1-eta)*resznl
			}

			var newfDf func(x, y MatrixVariable, a, b float64, trans la.Option) error

			// Line search
			backtrack = true
			for backtrack {
				mCopy(x, newx)
				dx.Axpy(newx, step)
				mCopy(y, newy)
				dy.Axpy(newy, step)
				blas.Copy(z, newz)
				blas.AxpyFloat(dz2, newz, step)
				blas.Copy(s, news)
				blas.AxpyFloat(ds2, news, step)

				newf, newDf, err = F.F1(newx)
				newfDf = func(u, v MatrixVariable, a, b float64, trans la.Option) error {
					return newDf.Df(u, v, a, b, trans)
				}

				// newrx = c + A'*newy + newDf'*newz[:mnl] + G'*newz[mnl:]
				newz_mnl := matrix.FloatVector(newz.FloatArray()[:mnl])
				newz_ml := matrix.FloatVector(newz.FloatArray()[mnl:])
				//blas.Copy(c, newrx)
				//c.CopyTo(newrx)
				mCopy(c, newrx)
				fA(newy, newrx, 1.0, 1.0, la.OptTrans)
				newfDf(&matrixVar{newz_mnl}, newrx, 1.0, 1.0, la.OptTrans)
				fG(&matrixVar{newz_ml}, newrx, 1.0, 1.0, la.OptTrans)
				newresx = math.Sqrt(newrx.Dot(newrx))

				// newrznl = news[:mnl] + newf
				news_mnl := matrix.FloatVector(news.FloatArray()[:mnl])
				//news_ml := matrix.FloatVector(news.FloatArray()[mnl:])
				blas.Copy(news_mnl, newrznl)
				blas.AxpyFloat(newf.Matrix(), newrznl, 1.0)
				newresznl = blas.Nrm2Float(newrznl)

				newgap = (1.0-(1.0-sigma)*step)*gap + step*step*dsdz
				newphi = theta1*newgap + theta2*newresx + theta3*newresznl

				if i == 0 {
					if newgap <= (1.0-ALPHA*step)*gap &&
						(relaxed_iters > 0 && relaxed_iters < MAX_RELAXED_ITERS ||
							newphi <= phi+ALPHA*step*dphi) {
						backtrack = false
						sigma = math.Min(newgap/gap, math.Pow((newgap/gap), EXPON))
						//fmt.Printf("break 1: sigma=%.7f\n", sigma)
						eta = 0.0
					} else {
						step *= BETA
					}
				} else {
					if relaxed_iters == -1 || (relaxed_iters == 0 && MAX_RELAXED_ITERS == 0) {
						// Do a standard line search.
						if newphi <= phi+ALPHA*step*dphi {
							relaxed_iters = 0
							backtrack = false
							//fmt.Printf("break 2 : newphi=%.7f\n", newphi)
						} else {
							step *= BETA
						}
					} else if relaxed_iters == 0 && relaxed_iters < MAX_RELAXED_ITERS {
						if newphi <= phi+ALPHA*step*dphi {
							// Relaxed l.s. gives sufficient decrease.
							relaxed_iters = 0
						} else {
							// Save state.
							phi0, dphi0, gap0 = phi, dphi, gap
							step0 = step

							blas.Copy(W.At("dnl")[0], W0.At("dnl")[0])
							blas.Copy(W.At("dnli")[0], W0.At("dnli")[0])
							blas.Copy(W.At("d")[0], W0.At("d")[0])
							blas.Copy(W.At("di")[0], W0.At("di")[0])
							blas.Copy(W.At("beta")[0], W0.At("beta")[0])
							for k, _ := range dims.At("q") {
								blas.Copy(W.At("v")[k], W0.At("v")[k])
							}
							for k, _ := range dims.At("s") {
								blas.Copy(W.At("r")[k], W0.At("r")[k])
								blas.Copy(W.At("rti")[k], W0.At("rti")[k])
							}
							mCopy(x, x0)
							mCopy(y, y0)
							mCopy(dx, dx0)
							mCopy(dy, dy0)
							blas.Copy(s, s0)
							blas.Copy(z, z0)
							blas.Copy(ds, ds0)
							blas.Copy(dz, dz0)
							blas.Copy(ds2, ds20)
							blas.Copy(dz2, dz20)
							blas.Copy(lmbda, lmbda0)
							blas.Copy(lmbdasq, lmbdasq0) // ???
							mCopy(rx, rx0)
							mCopy(ry, ry0)
							blas.Copy(rznl, rznl0)
							blas.Copy(rzl, rzl0)
							dsdz0 = dsdz
							sigma0, eta0 = sigma, eta
							relaxed_iters = 1
						}
						backtrack = false
						//fmt.Printf("break 3 : newphi=%.7f\n", newphi)

					} else if relaxed_iters >= 0 && relaxed_iters < MAX_RELAXED_ITERS &&
						MAX_RELAXED_ITERS > 0 {
						if newphi <= phi0+ALPHA*step0*dphi0 {
							// Relaxed l.s. gives sufficient decrease.
							relaxed_iters = 0
						} else {
							// Relaxed line search
							relaxed_iters += 1
						}
						backtrack = false
						//fmt.Printf("break 4 : newphi=%.7f\n", newphi)

					} else if relaxed_iters == MAX_RELAXED_ITERS && MAX_RELAXED_ITERS > 0 {
						if newphi <= phi0+ALPHA*step0*dphi0 {
							// Series of relaxed line searches ends
							// with sufficient decrease w.r.t. phi0.
							backtrack = false
							relaxed_iters = 0
							//fmt.Printf("break 5 : newphi=%.7f\n", newphi)
						} else if newphi >= phi0 {
							// Resume last saved line search
							phi, dphi, gap = phi0, dphi0, gap0
							step = step0
							blas.Copy(W0.At("dnl")[0], W.At("dnl")[0])
							blas.Copy(W0.At("dnli")[0], W.At("dnli")[0])
							blas.Copy(W0.At("d")[0], W.At("d")[0])
							blas.Copy(W0.At("di")[0], W.At("di")[0])
							blas.Copy(W0.At("beta")[0], W.At("beta")[0])
							for k, _ := range dims.At("q") {
								blas.Copy(W0.At("v")[k], W.At("v")[k])
							}
							for k, _ := range dims.At("s") {
								blas.Copy(W0.At("r")[k], W.At("r")[k])
								blas.Copy(W0.At("rti")[k], W.At("rti")[k])
							}
							mCopy(x, x0)
							mCopy(y, y0)
							mCopy(dx, dx0)
							mCopy(dy, dy0)
							blas.Copy(s, s0)
							blas.Copy(z, z0)
							blas.Copy(ds2, ds20)
							blas.Copy(dz2, dz20)
							blas.Copy(lmbda, lmbda0)
							blas.Copy(lmbdasq, lmbdasq0) // ???
							mCopy(rx, rx0)
							mCopy(ry, ry0)
							blas.Copy(rznl, rznl0)
							blas.Copy(rzl, rzl0)
							dsdz = dsdz0
							sigma, eta = sigma0, eta0
							relaxed_iters = -1

						} else if newphi <= phi+ALPHA*step*dphi {
							// Series of relaxed line searches ends
							// with sufficient decrease w.r.t. phi0.
							backtrack = false
							relaxed_iters = -1
							//fmt.Printf("break 6 : newphi=%.7f\n", newphi)
						}
					}
				}
			} // end of line search

			checkpnt.Check("eol", minor+900)

		} // end for [0,1]

		// Update x, y
		dx.Axpy(x, step)
		dy.Axpy(y, step)
		checkpnt.Check("updatexy", 5000)

		// Replace nonlinear, 'l' and 'q' blocks of ds and dz with the
		// updated variables in the current scaling.
		// Replace 's' blocks of ds and dz with the factors Ls, Lz in a
		// factorization Ls*Ls', Lz*Lz' of the updated variables in the
		// current scaling.

		// ds := e + step*ds for nonlinear, 'l' and 'q' blocks.
		// dz := e + step*dz for nonlinear, 'l' and 'q' blocks.
		blas.ScalFloat(ds, step, &la.IOpt{"n", mnl + dims.Sum("l", "q")})
		blas.ScalFloat(dz, step, &la.IOpt{"n", mnl + dims.Sum("l", "q")})
		ind := mnl + dims.At("l")[0]
		is := matrix.MakeIndexSet(0, ind, 1)
		ds.Add(1.0, is...)
		dz.Add(1.0, is...)
		for _, m := range dims.At("q") {
			ds.SetIndex(ind, 1.0+ds.GetIndex(ind))
			dz.SetIndex(ind, 1.0+dz.GetIndex(ind))
			ind += m
		}
		checkpnt.Check("updatedsdz", 5100)

		// ds := H(lambda)^{-1/2} * ds and dz := H(lambda)^{-1/2} * dz.
		//
		// This replaces the 'l' and 'q' components of ds and dz with the
		// updated variables in the current scaling.
		// The 's' components of ds and dz are replaced with
		//
		// diag(lmbda_k)^{1/2} * Qs * diag(lmbda_k)^{1/2}
		// diag(lmbda_k)^{1/2} * Qz * diag(lmbda_k)^{1/2}
		scale2(lmbda, ds, dims, mnl, true)
		scale2(lmbda, dz, dims, mnl, true)

		checkpnt.Check("scale2", 5200)

		// sigs := ( e + step*sigs ) ./ lambda for 's' blocks.
		// sigz := ( e + step*sigz ) ./ lambda for 's' blocks.
		blas.ScalFloat(sigs, step)
		blas.ScalFloat(sigz, step)
		sigs.Add(1.0)
		sigz.Add(1.0)
		sdimsum := dims.Sum("s")
		qdimsum := dims.Sum("l", "q")
		blas.TbsvFloat(lmbda, sigs, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0},
			&la.IOpt{"lda", 1}, &la.IOpt{"offseta", mnl + qdimsum})
		blas.TbsvFloat(lmbda, sigz, &la.IOpt{"n", sdimsum}, &la.IOpt{"k", 0},
			&la.IOpt{"lda", 1}, &la.IOpt{"offseta", mnl + qdimsum})

		checkpnt.Check("sigs", 5300)

		ind2 := mnl + qdimsum
		ind3 := 0
		sdims := dims.At("s")

		for k := 0; k < len(sdims); k++ {
			m := sdims[k]
			for i := 0; i < m; i++ {
				a := math.Sqrt(sigs.GetIndex(ind3 + i))
				blas.ScalFloat(ds, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m})
				a = math.Sqrt(sigz.GetIndex(ind3 + i))
				blas.ScalFloat(dz, a, &la.IOpt{"offset", ind2 + m*i}, &la.IOpt{"n", m})
			}
			ind2 += m * m
			ind3 += m
		}

		checkpnt.Check("scaling", 5400)
		err = updateScaling(W, lmbda, ds, dz)
		checkpnt.Check("postscaling", 5500)

		// Unscale s, z, tau, kappa (unscaled variables are used only to
		// compute feasibility residuals).
		ind = mnl + dims.Sum("l", "q")
		ind2 = ind
		blas.Copy(lmbda, s, &la.IOpt{"n", ind})
		for _, m := range dims.At("s") {
			blas.ScalFloat(s, 0.0, &la.IOpt{"offset", ind2})
			blas.Copy(lmbda, s, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2},
				&la.IOpt{"n", m}, &la.IOpt{"incy", m + 1})
			ind += m
			ind2 += m * m
		}
		scale(s, W, true, false)
		checkpnt.Check("unscale_s", 5600)

		ind = mnl + dims.Sum("l", "q")
		ind2 = ind
		blas.Copy(lmbda, z, &la.IOpt{"n", ind})
		for _, m := range dims.At("s") {
			blas.ScalFloat(z, 0.0, &la.IOpt{"offset", ind2})
			blas.Copy(lmbda, z, &la.IOpt{"offsetx", ind}, &la.IOpt{"offsety", ind2},
				&la.IOpt{"n", m}, &la.IOpt{"incy", m + 1})
			ind += m
			ind2 += m * m
		}
		scale(z, W, false, true)
		checkpnt.Check("unscale_z", 5700)

		gap = blas.DotFloat(lmbda, lmbda)

	}
	return
}