func main() { fd, _ := os.OpenFile("log.txt", os.O_RDWR|os.O_CREATE, 0666) defer fd.Close() log.SetOutput(fd) // Draw a rounded corner that is one pixel wide. r := ft.NewRast(50, 50) r.Start(p(5, 5)) r.Add1(p(5, 25)) r.Add2(p(5, 45), p(25, 45)) r.Add1(p(45, 45)) r.Add1(p(45, 44)) r.Add1(p(26, 44)) r.Add2(p(6, 44), p(6, 24)) r.Add1(p(6, 5)) r.Add1(p(5, 5)) // Rasterize that curve multiple times at different gammas. const ( w = 600 h = 200 ) rgba := image.NewRGBA(image.Rect(0, 0, w, h)) draw.Draw(rgba, image.Rect(0, 0, w, h/2), image.Black, image.ZP, draw.Src) draw.Draw(rgba, image.Rect(0, h/2, w, h), image.White, image.ZP, draw.Src) mask := image.NewAlpha(image.Rect(0, 0, 50, 50)) drawer := ft.NewAlphaSrcDrawer(mask) gammas := []float64{1.0 / 10.0, 1.0 / 3.0, 1.0 / 2.0, 2.0 / 3.0, 4.0 / 5.0, 1.0, 5.0 / 4.0, 3.0 / 2.0, 2.0, 3.0, 10.0} for i, g := range gammas { draw.Draw(mask, mask.Bounds(), image.Transparent, image.ZP, draw.Src) r.Rast(ft.NewGammaCorrectionDrawer(drawer, g)) x, y := 50*i+25, 25 draw.DrawMask(rgba, image.Rect(x, y, x+50, y+50), image.White, image.ZP, mask, image.ZP, draw.Over) y += 100 draw.DrawMask(rgba, image.Rect(x, y, x+50, y+50), image.Black, image.ZP, mask, image.ZP, draw.Over) } // Save that RGBA image to disk. f, err := os.Create("out.png") if err != nil { log.Println(err) os.Exit(1) } defer f.Close() b := bufio.NewWriter(f) err = png.Encode(b, rgba) if err != nil { log.Println(err) os.Exit(1) } err = b.Flush() if err != nil { log.Println(err) os.Exit(1) } fmt.Println("Wrote out.png OK.") }
func main() { const ( n = 17 r = 256 * 80 ) s := ft.Fix32(r * math.Sqrt(2) / 2) t := ft.Fix32(r * math.Tan(math.Pi/8)) m := image.NewRGBA(image.Rect(0, 0, 800, 600)) draw.Draw(m, m.Bounds(), image.NewUniform(color.RGBA{63, 63, 63, 255}), image.ZP, draw.Src) mp := ft.NewRGBADrawer(m) mp.SetColor(image.Black) z := ft.NewRast(800, 600) for i := 0; i < n; i++ { cx := ft.Fix32(25600 + 51200*(i%4)) cy := ft.Fix32(2560 + 32000*(i/4)) c := ft.RastPoint{X: cx, Y: cy} theta := math.Pi * (0.5 + 0.5*float64(i)/(n-1)) dx := ft.Fix32(r * math.Cos(theta)) dy := ft.Fix32(r * math.Sin(theta)) d := ft.RastPoint{X: dx, Y: dy} // Draw a quarter-circle approximated by two quadratic segments, // with each segment spanning 45 degrees. z.Start(c) z.Add1(c.Add(ft.RastPoint{X: r, Y: 0})) z.Add2(c.Add(ft.RastPoint{X: r, Y: t}), c.Add(ft.RastPoint{X: s, Y: s})) z.Add2(c.Add(ft.RastPoint{X: t, Y: r}), c.Add(ft.RastPoint{X: 0, Y: r})) // Add another quadratic segment whose angle ranges between 0 and 90 degrees. // For an explanation of the magic constants 22, 150, 181 and 256, read the // comments in the freetype/ft package. dot := 256 * d.Dot(ft.RastPoint{X: 0, Y: r}) / (r * r) multiple := ft.Fix32(150 - 22*(dot-181)/(256-181)) z.Add2(c.Add(ft.RastPoint{X: dx, Y: r + dy}.Mul(multiple)), c.Add(d)) // Close the curve. z.Add1(c) } z.Rast(mp) for i := 0; i < n; i++ { cx := ft.Fix32(25600 + 51200*(i%4)) cy := ft.Fix32(2560 + 32000*(i/4)) for j := 0; j < n; j++ { theta := math.Pi * float64(j) / (n - 1) dx := ft.Fix32(r * math.Cos(theta)) dy := ft.Fix32(r * math.Sin(theta)) m.Set(int((cx+dx)/256), int((cy+dy)/256), color.RGBA{255, 255, 0, 255}) } } // Save that RGBA image to disk. f, err := os.Create("round.png") if err != nil { log.Println(err) os.Exit(1) } defer f.Close() b := bufio.NewWriter(f) err = png.Encode(b, m) if err != nil { log.Println(err) os.Exit(1) } err = b.Flush() if err != nil { log.Println(err) os.Exit(1) } fmt.Println("Wrote round.png OK.") }