// Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var p1 *obj.Prog var p2 *obj.Prog for p := firstp; p != nil; p = p.Link { if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } // check is // CMP arg, $0 // JNE 2(PC) (likely) // MOV AX, 0 p1 = gc.Ctxt.NewProg() p2 = gc.Ctxt.NewProg() gc.Clearp(p1) gc.Clearp(p2) p1.Link = p2 p2.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p2.Lineno = p.Lineno p1.Pc = 9999 p2.Pc = 9999 p.As = int16(cmpptr) p.To.Type = obj.TYPE_CONST p.To.Offset = 0 p1.As = x86.AJNE p1.From.Type = obj.TYPE_CONST p1.From.Offset = 1 // likely p1.To.Type = obj.TYPE_BRANCH p1.To.Val = p2.Link // crash by write to memory address 0. // if possible, since we know arg is 0, use 0(arg), // which will be shorter to encode than plain 0. p2.As = x86.AMOVL p2.From.Type = obj.TYPE_REG p2.From.Reg = x86.REG_AX if regtyp(&p.From) { p2.To.Type = obj.TYPE_MEM p2.To.Reg = p.From.Reg } else { p2.To.Type = obj.TYPE_MEM p2.To.Reg = x86.REG_NONE } p2.To.Offset = 0 } }
func rewriteToPcrel(ctxt *obj.Link, p *obj.Prog) { // RegTo2 is set on the instructions we insert here so they don't get // processed twice. if p.RegTo2 != 0 { return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP { return } // Any Prog (aside from the above special cases) with an Addr with Name == // NAME_EXTERN, NAME_STATIC or NAME_GOTREF has a CALL __x86.get_pc_thunk.cx // inserted before it. isName := func(a *obj.Addr) bool { if a.Sym == nil || (a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR) || a.Reg != 0 { return false } if a.Sym.Type == obj.STLSBSS { return false } return a.Name == obj.NAME_EXTERN || a.Name == obj.NAME_STATIC || a.Name == obj.NAME_GOTREF } if isName(&p.From) && p.From.Type == obj.TYPE_ADDR { // Handle things like "MOVL $sym, (SP)" or "PUSHL $sym" by rewriting // to "MOVL $sym, CX; MOVL CX, (SP)" or "MOVL $sym, CX; PUSHL CX" // respectively. if p.To.Type != obj.TYPE_REG { q := obj.Appendp(ctxt, p) q.As = p.As q.From.Type = obj.TYPE_REG q.From.Reg = REG_CX q.To = p.To p.As = AMOVL p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX p.To.Sym = nil p.To.Name = obj.NAME_NONE } } if !isName(&p.From) && !isName(&p.To) && (p.From3 == nil || !isName(p.From3)) { return } q := obj.Appendp(ctxt, p) q.RegTo2 = 1 r := obj.Appendp(ctxt, q) r.RegTo2 = 1 q.As = obj.ACALL q.To.Sym = obj.Linklookup(ctxt, "__x86.get_pc_thunk.cx", 0) q.To.Type = obj.TYPE_MEM q.To.Name = obj.NAME_EXTERN q.To.Sym.Local = true r.As = p.As r.Scond = p.Scond r.From = p.From r.From3 = p.From3 r.Reg = p.Reg r.To = p.To obj.Nopout(p) }
func Prog(as int) *obj.Prog { var p *obj.Prog if as == obj.ADATA || as == obj.AGLOBL { if ddumped != 0 { Fatalf("already dumped data") } if dpc == nil { dpc = Ctxt.NewProg() dfirst = dpc } p = dpc dpc = Ctxt.NewProg() p.Link = dpc } else { p = Pc Pc = Ctxt.NewProg() Clearp(Pc) p.Link = Pc } if lineno == 0 { if Debug['K'] != 0 { Warn("prog: line 0") } } p.As = int16(as) p.Lineno = lineno return p }
// ARMConditionCodes handles the special condition code situation for the ARM. // It returns a boolean to indicate success; failure means cond was unrecognized. func ARMConditionCodes(prog *obj.Prog, cond string) bool { if cond == "" { return true } bits, ok := ParseARMCondition(cond) if !ok { return false } /* hack to make B.NE etc. work: turn it into the corresponding conditional */ if prog.As == arm.AB { prog.As = int16(bcode[(bits^arm.C_SCOND_XOR)&0xf]) bits = (bits &^ 0xf) | arm.C_SCOND_NONE } prog.Scond = bits return true }
// Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var reg int var p1 *obj.Prog for p := firstp; p != nil; p = p.Link { if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } if p.From.Type != obj.TYPE_REG { gc.Fatalf("invalid nil check %v", p) } reg = int(p.From.Reg) // check is // CMP arg, $0 // MOV.EQ arg, 0(arg) p1 = gc.Ctxt.NewProg() gc.Clearp(p1) p1.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p1.Pc = 9999 p1.As = arm.AMOVW p1.From.Type = obj.TYPE_REG p1.From.Reg = int16(reg) p1.To.Type = obj.TYPE_MEM p1.To.Reg = int16(reg) p1.To.Offset = 0 p1.Scond = arm.C_SCOND_EQ p.As = arm.ACMP p.From.Type = obj.TYPE_CONST p.From.Reg = 0 p.From.Offset = 0 p.Reg = int16(reg) } }
// Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var p1 *obj.Prog for p := (*obj.Prog)(firstp); p != nil; p = p.Link { if gc.Debug_checknil != 0 && gc.Ctxt.Debugvlog != 0 { fmt.Printf("expandchecks: %v\n", p) } if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } if p.From.Type != obj.TYPE_REG { gc.Fatalf("invalid nil check %v\n", p) } // check is // CBNZ arg, 2(PC) // MOVD ZR, 0(arg) p1 = gc.Ctxt.NewProg() gc.Clearp(p1) p1.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p1.Pc = 9999 p.As = arm64.ACBNZ p.To.Type = obj.TYPE_BRANCH p.To.Val = p1.Link // crash by write to memory address 0. p1.As = arm64.AMOVD p1.From.Type = obj.TYPE_REG p1.From.Reg = arm64.REGZERO p1.To.Type = obj.TYPE_MEM p1.To.Reg = p.From.Reg p1.To.Offset = 0 } }
func peep(firstp *obj.Prog) { g := gc.Flowstart(firstp, nil) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r1 *gc.Flow var p1 *obj.Prog var r *gc.Flow var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AADDL, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := g.Start; r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } gc.Flowend(g) }
// Rewrite p, if necessary, to access global data via the global offset table. func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) { var add, lea, mov, reg int16 if p.Mode == 64 { add = AADDQ lea = ALEAQ mov = AMOVQ reg = REG_R15 } else { add = AADDL lea = ALEAL mov = AMOVL reg = REG_CX } if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO { // ADUFFxxx $offset // becomes // $MOV runtime.duffxxx@GOT, $reg // $ADD $offset, $reg // CALL $reg var sym *obj.LSym if p.As == obj.ADUFFZERO { sym = obj.Linklookup(ctxt, "runtime.duffzero", 0) } else { sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0) } offset := p.To.Offset p.As = mov p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF p.From.Sym = sym p.To.Type = obj.TYPE_REG p.To.Reg = reg p.To.Offset = 0 p.To.Sym = nil p1 := obj.Appendp(ctxt, p) p1.As = add p1.From.Type = obj.TYPE_CONST p1.From.Offset = offset p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2 := obj.Appendp(ctxt, p1) p2.As = obj.ACALL p2.To.Type = obj.TYPE_REG p2.To.Reg = reg } // We only care about global data: NAME_EXTERN means a global // symbol in the Go sense, and p.Sym.Local is true for a few // internally defined symbols. if p.As == lea && p.From.Type == obj.TYPE_MEM && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local { // $LEA sym, Rx becomes $MOV $sym, Rx which will be rewritten below p.As = mov p.From.Type = obj.TYPE_ADDR } if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local { // $MOV $sym, Rx becomes $MOV sym@GOT, Rx // $MOV $sym+<off>, Rx becomes $MOV sym@GOT, Rx; $ADD <off>, Rx // On 386 only, more complicated things like PUSHL $sym become $MOV sym@GOT, CX; PUSHL CX cmplxdest := false pAs := p.As var dest obj.Addr if p.To.Type != obj.TYPE_REG || pAs != mov { if p.Mode == 64 { ctxt.Diag("do not know how to handle LEA-type insn to non-register in %v with -dynlink", p) } cmplxdest = true dest = p.To p.As = mov p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX p.To.Sym = nil p.To.Name = obj.NAME_NONE } p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF q := p if p.From.Offset != 0 { q = obj.Appendp(ctxt, p) q.As = add q.From.Type = obj.TYPE_CONST q.From.Offset = p.From.Offset q.To = p.To p.From.Offset = 0 } if cmplxdest { q = obj.Appendp(ctxt, q) q.As = pAs q.To = dest q.From.Type = obj.TYPE_REG q.From.Reg = REG_CX } } if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN { ctxt.Diag("don't know how to handle %v with -dynlink", p) } var source *obj.Addr // MOVx sym, Ry becomes $MOV sym@GOT, R15; MOVx (R15), Ry // MOVx Ry, sym becomes $MOV sym@GOT, R15; MOVx Ry, (R15) // An addition may be inserted between the two MOVs if there is an offset. if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local { if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local { ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p) } source = &p.From } else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local { source = &p.To } else { return } if p.As == obj.ACALL { // When dynlinking on 386, almost any call might end up being a call // to a PLT, so make sure the GOT pointer is loaded into BX. // RegTo2 is set on the replacement call insn to stop it being // processed when it is in turn passed to progedit. if p.Mode == 64 || (p.To.Sym != nil && p.To.Sym.Local) || p.RegTo2 != 0 { return } p1 := obj.Appendp(ctxt, p) p2 := obj.Appendp(ctxt, p1) p1.As = ALEAL p1.From.Type = obj.TYPE_MEM p1.From.Name = obj.NAME_STATIC p1.From.Sym = obj.Linklookup(ctxt, "_GLOBAL_OFFSET_TABLE_", 0) p1.To.Type = obj.TYPE_REG p1.To.Reg = REG_BX p2.As = p.As p2.Scond = p.Scond p2.From = p.From p2.From3 = p.From3 p2.Reg = p.Reg p2.To = p.To // p.To.Type was set to TYPE_BRANCH above, but that makes checkaddr // in ../pass.go complain, so set it back to TYPE_MEM here, until p2 // itself gets passed to progedit. p2.To.Type = obj.TYPE_MEM p2.RegTo2 = 1 obj.Nopout(p) return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ARET || p.As == obj.AJMP { return } if source.Type != obj.TYPE_MEM { ctxt.Diag("don't know how to handle %v with -dynlink", p) } p1 := obj.Appendp(ctxt, p) p2 := obj.Appendp(ctxt, p1) p1.As = mov p1.From.Type = obj.TYPE_MEM p1.From.Sym = source.Sym p1.From.Name = obj.NAME_GOTREF p1.To.Type = obj.TYPE_REG p1.To.Reg = reg p2.As = p.As p2.From = p.From p2.To = p.To if p.From.Name == obj.NAME_EXTERN { p2.From.Reg = reg p2.From.Name = obj.NAME_NONE p2.From.Sym = nil } else if p.To.Name == obj.NAME_EXTERN { p2.To.Reg = reg p2.To.Name = obj.NAME_NONE p2.To.Sym = nil } else { return } obj.Nopout(p) }
func preprocess(ctxt *obj.Link, cursym *obj.LSym) { ctxt.Cursym = cursym if cursym.Text == nil || cursym.Text.Link == nil { return } p := cursym.Text textstksiz := p.To.Offset aoffset := int32(textstksiz) cursym.Args = p.To.Val.(int32) cursym.Locals = int32(textstksiz) /* * find leaf subroutines * strip NOPs * expand RET */ ctxt.Bso.Flush() q := (*obj.Prog)(nil) var q1 *obj.Prog for p := cursym.Text; p != nil; p = p.Link { switch p.As { case obj.ATEXT: p.Mark |= LEAF case obj.ARET: break case obj.ANOP: q1 = p.Link q.Link = q1 /* q is non-nop */ q1.Mark |= p.Mark continue case ABL, obj.ADUFFZERO, obj.ADUFFCOPY: cursym.Text.Mark &^= LEAF fallthrough case ACBNZ, ACBZ, ACBNZW, ACBZW, ATBZ, ATBNZ, AB, ABEQ, ABNE, ABCS, ABHS, ABCC, ABLO, ABMI, ABPL, ABVS, ABVC, ABHI, ABLS, ABGE, ABLT, ABGT, ABLE, AADR, /* strange */ AADRP: q1 = p.Pcond if q1 != nil { for q1.As == obj.ANOP { q1 = q1.Link p.Pcond = q1 } } break } q = p } var o int var q2 *obj.Prog var retjmp *obj.LSym for p := cursym.Text; p != nil; p = p.Link { o = int(p.As) switch o { case obj.ATEXT: cursym.Text = p if textstksiz < 0 { ctxt.Autosize = 0 } else { ctxt.Autosize = int32(textstksiz + 8) } if (cursym.Text.Mark&LEAF != 0) && ctxt.Autosize <= 8 { ctxt.Autosize = 0 } else if ctxt.Autosize&(16-1) != 0 { // The frame includes an LR. // If the frame size is 8, it's only an LR, // so there's no potential for breaking references to // local variables by growing the frame size, // because there are no local variables. // But otherwise, if there is a non-empty locals section, // the author of the code is responsible for making sure // that the frame size is 8 mod 16. if ctxt.Autosize == 8 { ctxt.Autosize += 8 cursym.Locals += 8 } else { ctxt.Diag("%v: unaligned frame size %d - must be 8 mod 16 (or 0)", p, ctxt.Autosize-8) } } p.To.Offset = int64(ctxt.Autosize) - 8 if ctxt.Autosize == 0 && !(cursym.Text.Mark&LEAF != 0) { if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "save suppressed in: %s\n", cursym.Text.From.Sym.Name) } ctxt.Bso.Flush() cursym.Text.Mark |= LEAF } if !(p.From3.Offset&obj.NOSPLIT != 0) { p = stacksplit(ctxt, p, ctxt.Autosize) // emit split check } aoffset = ctxt.Autosize if aoffset > 0xF0 { aoffset = 0xF0 } if cursym.Text.Mark&LEAF != 0 { cursym.Leaf = 1 if ctxt.Autosize == 0 { break } aoffset = 0 } q = p if ctxt.Autosize > aoffset { q = ctxt.NewProg() q.As = ASUB q.Lineno = p.Lineno q.From.Type = obj.TYPE_CONST q.From.Offset = int64(ctxt.Autosize) - int64(aoffset) q.To.Type = obj.TYPE_REG q.To.Reg = REGSP q.Spadj = int32(q.From.Offset) q.Link = p.Link p.Link = q if cursym.Text.Mark&LEAF != 0 { break } } q1 = ctxt.NewProg() q1.As = AMOVD q1.Lineno = p.Lineno q1.From.Type = obj.TYPE_REG q1.From.Reg = REGLINK q1.To.Type = obj.TYPE_MEM q1.Scond = C_XPRE q1.To.Offset = int64(-aoffset) q1.To.Reg = REGSP q1.Link = q.Link q1.Spadj = aoffset q.Link = q1 if cursym.Text.From3.Offset&obj.WRAPPER != 0 { // if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame // // MOV g_panic(g), R1 // CMP ZR, R1 // BEQ end // MOV panic_argp(R1), R2 // ADD $(autosize+8), RSP, R3 // CMP R2, R3 // BNE end // ADD $8, RSP, R4 // MOVD R4, panic_argp(R1) // end: // NOP // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not a ARM64 NOP: it encodes to 0 instruction bytes. q = q1 q = obj.Appendp(ctxt, q) q.As = AMOVD q.From.Type = obj.TYPE_MEM q.From.Reg = REGG q.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic q.To.Type = obj.TYPE_REG q.To.Reg = REG_R1 q = obj.Appendp(ctxt, q) q.As = ACMP q.From.Type = obj.TYPE_REG q.From.Reg = REGZERO q.Reg = REG_R1 q = obj.Appendp(ctxt, q) q.As = ABEQ q.To.Type = obj.TYPE_BRANCH q1 = q q = obj.Appendp(ctxt, q) q.As = AMOVD q.From.Type = obj.TYPE_MEM q.From.Reg = REG_R1 q.From.Offset = 0 // Panic.argp q.To.Type = obj.TYPE_REG q.To.Reg = REG_R2 q = obj.Appendp(ctxt, q) q.As = AADD q.From.Type = obj.TYPE_CONST q.From.Offset = int64(ctxt.Autosize) + 8 q.Reg = REGSP q.To.Type = obj.TYPE_REG q.To.Reg = REG_R3 q = obj.Appendp(ctxt, q) q.As = ACMP q.From.Type = obj.TYPE_REG q.From.Reg = REG_R2 q.Reg = REG_R3 q = obj.Appendp(ctxt, q) q.As = ABNE q.To.Type = obj.TYPE_BRANCH q2 = q q = obj.Appendp(ctxt, q) q.As = AADD q.From.Type = obj.TYPE_CONST q.From.Offset = 8 q.Reg = REGSP q.To.Type = obj.TYPE_REG q.To.Reg = REG_R4 q = obj.Appendp(ctxt, q) q.As = AMOVD q.From.Type = obj.TYPE_REG q.From.Reg = REG_R4 q.To.Type = obj.TYPE_MEM q.To.Reg = REG_R1 q.To.Offset = 0 // Panic.argp q = obj.Appendp(ctxt, q) q.As = obj.ANOP q1.Pcond = q q2.Pcond = q } case obj.ARET: nocache(p) if p.From.Type == obj.TYPE_CONST { ctxt.Diag("using BECOME (%v) is not supported!", p) break } retjmp = p.To.Sym p.To = obj.Addr{} if cursym.Text.Mark&LEAF != 0 { if ctxt.Autosize != 0 { p.As = AADD p.From.Type = obj.TYPE_CONST p.From.Offset = int64(ctxt.Autosize) p.To.Type = obj.TYPE_REG p.To.Reg = REGSP p.Spadj = -ctxt.Autosize } } else { /* want write-back pre-indexed SP+autosize -> SP, loading REGLINK*/ aoffset = ctxt.Autosize if aoffset > 0xF0 { aoffset = 0xF0 } p.As = AMOVD p.From.Type = obj.TYPE_MEM p.Scond = C_XPOST p.From.Offset = int64(aoffset) p.From.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REGLINK p.Spadj = -aoffset if ctxt.Autosize > aoffset { q = ctxt.NewProg() q.As = AADD q.From.Type = obj.TYPE_CONST q.From.Offset = int64(ctxt.Autosize) - int64(aoffset) q.To.Type = obj.TYPE_REG q.To.Reg = REGSP q.Link = p.Link q.Spadj = int32(-q.From.Offset) q.Lineno = p.Lineno p.Link = q p = q } } if p.As != obj.ARET { q = ctxt.NewProg() q.Lineno = p.Lineno q.Link = p.Link p.Link = q p = q } if retjmp != nil { // retjmp p.As = AB p.To.Type = obj.TYPE_BRANCH p.To.Sym = retjmp p.Spadj = +ctxt.Autosize break } p.As = obj.ARET p.To.Type = obj.TYPE_MEM p.To.Offset = 0 p.To.Reg = REGLINK p.Spadj = +ctxt.Autosize case AADD, ASUB: if p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP && p.From.Type == obj.TYPE_CONST { if p.As == AADD { p.Spadj = int32(-p.From.Offset) } else { p.Spadj = int32(+p.From.Offset) } } break } } }
func span0(ctxt *obj.Link, cursym *obj.LSym) { p := cursym.Text if p == nil || p.Link == nil { // handle external functions and ELF section symbols return } ctxt.Cursym = cursym ctxt.Autosize = int32(p.To.Offset + 8) if oprange[AOR&obj.AMask].start == nil { buildop(ctxt) } c := int64(0) p.Pc = c var m int var o *Optab for p = p.Link; p != nil; p = p.Link { ctxt.Curp = p p.Pc = c o = oplook(ctxt, p) m = int(o.size) if m == 0 { if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != obj.AUSEFIELD { ctxt.Diag("zero-width instruction\n%v", p) } continue } c += int64(m) } cursym.Size = c /* * if any procedure is large enough to * generate a large SBRA branch, then * generate extra passes putting branches * around jmps to fix. this is rare. */ bflag := 1 var otxt int64 var q *obj.Prog for bflag != 0 { if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f span1\n", obj.Cputime()) } bflag = 0 c = 0 for p = cursym.Text.Link; p != nil; p = p.Link { p.Pc = c o = oplook(ctxt, p) // very large conditional branches if o.type_ == 6 && p.Pcond != nil { otxt = p.Pcond.Pc - c if otxt < -(1<<17)+10 || otxt >= (1<<17)-10 { q = ctxt.NewProg() q.Link = p.Link p.Link = q q.As = AJMP q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.Pcond = p.Pcond p.Pcond = q q = ctxt.NewProg() q.Link = p.Link p.Link = q q.As = AJMP q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.Pcond = q.Link.Link addnop(ctxt, p.Link) addnop(ctxt, p) bflag = 1 } } m = int(o.size) if m == 0 { if p.As != obj.ANOP && p.As != obj.AFUNCDATA && p.As != obj.APCDATA && p.As != obj.AUSEFIELD { ctxt.Diag("zero-width instruction\n%v", p) } continue } c += int64(m) } cursym.Size = c } c += -c & (FuncAlign - 1) cursym.Size = c /* * lay out the code, emitting code and data relocations. */ obj.Symgrow(ctxt, cursym, cursym.Size) bp := cursym.P var i int32 var out [4]uint32 for p := cursym.Text.Link; p != nil; p = p.Link { ctxt.Pc = p.Pc ctxt.Curp = p o = oplook(ctxt, p) if int(o.size) > 4*len(out) { log.Fatalf("out array in span0 is too small, need at least %d for %v", o.size/4, p) } asmout(ctxt, p, o, out[:]) for i = 0; i < int32(o.size/4); i++ { ctxt.Arch.ByteOrder.PutUint32(bp, out[i]) bp = bp[4:] } } }
func preprocess(ctxt *obj.Link, cursym *obj.LSym) { autosize := int32(0) ctxt.Cursym = cursym if cursym.Text == nil || cursym.Text.Link == nil { return } softfloat(ctxt, cursym) p := cursym.Text autoffset := int32(p.To.Offset) if autoffset < 0 { autoffset = 0 } cursym.Locals = autoffset cursym.Args = p.To.Val.(int32) /* * find leaf subroutines * strip NOPs * expand RET * expand BECOME pseudo */ var q1 *obj.Prog var q *obj.Prog for p := cursym.Text; p != nil; p = p.Link { switch p.As { case obj.ATEXT: p.Mark |= LEAF case obj.ARET: break case ADIV, ADIVU, AMOD, AMODU: q = p if ctxt.Sym_div == nil { initdiv(ctxt) } cursym.Text.Mark &^= LEAF continue case obj.ANOP: q1 = p.Link q.Link = q1 /* q is non-nop */ if q1 != nil { q1.Mark |= p.Mark } continue case ABL, ABX, obj.ADUFFZERO, obj.ADUFFCOPY: cursym.Text.Mark &^= LEAF fallthrough case AB, ABEQ, ABNE, ABCS, ABHS, ABCC, ABLO, ABMI, ABPL, ABVS, ABVC, ABHI, ABLS, ABGE, ABLT, ABGT, ABLE: q1 = p.Pcond if q1 != nil { for q1.As == obj.ANOP { q1 = q1.Link p.Pcond = q1 } } } q = p } var o int var p1 *obj.Prog var p2 *obj.Prog var q2 *obj.Prog for p := cursym.Text; p != nil; p = p.Link { o = int(p.As) switch o { case obj.ATEXT: autosize = int32(p.To.Offset + 4) if autosize <= 4 { if cursym.Text.Mark&LEAF != 0 { p.To.Offset = -4 autosize = 0 } } if autosize == 0 && cursym.Text.Mark&LEAF == 0 { if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "save suppressed in: %s\n", cursym.Name) ctxt.Bso.Flush() } cursym.Text.Mark |= LEAF } if cursym.Text.Mark&LEAF != 0 { cursym.Leaf = 1 if autosize == 0 { break } } if p.From3.Offset&obj.NOSPLIT == 0 { p = stacksplit(ctxt, p, autosize) // emit split check } // MOVW.W R14,$-autosize(SP) p = obj.Appendp(ctxt, p) p.As = AMOVW p.Scond |= C_WBIT p.From.Type = obj.TYPE_REG p.From.Reg = REGLINK p.To.Type = obj.TYPE_MEM p.To.Offset = int64(-autosize) p.To.Reg = REGSP p.Spadj = autosize if cursym.Text.From3.Offset&obj.WRAPPER != 0 { // if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame // // MOVW g_panic(g), R1 // CMP $0, R1 // B.EQ end // MOVW panic_argp(R1), R2 // ADD $(autosize+4), R13, R3 // CMP R2, R3 // B.NE end // ADD $4, R13, R4 // MOVW R4, panic_argp(R1) // end: // NOP // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not an ARM NOP: it encodes to 0 instruction bytes. p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_MEM p.From.Reg = REGG p.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_CONST p.From.Offset = 0 p.Reg = REG_R1 p = obj.Appendp(ctxt, p) p.As = ABEQ p.To.Type = obj.TYPE_BRANCH p1 = p p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R1 p.From.Offset = 0 // Panic.argp p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = AADD p.From.Type = obj.TYPE_CONST p.From.Offset = int64(autosize) + 4 p.Reg = REG_R13 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R3 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R2 p.Reg = REG_R3 p = obj.Appendp(ctxt, p) p.As = ABNE p.To.Type = obj.TYPE_BRANCH p2 = p p = obj.Appendp(ctxt, p) p.As = AADD p.From.Type = obj.TYPE_CONST p.From.Offset = 4 p.Reg = REG_R13 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R4 p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_REG p.From.Reg = REG_R4 p.To.Type = obj.TYPE_MEM p.To.Reg = REG_R1 p.To.Offset = 0 // Panic.argp p = obj.Appendp(ctxt, p) p.As = obj.ANOP p1.Pcond = p p2.Pcond = p } case obj.ARET: obj.Nocache(p) if cursym.Text.Mark&LEAF != 0 { if autosize == 0 { p.As = AB p.From = obj.Addr{} if p.To.Sym != nil { // retjmp p.To.Type = obj.TYPE_BRANCH } else { p.To.Type = obj.TYPE_MEM p.To.Offset = 0 p.To.Reg = REGLINK } break } } p.As = AMOVW p.Scond |= C_PBIT p.From.Type = obj.TYPE_MEM p.From.Offset = int64(autosize) p.From.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REGPC // If there are instructions following // this ARET, they come from a branch // with the same stackframe, so no spadj. if p.To.Sym != nil { // retjmp p.To.Reg = REGLINK q2 = obj.Appendp(ctxt, p) q2.As = AB q2.To.Type = obj.TYPE_BRANCH q2.To.Sym = p.To.Sym p.To.Sym = nil p = q2 } case AADD: if p.From.Type == obj.TYPE_CONST && p.From.Reg == 0 && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP { p.Spadj = int32(-p.From.Offset) } case ASUB: if p.From.Type == obj.TYPE_CONST && p.From.Reg == 0 && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP { p.Spadj = int32(p.From.Offset) } case ADIV, ADIVU, AMOD, AMODU: if cursym.Text.From3.Offset&obj.NOSPLIT != 0 { ctxt.Diag("cannot divide in NOSPLIT function") } if ctxt.Debugdivmod != 0 { break } if p.From.Type != obj.TYPE_REG { break } if p.To.Type != obj.TYPE_REG { break } // Make copy because we overwrite p below. q1 := *p if q1.Reg == REGTMP || q1.Reg == 0 && q1.To.Reg == REGTMP { ctxt.Diag("div already using REGTMP: %v", p) } /* MOV m(g),REGTMP */ p.As = AMOVW p.Lineno = q1.Lineno p.From.Type = obj.TYPE_MEM p.From.Reg = REGG p.From.Offset = 6 * 4 // offset of g.m p.Reg = 0 p.To.Type = obj.TYPE_REG p.To.Reg = REGTMP /* MOV a,m_divmod(REGTMP) */ p = obj.Appendp(ctxt, p) p.As = AMOVW p.Lineno = q1.Lineno p.From.Type = obj.TYPE_REG p.From.Reg = q1.From.Reg p.To.Type = obj.TYPE_MEM p.To.Reg = REGTMP p.To.Offset = 8 * 4 // offset of m.divmod /* MOV b,REGTMP */ p = obj.Appendp(ctxt, p) p.As = AMOVW p.Lineno = q1.Lineno p.From.Type = obj.TYPE_REG p.From.Reg = q1.Reg if q1.Reg == 0 { p.From.Reg = q1.To.Reg } p.To.Type = obj.TYPE_REG p.To.Reg = REGTMP p.To.Offset = 0 /* CALL appropriate */ p = obj.Appendp(ctxt, p) p.As = ABL p.Lineno = q1.Lineno p.To.Type = obj.TYPE_BRANCH switch o { case ADIV: p.To.Sym = ctxt.Sym_div case ADIVU: p.To.Sym = ctxt.Sym_divu case AMOD: p.To.Sym = ctxt.Sym_mod case AMODU: p.To.Sym = ctxt.Sym_modu } /* MOV REGTMP, b */ p = obj.Appendp(ctxt, p) p.As = AMOVW p.Lineno = q1.Lineno p.From.Type = obj.TYPE_REG p.From.Reg = REGTMP p.From.Offset = 0 p.To.Type = obj.TYPE_REG p.To.Reg = q1.To.Reg case AMOVW: if (p.Scond&C_WBIT != 0) && p.To.Type == obj.TYPE_MEM && p.To.Reg == REGSP { p.Spadj = int32(-p.To.Offset) } if (p.Scond&C_PBIT != 0) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REGSP && p.To.Reg != REGPC { p.Spadj = int32(-p.From.Offset) } if p.From.Type == obj.TYPE_ADDR && p.From.Reg == REGSP && p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP { p.Spadj = int32(-p.From.Offset) } } } }
/* * ASLL x,y,w * .. (not use w, not set x y w) * AXXX w,a,b (a != w) * .. (not use w) * (set w) * ----------- changed to * .. * AXXX (x<<y),a,b * .. */ func shiftprop(r *gc.Flow) bool { p := (*obj.Prog)(r.Prog) if p.To.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: result not reg; FAILURE\n") } return false } n := int(int(p.To.Reg)) a := obj.Addr(obj.Addr{}) if p.Reg != 0 && p.Reg != p.To.Reg { a.Type = obj.TYPE_REG a.Reg = p.Reg } if gc.Debug['P'] != 0 { fmt.Printf("shiftprop\n%v", p) } r1 := (*gc.Flow)(r) var p1 *obj.Prog for { /* find first use of shift result; abort if shift operands or result are changed */ r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tbranch; FAILURE\n") } return false } if gc.Uniqp(r1) == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tmerge; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ if (p.From.Type == obj.TYPE_REG && copyu(p1, &p.From, nil) > 1) || (a.Type == obj.TYPE_REG && copyu(p1, &a, nil) > 1) { if gc.Debug['P'] != 0 { fmt.Printf("\targs modified; FAILURE\n") } return false } continue case 3: /* set, not used */ { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: noref; FAILURE\n") } return false } } break } /* check whether substitution can be done */ switch p1.As { default: if gc.Debug['P'] != 0 { fmt.Printf("\tnon-dpi; FAILURE\n") } return false case arm.AAND, arm.AEOR, arm.AADD, arm.AADC, arm.AORR, arm.ASUB, arm.ASBC, arm.ARSB, arm.ARSC: if int(p1.Reg) == n || (p1.Reg == 0 && p1.To.Type == obj.TYPE_REG && int(p1.To.Reg) == n) { if p1.From.Type != obj.TYPE_REG { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } p1.Reg = p1.From.Reg p1.From.Reg = int16(n) switch p1.As { case arm.ASUB: p1.As = arm.ARSB case arm.ARSB: p1.As = arm.ASUB case arm.ASBC: p1.As = arm.ARSC case arm.ARSC: p1.As = arm.ASBC } if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v", p1) } } fallthrough case arm.ABIC, arm.ATST, arm.ACMP, arm.ACMN: if int(p1.Reg) == n { if gc.Debug['P'] != 0 { fmt.Printf("\tcan't swap; FAILURE\n") } return false } if p1.Reg == 0 && int(p1.To.Reg) == n { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used twice; FAILURE\n") } return false } // case AMVN: if p1.From.Type == obj.TYPE_SHIFT { if gc.Debug['P'] != 0 { fmt.Printf("\tshift result used in shift; FAILURE\n") } return false } if p1.From.Type != obj.TYPE_REG || int(p1.From.Reg) != n { if gc.Debug['P'] != 0 { fmt.Printf("\tBOTCH: where is it used?; FAILURE\n") } return false } } /* check whether shift result is used subsequently */ p2 := (*obj.Prog)(p1) if int(p1.To.Reg) != n { var p1 *obj.Prog for { r1 = gc.Uniqs(r1) if r1 == nil { if gc.Debug['P'] != 0 { fmt.Printf("\tinconclusive; FAILURE\n") } return false } p1 = r1.Prog if gc.Debug['P'] != 0 { fmt.Printf("\n%v", p1) } switch copyu(p1, &p.To, nil) { case 0: /* not used or set */ continue case 3: /* set, not used */ break default: /* used */ if gc.Debug['P'] != 0 { fmt.Printf("\treused; FAILURE\n") } return false } break } } /* make the substitution */ p2.From.Reg = 0 o := int(int(p.Reg)) if o == 0 { o = int(p.To.Reg) } o &= 15 switch p.From.Type { case obj.TYPE_CONST: o |= int((p.From.Offset & 0x1f) << 7) case obj.TYPE_REG: o |= 1<<4 | (int(p.From.Reg)&15)<<8 } switch p.As { case arm.ASLL: o |= 0 << 5 case arm.ASRL: o |= 1 << 5 case arm.ASRA: o |= 2 << 5 } p2.From = obj.Addr{} p2.From.Type = obj.TYPE_SHIFT p2.From.Offset = int64(o) if gc.Debug['P'] != 0 { fmt.Printf("\t=>%v\tSUCCEED\n", p2) } return true }
func Clearp(p *obj.Prog) { obj.Nopout(p) p.As = obj.AEND p.Pc = int64(pcloc) pcloc++ }
func sched(ctxt *obj.Link, p0, pe *obj.Prog) { var sch [NSCHED]Sch /* * build side structure */ s := sch[:] for p := p0; ; p = p.Link { s[0].p = *p markregused(ctxt, &s[0]) if p == pe { break } s = s[1:] } se := s for i := cap(sch) - cap(se); i >= 0; i-- { s = sch[i:] if s[0].p.Mark&DELAY == 0 { continue } if -cap(s) < -cap(se) { if !conflict(&s[0], &s[1]) { continue } } var t []Sch var j int for j = cap(sch) - cap(s) - 1; j >= 0; j-- { t = sch[j:] if t[0].comp { if s[0].p.Mark&BRANCH != 0 { goto no2 } } if t[0].p.Mark&DELAY != 0 { if -cap(s) >= -cap(se) || conflict(&t[0], &s[1]) { goto no2 } } for u := t[1:]; -cap(u) <= -cap(s); u = u[1:] { if depend(ctxt, &u[0], &t[0]) { goto no2 } } goto out2 no2: } if s[0].p.Mark&BRANCH != 0 { s[0].nop = 1 } continue out2: // t[0] is the instruction being moved to fill the delay stmp := t[0] copy(t[:i-j], t[1:i-j+1]) s[0] = stmp if t[i-j-1].p.Mark&BRANCH != 0 { // t[i-j] is being put into a branch delay slot // combine its Spadj with the branch instruction t[i-j-1].p.Spadj += t[i-j].p.Spadj t[i-j].p.Spadj = 0 } i-- } /* * put it all back */ var p *obj.Prog var q *obj.Prog for s, p = sch[:], p0; -cap(s) <= -cap(se); s, p = s[1:], q { q = p.Link if q != s[0].p.Link { *p = s[0].p p.Link = q } for s[0].nop != 0 { s[0].nop-- addnop(ctxt, p) } } } func markregused(ctxt *obj.Link, s *Sch) { p := &s.p s.comp = compound(ctxt, p) s.nop = 0 if s.comp { s.set.ireg |= 1 << (REGTMP - REG_R0) s.used.ireg |= 1 << (REGTMP - REG_R0) } ar := 0 /* dest is really reference */ ad := 0 /* source/dest is really address */ ld := 0 /* opcode is load instruction */ sz := 20 /* size of load/store for overlap computation */ /* * flags based on opcode */ switch p.As { case obj.ATEXT: ctxt.Autosize = int32(p.To.Offset + 8) ad = 1 case AJAL: c := p.Reg if c == 0 { c = REGLINK } s.set.ireg |= 1 << uint(c-REG_R0) ar = 1 ad = 1 case ABGEZAL, ABLTZAL: s.set.ireg |= 1 << (REGLINK - REG_R0) fallthrough case ABEQ, ABGEZ, ABGTZ, ABLEZ, ABLTZ, ABNE: ar = 1 ad = 1 case ABFPT, ABFPF: ad = 1 s.used.cc |= E_FCR case ACMPEQD, ACMPEQF, ACMPGED, ACMPGEF, ACMPGTD, ACMPGTF: ar = 1 s.set.cc |= E_FCR p.Mark |= FCMP case AJMP: ar = 1 ad = 1 case AMOVB, AMOVBU: sz = 1 ld = 1 case AMOVH, AMOVHU: sz = 2 ld = 1 case AMOVF, AMOVW, AMOVWL, AMOVWR: sz = 4 ld = 1 case AMOVD, AMOVV, AMOVVL, AMOVVR: sz = 8 ld = 1 case ADIV, ADIVU, AMUL, AMULU, AREM, AREMU, ADIVV, ADIVVU, AMULV, AMULVU, AREMV, AREMVU: s.set.cc = E_HILO fallthrough case AADD, AADDU, AADDV, AADDVU, AAND, ANOR, AOR, ASGT, ASGTU, ASLL, ASRA, ASRL, ASLLV, ASRAV, ASRLV, ASUB, ASUBU, ASUBV, ASUBVU, AXOR, AADDD, AADDF, AADDW, ASUBD, ASUBF, ASUBW, AMULF, AMULD, AMULW, ADIVF, ADIVD, ADIVW: if p.Reg == 0 { if p.To.Type == obj.TYPE_REG { p.Reg = p.To.Reg } //if(p->reg == NREG) // print("botch %P\n", p); } } /* * flags based on 'to' field */ c := int(p.To.Class) if c == 0 { c = aclass(ctxt, &p.To) + 1 p.To.Class = int8(c) } c-- switch c { default: fmt.Printf("unknown class %d %v\n", c, p) case C_ZCON, C_SCON, C_ADD0CON, C_AND0CON, C_ADDCON, C_ANDCON, C_UCON, C_LCON, C_NONE, C_SBRA, C_LBRA, C_ADDR, C_TEXTSIZE: break case C_HI, C_LO: s.set.cc |= E_HILO case C_FCREG: s.set.cc |= E_FCR case C_MREG: s.set.cc |= E_MCR case C_ZOREG, C_SOREG, C_LOREG: c = int(p.To.Reg) s.used.ireg |= 1 << uint(c-REG_R0) if ad != 0 { break } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.To) m := uint32(ANYMEM) if c == REGSB { m = E_MEMSB } if c == REGSP { m = E_MEMSP } if ar != 0 { s.used.cc |= m } else { s.set.cc |= m } case C_SACON, C_LACON: s.used.ireg |= 1 << (REGSP - REG_R0) case C_SECON, C_LECON: s.used.ireg |= 1 << (REGSB - REG_R0) case C_REG: if ar != 0 { s.used.ireg |= 1 << uint(p.To.Reg-REG_R0) } else { s.set.ireg |= 1 << uint(p.To.Reg-REG_R0) } case C_FREG: if ar != 0 { s.used.freg |= 1 << uint(p.To.Reg-REG_F0) } else { s.set.freg |= 1 << uint(p.To.Reg-REG_F0) } if ld != 0 && p.From.Type == obj.TYPE_REG { p.Mark |= LOAD } case C_SAUTO, C_LAUTO: s.used.ireg |= 1 << (REGSP - REG_R0) if ad != 0 { break } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.To) if ar != 0 { s.used.cc |= E_MEMSP } else { s.set.cc |= E_MEMSP } case C_SEXT, C_LEXT: s.used.ireg |= 1 << (REGSB - REG_R0) if ad != 0 { break } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.To) if ar != 0 { s.used.cc |= E_MEMSB } else { s.set.cc |= E_MEMSB } } /* * flags based on 'from' field */ c = int(p.From.Class) if c == 0 { c = aclass(ctxt, &p.From) + 1 p.From.Class = int8(c) } c-- switch c { default: fmt.Printf("unknown class %d %v\n", c, p) case C_ZCON, C_SCON, C_ADD0CON, C_AND0CON, C_ADDCON, C_ANDCON, C_UCON, C_LCON, C_NONE, C_SBRA, C_LBRA, C_ADDR, C_TEXTSIZE: break case C_HI, C_LO: s.used.cc |= E_HILO case C_FCREG: s.used.cc |= E_FCR case C_MREG: s.used.cc |= E_MCR case C_ZOREG, C_SOREG, C_LOREG: c = int(p.From.Reg) s.used.ireg |= 1 << uint(c-REG_R0) if ld != 0 { p.Mark |= LOAD } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.From) m := uint32(ANYMEM) if c == REGSB { m = E_MEMSB } if c == REGSP { m = E_MEMSP } s.used.cc |= m case C_SACON, C_LACON: c = int(p.From.Reg) if c == 0 { c = REGSP } s.used.ireg |= 1 << uint(c-REG_R0) case C_SECON, C_LECON: s.used.ireg |= 1 << (REGSB - REG_R0) case C_REG: s.used.ireg |= 1 << uint(p.From.Reg-REG_R0) case C_FREG: s.used.freg |= 1 << uint(p.From.Reg-REG_F0) if ld != 0 && p.To.Type == obj.TYPE_REG { p.Mark |= LOAD } case C_SAUTO, C_LAUTO: s.used.ireg |= 1 << (REGSP - REG_R0) if ld != 0 { p.Mark |= LOAD } if ad != 0 { break } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.From) s.used.cc |= E_MEMSP case C_SEXT: case C_LEXT: s.used.ireg |= 1 << (REGSB - REG_R0) if ld != 0 { p.Mark |= LOAD } if ad != 0 { break } s.size = uint8(sz) s.soffset = regoff(ctxt, &p.From) s.used.cc |= E_MEMSB } c = int(p.Reg) if c != 0 { if REG_F0 <= c && c <= REG_F31 { s.used.freg |= 1 << uint(c-REG_F0) } else { s.used.ireg |= 1 << uint(c-REG_R0) } } s.set.ireg &^= (1 << (REGZERO - REG_R0)) /* R0 cant be set */ } /* * test to see if 2 instrictions can be * interchanged without changing semantics */ func depend(ctxt *obj.Link, sa, sb *Sch) bool { if sa.set.ireg&(sb.set.ireg|sb.used.ireg) != 0 { return true } if sb.set.ireg&sa.used.ireg != 0 { return true } if sa.set.freg&(sb.set.freg|sb.used.freg) != 0 { return true } if sb.set.freg&sa.used.freg != 0 { return true } /* * special case. * loads from same address cannot pass. * this is for hardware fifo's and the like */ if sa.used.cc&sb.used.cc&E_MEM != 0 { if sa.p.Reg == sb.p.Reg { if regoff(ctxt, &sa.p.From) == regoff(ctxt, &sb.p.From) { return true } } } x := (sa.set.cc & (sb.set.cc | sb.used.cc)) | (sb.set.cc & sa.used.cc) if x != 0 { /* * allow SB and SP to pass each other. * allow SB to pass SB iff doffsets are ok * anything else conflicts */ if x != E_MEMSP && x != E_MEMSB { return true } x = sa.set.cc | sb.set.cc | sa.used.cc | sb.used.cc if x&E_MEM != 0 { return true } if offoverlap(sa, sb) { return true } } return false } func offoverlap(sa, sb *Sch) bool { if sa.soffset < sb.soffset { if sa.soffset+int32(sa.size) > sb.soffset { return true } return false } if sb.soffset+int32(sb.size) > sa.soffset { return true } return false } /* * test 2 adjacent instructions * and find out if inserted instructions * are desired to prevent stalls. */ func conflict(sa, sb *Sch) bool { if sa.set.ireg&sb.used.ireg != 0 { return true } if sa.set.freg&sb.used.freg != 0 { return true } if sa.set.cc&sb.used.cc != 0 { return true } return false } func compound(ctxt *obj.Link, p *obj.Prog) bool { o := oplook(ctxt, p) if o.size != 4 { return true } if p.To.Type == obj.TYPE_REG && p.To.Reg == REGSB { return true } return false } func follow(ctxt *obj.Link, s *obj.LSym) { ctxt.Cursym = s firstp := ctxt.NewProg() lastp := firstp xfol(ctxt, s.Text, &lastp) lastp.Link = nil s.Text = firstp.Link } func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) { var q *obj.Prog var r *obj.Prog var a int var i int loop: if p == nil { return } a = int(p.As) if a == AJMP { q = p.Pcond if (p.Mark&NOSCHED != 0) || q != nil && (q.Mark&NOSCHED != 0) { p.Mark |= FOLL (*last).Link = p *last = p p = p.Link xfol(ctxt, p, last) p = q if p != nil && p.Mark&FOLL == 0 { goto loop } return } if q != nil { p.Mark |= FOLL p = q if p.Mark&FOLL == 0 { goto loop } } } if p.Mark&FOLL != 0 { i = 0 q = p for ; i < 4; i, q = i+1, q.Link { if q == *last || (q.Mark&NOSCHED != 0) { break } a = int(q.As) if a == obj.ANOP { i-- continue } if a == AJMP || a == ARET || a == ARFE { goto copy } if q.Pcond == nil || (q.Pcond.Mark&FOLL != 0) { continue } if a != ABEQ && a != ABNE { continue } copy: for { r = ctxt.NewProg() *r = *p if r.Mark&FOLL == 0 { fmt.Printf("cant happen 1\n") } r.Mark |= FOLL if p != q { p = p.Link (*last).Link = r *last = r continue } (*last).Link = r *last = r if a == AJMP || a == ARET || a == ARFE { return } r.As = ABNE if a == ABNE { r.As = ABEQ } r.Pcond = p.Link r.Link = p.Pcond if r.Link.Mark&FOLL == 0 { xfol(ctxt, r.Link, last) } if r.Pcond.Mark&FOLL == 0 { fmt.Printf("cant happen 2\n") } return } } a = AJMP q = ctxt.NewProg() q.As = int16(a) q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.To.Offset = p.Pc q.Pcond = p p = q } p.Mark |= FOLL (*last).Link = p *last = p if a == AJMP || a == ARET || a == ARFE { if p.Mark&NOSCHED != 0 { p = p.Link goto loop } return } if p.Pcond != nil { if a != AJAL && p.Link != nil { xfol(ctxt, p.Link, last) p = p.Pcond if p == nil || (p.Mark&FOLL != 0) { return } goto loop } } p = p.Link goto loop } var Linkmips64 = obj.LinkArch{ ByteOrder: binary.BigEndian, Name: "mips64", Thechar: '0', Preprocess: preprocess, Assemble: span0, Follow: follow, Progedit: progedit, Minlc: 4, Ptrsize: 8, Regsize: 8, } var Linkmips64le = obj.LinkArch{ ByteOrder: binary.LittleEndian, Name: "mips64le", Thechar: '0', Preprocess: preprocess, Assemble: span0, Follow: follow, Progedit: progedit, Minlc: 4, Ptrsize: 8, Regsize: 8, }
// movb elimination. // movb is simulated by the linker // when a register other than ax, bx, cx, dx // is used, so rewrite to other instructions // when possible. a movb into a register // can smash the entire 32-bit register without // causing any trouble. // // TODO: Using the Q forms here instead of the L forms // seems unnecessary, and it makes the instructions longer. func elimshortmov(g *gc.Graph) { var p *obj.Prog for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog if regtyp(&p.To) { switch p.As { case x86.AINCB, x86.AINCW: p.As = x86.AINCQ case x86.ADECB, x86.ADECW: p.As = x86.ADECQ case x86.ANEGB, x86.ANEGW: p.As = x86.ANEGQ case x86.ANOTB, x86.ANOTW: p.As = x86.ANOTQ } if regtyp(&p.From) || p.From.Type == obj.TYPE_CONST { // move or artihmetic into partial register. // from another register or constant can be movl. // we don't switch to 64-bit arithmetic if it can // change how the carry bit is set (and the carry bit is needed). switch p.As { case x86.AMOVB, x86.AMOVW: p.As = x86.AMOVQ case x86.AADDB, x86.AADDW: if !needc(p.Link) { p.As = x86.AADDQ } case x86.ASUBB, x86.ASUBW: if !needc(p.Link) { p.As = x86.ASUBQ } case x86.AMULB, x86.AMULW: p.As = x86.AMULQ case x86.AIMULB, x86.AIMULW: p.As = x86.AIMULQ case x86.AANDB, x86.AANDW: p.As = x86.AANDQ case x86.AORB, x86.AORW: p.As = x86.AORQ case x86.AXORB, x86.AXORW: p.As = x86.AXORQ case x86.ASHLB, x86.ASHLW: p.As = x86.ASHLQ } } else if p.From.Type != obj.TYPE_REG { // explicit zero extension, but don't // do that if source is a byte register // (only AH can occur and it's forbidden). switch p.As { case x86.AMOVB: p.As = x86.AMOVBQZX case x86.AMOVW: p.As = x86.AMOVWQZX } } } } }
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog { // MOVV g_stackguard(g), R1 p = obj.Appendp(ctxt, p) p.As = AMOVV p.From.Type = obj.TYPE_MEM p.From.Reg = REGG p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 var q *obj.Prog if framesize <= obj.StackSmall { // small stack: SP < stackguard // AGTU SP, stackguard, R1 p = obj.Appendp(ctxt, p) p.As = ASGTU p.From.Type = obj.TYPE_REG p.From.Reg = REGSP p.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 } else if framesize <= obj.StackBig { // large stack: SP-framesize < stackguard-StackSmall // ADDV $-framesize, SP, R2 // SGTU R2, stackguard, R1 p = obj.Appendp(ctxt, p) p.As = AADDV p.From.Type = obj.TYPE_CONST p.From.Offset = int64(-framesize) p.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ASGTU p.From.Type = obj.TYPE_REG p.From.Reg = REG_R2 p.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 } else { // Such a large stack we need to protect against wraparound. // If SP is close to zero: // SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // // Preemption sets stackguard to StackPreempt, a very large value. // That breaks the math above, so we have to check for that explicitly. // // stackguard is R1 // MOVV $StackPreempt, R2 // BEQ R1, R2, label-of-call-to-morestack // ADDV $StackGuard, SP, R2 // SUBVU R1, R2 // MOVV $(framesize+(StackGuard-StackSmall)), R1 // SGTU R2, R1, R1 p = obj.Appendp(ctxt, p) p.As = AMOVV p.From.Type = obj.TYPE_CONST p.From.Offset = obj.StackPreempt p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) q = p p.As = ABEQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.Reg = REG_R2 p.To.Type = obj.TYPE_BRANCH p.Mark |= BRANCH p = obj.Appendp(ctxt, p) p.As = AADDV p.From.Type = obj.TYPE_CONST p.From.Offset = obj.StackGuard p.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ASUBVU p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = AMOVV p.From.Type = obj.TYPE_CONST p.From.Offset = int64(framesize) + obj.StackGuard - obj.StackSmall p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 p = obj.Appendp(ctxt, p) p.As = ASGTU p.From.Type = obj.TYPE_REG p.From.Reg = REG_R2 p.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 } // q1: BNE R1, done p = obj.Appendp(ctxt, p) q1 := p p.As = ABNE p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.To.Type = obj.TYPE_BRANCH p.Mark |= BRANCH // MOVV LINK, R3 p = obj.Appendp(ctxt, p) p.As = AMOVV p.From.Type = obj.TYPE_REG p.From.Reg = REGLINK p.To.Type = obj.TYPE_REG p.To.Reg = REG_R3 if q != nil { q.Pcond = p p.Mark |= LABEL } // JAL runtime.morestack(SB) p = obj.Appendp(ctxt, p) p.As = AJAL p.To.Type = obj.TYPE_BRANCH if ctxt.Cursym.Cfunc != 0 { p.To.Sym = obj.Linklookup(ctxt, "runtime.morestackc", 0) } else if ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0 { p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack_noctxt", 0) } else { p.To.Sym = obj.Linklookup(ctxt, "runtime.morestack", 0) } p.Mark |= BRANCH // JMP start p = obj.Appendp(ctxt, p) p.As = AJMP p.To.Type = obj.TYPE_BRANCH p.Pcond = ctxt.Cursym.Text.Link p.Mark |= BRANCH // placeholder for q1's jump target p = obj.Appendp(ctxt, p) p.As = obj.ANOP // zero-width place holder q1.Pcond = p return p }
func progedit(ctxt *obj.Link, p *obj.Prog) { p.From.Class = 0 p.To.Class = 0 // Rewrite JMP/JAL to symbol as TYPE_BRANCH. switch p.As { case AJMP, AJAL, ARET, obj.ADUFFZERO, obj.ADUFFCOPY: if p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Rewrite float constants to values stored in memory. switch p.As { case AMOVF: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", i32) s := obj.Linklookup(ctxt, literal, 0) s.Size = 4 p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } case AMOVD: if p.From.Type == obj.TYPE_FCONST { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", i64) s := obj.Linklookup(ctxt, literal, 0) s.Size = 8 p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } // Put >32-bit constants in memory and load them case AMOVV: if p.From.Type == obj.TYPE_CONST && p.From.Name == obj.NAME_NONE && p.From.Reg == 0 && int64(int32(p.From.Offset)) != p.From.Offset { literal := fmt.Sprintf("$i64.%016x", uint64(p.From.Offset)) s := obj.Linklookup(ctxt, literal, 0) s.Size = 8 p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } } // Rewrite SUB constants into ADD. switch p.As { case ASUB: if p.From.Type == obj.TYPE_CONST { p.From.Offset = -p.From.Offset p.As = AADD } case ASUBU: if p.From.Type == obj.TYPE_CONST { p.From.Offset = -p.From.Offset p.As = AADDU } case ASUBV: if p.From.Type == obj.TYPE_CONST { p.From.Offset = -p.From.Offset p.As = AADDV } case ASUBVU: if p.From.Type == obj.TYPE_CONST { p.From.Offset = -p.From.Offset p.As = AADDVU } } }
func preprocess(ctxt *obj.Link, cursym *obj.LSym) { // TODO(minux): add morestack short-cuts with small fixed frame-size. ctxt.Cursym = cursym // a switch for enabling/disabling instruction scheduling nosched := true if cursym.Text == nil || cursym.Text.Link == nil { return } p := cursym.Text textstksiz := p.To.Offset cursym.Args = p.To.Val.(int32) cursym.Locals = int32(textstksiz) /* * find leaf subroutines * strip NOPs * expand RET * expand BECOME pseudo */ if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "%5.2f noops\n", obj.Cputime()) } ctxt.Bso.Flush() var q *obj.Prog var q1 *obj.Prog for p := cursym.Text; p != nil; p = p.Link { switch p.As { /* too hard, just leave alone */ case obj.ATEXT: q = p p.Mark |= LABEL | LEAF | SYNC if p.Link != nil { p.Link.Mark |= LABEL } /* too hard, just leave alone */ case AMOVW, AMOVV: q = p if p.To.Type == obj.TYPE_REG && p.To.Reg >= REG_SPECIAL { p.Mark |= LABEL | SYNC break } if p.From.Type == obj.TYPE_REG && p.From.Reg >= REG_SPECIAL { p.Mark |= LABEL | SYNC } /* too hard, just leave alone */ case ASYSCALL, AWORD, ATLBWR, ATLBWI, ATLBP, ATLBR: q = p p.Mark |= LABEL | SYNC case ANOR: q = p if p.To.Type == obj.TYPE_REG { if p.To.Reg == REGZERO { p.Mark |= LABEL | SYNC } } case ABGEZAL, ABLTZAL, AJAL, obj.ADUFFZERO, obj.ADUFFCOPY: cursym.Text.Mark &^= LEAF fallthrough case AJMP, ABEQ, ABGEZ, ABGTZ, ABLEZ, ABLTZ, ABNE, ABFPT, ABFPF: if p.As == ABFPT || p.As == ABFPF { // We don't treat ABFPT and ABFPF as branches here, // so that we will always fill nop (0x0) in their // delay slot during assembly. // This is to workaround a kernel FPU emulator bug // where it uses the user stack to simulate the // instruction in the delay slot if it's not 0x0, // and somehow that leads to SIGSEGV when the kernel // jump to the stack. p.Mark |= SYNC } else { p.Mark |= BRANCH } q = p q1 = p.Pcond if q1 != nil { for q1.As == obj.ANOP { q1 = q1.Link p.Pcond = q1 } if q1.Mark&LEAF == 0 { q1.Mark |= LABEL } } //else { // p.Mark |= LABEL //} q1 = p.Link if q1 != nil { q1.Mark |= LABEL } continue case ARET: q = p if p.Link != nil { p.Link.Mark |= LABEL } continue case obj.ANOP: q1 = p.Link q.Link = q1 /* q is non-nop */ q1.Mark |= p.Mark continue default: q = p continue } } autosize := int32(0) var o int var p1 *obj.Prog var p2 *obj.Prog for p := cursym.Text; p != nil; p = p.Link { o = int(p.As) switch o { case obj.ATEXT: autosize = int32(textstksiz + 8) if (p.Mark&LEAF != 0) && autosize <= 8 { autosize = 0 } else if autosize&4 != 0 { autosize += 4 } p.To.Offset = int64(autosize) - 8 if p.From3.Offset&obj.NOSPLIT == 0 { p = stacksplit(ctxt, p, autosize) // emit split check } q = p if autosize != 0 { q = obj.Appendp(ctxt, p) q.As = AADDV q.Lineno = p.Lineno q.From.Type = obj.TYPE_CONST q.From.Offset = int64(-autosize) q.To.Type = obj.TYPE_REG q.To.Reg = REGSP q.Spadj = +autosize } else if cursym.Text.Mark&LEAF == 0 { if cursym.Text.From3.Offset&obj.NOSPLIT != 0 { if ctxt.Debugvlog != 0 { fmt.Fprintf(ctxt.Bso, "save suppressed in: %s\n", cursym.Name) ctxt.Bso.Flush() } cursym.Text.Mark |= LEAF } } if cursym.Text.Mark&LEAF != 0 { cursym.Leaf = 1 break } q = obj.Appendp(ctxt, q) q.As = AMOVV q.Lineno = p.Lineno q.From.Type = obj.TYPE_REG q.From.Reg = REGLINK q.To.Type = obj.TYPE_MEM q.To.Offset = int64(0) q.To.Reg = REGSP if cursym.Text.From3.Offset&obj.WRAPPER != 0 { // if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame // // MOVV g_panic(g), R1 // BEQ R1, end // MOVV panic_argp(R1), R2 // ADDV $(autosize+8), R29, R3 // BNE R2, R3, end // ADDV $8, R29, R2 // MOVV R2, panic_argp(R1) // end: // NOP // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not an mips NOP: it encodes to 0 instruction bytes. q = obj.Appendp(ctxt, q) q.As = AMOVV q.From.Type = obj.TYPE_MEM q.From.Reg = REGG q.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic q.To.Type = obj.TYPE_REG q.To.Reg = REG_R1 q = obj.Appendp(ctxt, q) q.As = ABEQ q.From.Type = obj.TYPE_REG q.From.Reg = REG_R1 q.To.Type = obj.TYPE_BRANCH q.Mark |= BRANCH p1 = q q = obj.Appendp(ctxt, q) q.As = AMOVV q.From.Type = obj.TYPE_MEM q.From.Reg = REG_R1 q.From.Offset = 0 // Panic.argp q.To.Type = obj.TYPE_REG q.To.Reg = REG_R2 q = obj.Appendp(ctxt, q) q.As = AADDV q.From.Type = obj.TYPE_CONST q.From.Offset = int64(autosize) + 8 q.Reg = REGSP q.To.Type = obj.TYPE_REG q.To.Reg = REG_R3 q = obj.Appendp(ctxt, q) q.As = ABNE q.From.Type = obj.TYPE_REG q.From.Reg = REG_R2 q.Reg = REG_R3 q.To.Type = obj.TYPE_BRANCH q.Mark |= BRANCH p2 = q q = obj.Appendp(ctxt, q) q.As = AADDV q.From.Type = obj.TYPE_CONST q.From.Offset = 8 q.Reg = REGSP q.To.Type = obj.TYPE_REG q.To.Reg = REG_R2 q = obj.Appendp(ctxt, q) q.As = AMOVV q.From.Type = obj.TYPE_REG q.From.Reg = REG_R2 q.To.Type = obj.TYPE_MEM q.To.Reg = REG_R1 q.To.Offset = 0 // Panic.argp q = obj.Appendp(ctxt, q) q.As = obj.ANOP p1.Pcond = q p2.Pcond = q } case ARET: if p.From.Type == obj.TYPE_CONST { ctxt.Diag("using BECOME (%v) is not supported!", p) break } if p.To.Sym != nil { // retjmp p.As = AJMP p.To.Type = obj.TYPE_BRANCH break } if cursym.Text.Mark&LEAF != 0 { if autosize == 0 { p.As = AJMP p.From = obj.Addr{} p.To.Type = obj.TYPE_MEM p.To.Offset = 0 p.To.Reg = REGLINK p.Mark |= BRANCH break } p.As = AADDV p.From.Type = obj.TYPE_CONST p.From.Offset = int64(autosize) p.To.Type = obj.TYPE_REG p.To.Reg = REGSP p.Spadj = -autosize q = ctxt.NewProg() q.As = AJMP q.Lineno = p.Lineno q.To.Type = obj.TYPE_MEM q.To.Offset = 0 q.To.Reg = REGLINK q.Mark |= BRANCH q.Spadj = +autosize q.Link = p.Link p.Link = q break } p.As = AMOVV p.From.Type = obj.TYPE_MEM p.From.Offset = 0 p.From.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R4 if false { // Debug bad returns q = ctxt.NewProg() q.As = AMOVV q.Lineno = p.Lineno q.From.Type = obj.TYPE_MEM q.From.Offset = 0 q.From.Reg = REG_R4 q.To.Type = obj.TYPE_REG q.To.Reg = REGTMP q.Link = p.Link p.Link = q p = q } if autosize != 0 { q = ctxt.NewProg() q.As = AADDV q.Lineno = p.Lineno q.From.Type = obj.TYPE_CONST q.From.Offset = int64(autosize) q.To.Type = obj.TYPE_REG q.To.Reg = REGSP q.Spadj = -autosize q.Link = p.Link p.Link = q } q1 = ctxt.NewProg() q1.As = AJMP q1.Lineno = p.Lineno q1.To.Type = obj.TYPE_MEM q1.To.Offset = 0 q1.To.Reg = REG_R4 q1.Mark |= BRANCH q1.Spadj = +autosize q1.Link = q.Link q.Link = q1 case AADDV, AADDVU: if p.To.Type == obj.TYPE_REG && p.To.Reg == REGSP && p.From.Type == obj.TYPE_CONST { p.Spadj = int32(-p.From.Offset) } } } if nosched { // if we don't do instruction scheduling, simply add // NOP after each branch instruction. for p = cursym.Text; p != nil; p = p.Link { if p.Mark&BRANCH != 0 { addnop(ctxt, p) } } return } // instruction scheduling q = nil // p - 1 q1 = cursym.Text // top of block o = 0 // count of instructions for p = cursym.Text; p != nil; p = p1 { p1 = p.Link o++ if p.Mark&NOSCHED != 0 { if q1 != p { sched(ctxt, q1, q) } for ; p != nil; p = p.Link { if p.Mark&NOSCHED == 0 { break } q = p } p1 = p q1 = p o = 0 continue } if p.Mark&(LABEL|SYNC) != 0 { if q1 != p { sched(ctxt, q1, q) } q1 = p o = 1 } if p.Mark&(BRANCH|SYNC) != 0 { sched(ctxt, q1, p) q1 = p1 o = 0 } if o >= NSCHED { sched(ctxt, q1, p) q1 = p1 o = 0 } q = p } }
func preprocess(ctxt *obj.Link, cursym *obj.LSym) { if ctxt.Headtype == obj.Hplan9 && ctxt.Plan9privates == nil { ctxt.Plan9privates = obj.Linklookup(ctxt, "_privates", 0) } ctxt.Cursym = cursym if cursym.Text == nil || cursym.Text.Link == nil { return } p := cursym.Text autoffset := int32(p.To.Offset) if autoffset < 0 { autoffset = 0 } var bpsize int if p.Mode == 64 && obj.Framepointer_enabled != 0 && autoffset > 0 { // Make room for to save a base pointer. If autoffset == 0, // this might do something special like a tail jump to // another function, so in that case we omit this. bpsize = ctxt.Arch.Ptrsize autoffset += int32(bpsize) p.To.Offset += int64(bpsize) } else { bpsize = 0 } textarg := int64(p.To.Val.(int32)) cursym.Args = int32(textarg) cursym.Locals = int32(p.To.Offset) // TODO(rsc): Remove. if p.Mode == 32 && cursym.Locals < 0 { cursym.Locals = 0 } // TODO(rsc): Remove 'p.Mode == 64 &&'. if p.Mode == 64 && autoffset < obj.StackSmall && p.From3Offset()&obj.NOSPLIT == 0 { for q := p; q != nil; q = q.Link { if q.As == obj.ACALL { goto noleaf } if (q.As == obj.ADUFFCOPY || q.As == obj.ADUFFZERO) && autoffset >= obj.StackSmall-8 { goto noleaf } } p.From3.Offset |= obj.NOSPLIT noleaf: } if p.From3Offset()&obj.NOSPLIT == 0 || p.From3Offset()&obj.WRAPPER != 0 { p = obj.Appendp(ctxt, p) p = load_g_cx(ctxt, p) // load g into CX } if cursym.Text.From3Offset()&obj.NOSPLIT == 0 { p = stacksplit(ctxt, p, autoffset, int32(textarg)) // emit split check } if autoffset != 0 { if autoffset%int32(ctxt.Arch.Regsize) != 0 { ctxt.Diag("unaligned stack size %d", autoffset) } p = obj.Appendp(ctxt, p) p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(autoffset) p.Spadj = autoffset } else { // zero-byte stack adjustment. // Insert a fake non-zero adjustment so that stkcheck can // recognize the end of the stack-splitting prolog. p = obj.Appendp(ctxt, p) p.As = obj.ANOP p.Spadj = int32(-ctxt.Arch.Ptrsize) p = obj.Appendp(ctxt, p) p.As = obj.ANOP p.Spadj = int32(ctxt.Arch.Ptrsize) } deltasp := autoffset if bpsize > 0 { // Save caller's BP p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_SP p.To.Scale = 1 p.To.Offset = int64(autoffset) - int64(bpsize) // Move current frame to BP p = obj.Appendp(ctxt, p) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP } if cursym.Text.From3Offset()&obj.WRAPPER != 0 { // if(g->panic != nil && g->panic->argp == FP) g->panic->argp = bottom-of-frame // // MOVQ g_panic(CX), BX // TESTQ BX, BX // JEQ end // LEAQ (autoffset+8)(SP), DI // CMPQ panic_argp(BX), DI // JNE end // MOVQ SP, panic_argp(BX) // end: // NOP // // The NOP is needed to give the jumps somewhere to land. // It is a liblink NOP, not an x86 NOP: it encodes to 0 instruction bytes. p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_CX p.From.Offset = 4 * int64(ctxt.Arch.Ptrsize) // G.panic p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = AMOVL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_CX } if p.Mode == 32 { p.As = AMOVL } p = obj.Appendp(ctxt, p) p.As = ATESTQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_BX p.To.Type = obj.TYPE_REG p.To.Reg = REG_BX if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { p.As = ATESTL } p = obj.Appendp(ctxt, p) p.As = AJEQ p.To.Type = obj.TYPE_BRANCH p1 := p p = obj.Appendp(ctxt, p) p.As = ALEAQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = int64(autoffset) + int64(ctxt.Arch.Regsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { p.As = ALEAL } p = obj.Appendp(ctxt, p) p.As = ACMPQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_BX p.From.Offset = 0 // Panic.argp p.To.Type = obj.TYPE_REG p.To.Reg = REG_DI if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = ACMPL p.From.Type = obj.TYPE_MEM p.From.Reg = REG_R15 p.From.Scale = 1 p.From.Index = REG_BX } if p.Mode == 32 { p.As = ACMPL } p = obj.Appendp(ctxt, p) p.As = AJNE p.To.Type = obj.TYPE_BRANCH p2 := p p = obj.Appendp(ctxt, p) p.As = AMOVQ p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP p.To.Type = obj.TYPE_MEM p.To.Reg = REG_BX p.To.Offset = 0 // Panic.argp if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { p.As = AMOVL p.To.Type = obj.TYPE_MEM p.To.Reg = REG_R15 p.To.Scale = 1 p.To.Index = REG_BX } if p.Mode == 32 { p.As = AMOVL } p = obj.Appendp(ctxt, p) p.As = obj.ANOP p1.Pcond = p p2.Pcond = p } var a int var pcsize int for ; p != nil; p = p.Link { pcsize = int(p.Mode) / 8 a = int(p.From.Name) if a == obj.NAME_AUTO { p.From.Offset += int64(deltasp) - int64(bpsize) } if a == obj.NAME_PARAM { p.From.Offset += int64(deltasp) + int64(pcsize) } if p.From3 != nil { a = int(p.From3.Name) if a == obj.NAME_AUTO { p.From3.Offset += int64(deltasp) - int64(bpsize) } if a == obj.NAME_PARAM { p.From3.Offset += int64(deltasp) + int64(pcsize) } } a = int(p.To.Name) if a == obj.NAME_AUTO { p.To.Offset += int64(deltasp) - int64(bpsize) } if a == obj.NAME_PARAM { p.To.Offset += int64(deltasp) + int64(pcsize) } switch p.As { default: continue case APUSHL, APUSHFL: deltasp += 4 p.Spadj = 4 continue case APUSHQ, APUSHFQ: deltasp += 8 p.Spadj = 8 continue case APUSHW, APUSHFW: deltasp += 2 p.Spadj = 2 continue case APOPL, APOPFL: deltasp -= 4 p.Spadj = -4 continue case APOPQ, APOPFQ: deltasp -= 8 p.Spadj = -8 continue case APOPW, APOPFW: deltasp -= 2 p.Spadj = -2 continue case obj.ARET: break } if autoffset != deltasp { ctxt.Diag("unbalanced PUSH/POP") } if autoffset != 0 { if bpsize > 0 { // Restore caller's BP p.As = AMOVQ p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Scale = 1 p.From.Offset = int64(autoffset) - int64(bpsize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_BP p = obj.Appendp(ctxt, p) } p.As = AADJSP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(-autoffset) p.Spadj = -autoffset p = obj.Appendp(ctxt, p) p.As = obj.ARET // If there are instructions following // this ARET, they come from a branch // with the same stackframe, so undo // the cleanup. p.Spadj = +autoffset } if p.To.Sym != nil { // retjmp p.As = obj.AJMP } } } func indir_cx(ctxt *obj.Link, p *obj.Prog, a *obj.Addr) { if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { a.Type = obj.TYPE_MEM a.Reg = REG_R15 a.Index = REG_CX a.Scale = 1 return } a.Type = obj.TYPE_MEM a.Reg = REG_CX } // Append code to p to load g into cx. // Overwrites p with the first instruction (no first appendp). // Overwriting p is unusual but it lets use this in both the // prologue (caller must call appendp first) and in the epilogue. // Returns last new instruction. func load_g_cx(ctxt *obj.Link, p *obj.Prog) *obj.Prog { p.As = AMOVQ if ctxt.Arch.Ptrsize == 4 { p.As = AMOVL } p.From.Type = obj.TYPE_MEM p.From.Reg = REG_TLS p.From.Offset = 0 p.To.Type = obj.TYPE_REG p.To.Reg = REG_CX next := p.Link progedit(ctxt, p) for p.Link != next { p = p.Link } if p.From.Index == REG_TLS { p.From.Scale = 2 } return p } // Append code to p to check for stack split. // Appends to (does not overwrite) p. // Assumes g is in CX. // Returns last new instruction. func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32, textarg int32) *obj.Prog { cmp := ACMPQ lea := ALEAQ mov := AMOVQ sub := ASUBQ if ctxt.Headtype == obj.Hnacl || p.Mode == 32 { cmp = ACMPL lea = ALEAL mov = AMOVL sub = ASUBL } var q1 *obj.Prog if framesize <= obj.StackSmall { // small stack: SP <= stackguard // CMPQ SP, stackguard p = obj.Appendp(ctxt, p) p.As = int16(cmp) p.From.Type = obj.TYPE_REG p.From.Reg = REG_SP indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.To.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } } else if framesize <= obj.StackBig { // large stack: SP-framesize <= stackguard-StackSmall // LEAQ -xxx(SP), AX // CMPQ AX, stackguard p = obj.Appendp(ctxt, p) p.As = int16(lea) p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = -(int64(framesize) - obj.StackSmall) p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = int16(cmp) p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX indir_cx(ctxt, p, &p.To) p.To.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.To.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } } else { // Such a large stack we need to protect against wraparound. // If SP is close to zero: // SP-stackguard+StackGuard <= framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // // Preemption sets stackguard to StackPreempt, a very large value. // That breaks the math above, so we have to check for that explicitly. // MOVQ stackguard, CX // CMPQ CX, $StackPreempt // JEQ label-of-call-to-morestack // LEAQ StackGuard(SP), AX // SUBQ CX, AX // CMPQ AX, $(framesize+(StackGuard-StackSmall)) p = obj.Appendp(ctxt, p) p.As = int16(mov) indir_cx(ctxt, p, &p.From) p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_SI p = obj.Appendp(ctxt, p) p.As = int16(cmp) p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_CONST p.To.Offset = obj.StackPreempt if p.Mode == 32 { p.To.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1))) } p = obj.Appendp(ctxt, p) p.As = AJEQ p.To.Type = obj.TYPE_BRANCH q1 = p p = obj.Appendp(ctxt, p) p.As = int16(lea) p.From.Type = obj.TYPE_MEM p.From.Reg = REG_SP p.From.Offset = obj.StackGuard p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = int16(sub) p.From.Type = obj.TYPE_REG p.From.Reg = REG_SI p.To.Type = obj.TYPE_REG p.To.Reg = REG_AX p = obj.Appendp(ctxt, p) p.As = int16(cmp) p.From.Type = obj.TYPE_REG p.From.Reg = REG_AX p.To.Type = obj.TYPE_CONST p.To.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall) } // common jls := obj.Appendp(ctxt, p) jls.As = AJLS jls.To.Type = obj.TYPE_BRANCH var last *obj.Prog for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link { } spfix := obj.Appendp(ctxt, last) spfix.As = obj.ANOP spfix.Spadj = -framesize call := obj.Appendp(ctxt, spfix) call.Lineno = ctxt.Cursym.Text.Lineno call.Mode = ctxt.Cursym.Text.Mode call.As = obj.ACALL call.To.Type = obj.TYPE_BRANCH morestack := "runtime.morestack" switch { case ctxt.Cursym.Cfunc != 0: morestack = "runtime.morestackc" case ctxt.Cursym.Text.From3Offset()&obj.NEEDCTXT == 0: morestack = "runtime.morestack_noctxt" } call.To.Sym = obj.Linklookup(ctxt, morestack, 0) jmp := obj.Appendp(ctxt, call) jmp.As = obj.AJMP jmp.To.Type = obj.TYPE_BRANCH jmp.Pcond = ctxt.Cursym.Text.Link jmp.Spadj = +framesize jls.Pcond = call if q1 != nil { q1.Pcond = call } return jls } func follow(ctxt *obj.Link, s *obj.LSym) { ctxt.Cursym = s firstp := ctxt.NewProg() lastp := firstp xfol(ctxt, s.Text, &lastp) lastp.Link = nil s.Text = firstp.Link } func nofollow(a int) bool { switch a { case obj.AJMP, obj.ARET, AIRETL, AIRETQ, AIRETW, ARETFL, ARETFQ, ARETFW, obj.AUNDEF: return true } return false } func pushpop(a int) bool { switch a { case APUSHL, APUSHFL, APUSHQ, APUSHFQ, APUSHW, APUSHFW, APOPL, APOPFL, APOPQ, APOPFQ, APOPW, APOPFW: return true } return false } func relinv(a int16) int16 { switch a { case AJEQ: return AJNE case AJNE: return AJEQ case AJLE: return AJGT case AJLS: return AJHI case AJLT: return AJGE case AJMI: return AJPL case AJGE: return AJLT case AJPL: return AJMI case AJGT: return AJLE case AJHI: return AJLS case AJCS: return AJCC case AJCC: return AJCS case AJPS: return AJPC case AJPC: return AJPS case AJOS: return AJOC case AJOC: return AJOS } log.Fatalf("unknown relation: %s", obj.Aconv(int(a))) return 0 } func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) { var q *obj.Prog var i int var a int loop: if p == nil { return } if p.As == obj.AJMP { q = p.Pcond if q != nil && q.As != obj.ATEXT { /* mark instruction as done and continue layout at target of jump */ p.Mark = 1 p = q if p.Mark == 0 { goto loop } } } if p.Mark != 0 { /* * p goes here, but already used it elsewhere. * copy up to 4 instructions or else branch to other copy. */ i = 0 q = p for ; i < 4; i, q = i+1, q.Link { if q == nil { break } if q == *last { break } a = int(q.As) if a == obj.ANOP { i-- continue } if nofollow(a) || pushpop(a) { break // NOTE(rsc): arm does goto copy } if q.Pcond == nil || q.Pcond.Mark != 0 { continue } if a == obj.ACALL || a == ALOOP { continue } for { if p.As == obj.ANOP { p = p.Link continue } q = obj.Copyp(ctxt, p) p = p.Link q.Mark = 1 (*last).Link = q *last = q if int(q.As) != a || q.Pcond == nil || q.Pcond.Mark != 0 { continue } q.As = relinv(q.As) p = q.Pcond q.Pcond = q.Link q.Link = p xfol(ctxt, q.Link, last) p = q.Link if p.Mark != 0 { return } goto loop /* */ } } q = ctxt.NewProg() q.As = obj.AJMP q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.To.Offset = p.Pc q.Pcond = p p = q } /* emit p */ p.Mark = 1 (*last).Link = p *last = p a = int(p.As) /* continue loop with what comes after p */ if nofollow(a) { return } if p.Pcond != nil && a != obj.ACALL { /* * some kind of conditional branch. * recurse to follow one path. * continue loop on the other. */ q = obj.Brchain(ctxt, p.Pcond) if q != nil { p.Pcond = q } q = obj.Brchain(ctxt, p.Link) if q != nil { p.Link = q } if p.From.Type == obj.TYPE_CONST { if p.From.Offset == 1 { /* * expect conditional jump to be taken. * rewrite so that's the fall-through case. */ p.As = relinv(int16(a)) q = p.Link p.Link = p.Pcond p.Pcond = q } } else { q = p.Link if q.Mark != 0 { if a != ALOOP { p.As = relinv(int16(a)) p.Link = p.Pcond p.Pcond = q } } } xfol(ctxt, p.Link, last) if p.Pcond.Mark != 0 { return } p = p.Pcond goto loop } p = p.Link goto loop } var unaryDst = map[int]bool{ ABSWAPL: true, ABSWAPQ: true, ACMPXCHG8B: true, ADECB: true, ADECL: true, ADECQ: true, ADECW: true, AINCB: true, AINCL: true, AINCQ: true, AINCW: true, ANEGB: true, ANEGL: true, ANEGQ: true, ANEGW: true, ANOTB: true, ANOTL: true, ANOTQ: true, ANOTW: true, APOPL: true, APOPQ: true, APOPW: true, ASETCC: true, ASETCS: true, ASETEQ: true, ASETGE: true, ASETGT: true, ASETHI: true, ASETLE: true, ASETLS: true, ASETLT: true, ASETMI: true, ASETNE: true, ASETOC: true, ASETOS: true, ASETPC: true, ASETPL: true, ASETPS: true, AFFREE: true, AFLDENV: true, AFSAVE: true, AFSTCW: true, AFSTENV: true, AFSTSW: true, AFXSAVE: true, AFXSAVE64: true, ASTMXCSR: true, } var Linkamd64 = obj.LinkArch{ ByteOrder: binary.LittleEndian, Name: "amd64", Thechar: '6', Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, Minlc: 1, Ptrsize: 8, Regsize: 8, } var Linkamd64p32 = obj.LinkArch{ ByteOrder: binary.LittleEndian, Name: "amd64p32", Thechar: '6', Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, Minlc: 1, Ptrsize: 4, Regsize: 8, } var Link386 = obj.LinkArch{ ByteOrder: binary.LittleEndian, Name: "386", Thechar: '8', Preprocess: preprocess, Assemble: span6, Follow: follow, Progedit: progedit, UnaryDst: unaryDst, Minlc: 1, Ptrsize: 4, Regsize: 4, }
// Called after regopt and peep have run. // Expand CHECKNIL pseudo-op into actual nil pointer check. func expandchecks(firstp *obj.Prog) { var p1 *obj.Prog var p2 *obj.Prog for p := (*obj.Prog)(firstp); p != nil; p = p.Link { if gc.Debug_checknil != 0 && gc.Ctxt.Debugvlog != 0 { fmt.Printf("expandchecks: %v\n", p) } if p.As != obj.ACHECKNIL { continue } if gc.Debug_checknil != 0 && p.Lineno > 1 { // p->lineno==1 in generated wrappers gc.Warnl(int(p.Lineno), "generated nil check") } if p.From.Type != obj.TYPE_REG { gc.Fatalf("invalid nil check %v\n", p) } /* // check is // TD $4, R0, arg (R0 is always zero) // eqv. to: // tdeq r0, arg // NOTE: this needs special runtime support to make SIGTRAP recoverable. reg = p->from.reg; p->as = ATD; p->from = p->to = p->from3 = zprog.from; p->from.type = TYPE_CONST; p->from.offset = 4; p->from.reg = 0; p->reg = REGZERO; p->to.type = TYPE_REG; p->to.reg = reg; */ // check is // CMP arg, R0 // BNE 2(PC) [likely] // MOVD R0, 0(R0) p1 = gc.Ctxt.NewProg() p2 = gc.Ctxt.NewProg() gc.Clearp(p1) gc.Clearp(p2) p1.Link = p2 p2.Link = p.Link p.Link = p1 p1.Lineno = p.Lineno p2.Lineno = p.Lineno p1.Pc = 9999 p2.Pc = 9999 p.As = ppc64.ACMP p.To.Type = obj.TYPE_REG p.To.Reg = ppc64.REGZERO p1.As = ppc64.ABNE //p1->from.type = TYPE_CONST; //p1->from.offset = 1; // likely p1.To.Type = obj.TYPE_BRANCH p1.To.Val = p2.Link // crash by write to memory address 0. p2.As = ppc64.AMOVD p2.From.Type = obj.TYPE_REG p2.From.Reg = ppc64.REGZERO p2.To.Type = obj.TYPE_MEM p2.To.Reg = ppc64.REGZERO p2.To.Offset = 0 } }
func progedit(ctxt *obj.Link, p *obj.Prog) { // Maintain information about code generation mode. if ctxt.Mode == 0 { ctxt.Mode = ctxt.Arch.Regsize * 8 } p.Mode = int8(ctxt.Mode) switch p.As { case AMODE: if p.From.Type == obj.TYPE_CONST || (p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_NONE) { switch int(p.From.Offset) { case 16, 32, 64: ctxt.Mode = int(p.From.Offset) } } obj.Nopout(p) } // Thread-local storage references use the TLS pseudo-register. // As a register, TLS refers to the thread-local storage base, and it // can only be loaded into another register: // // MOVQ TLS, AX // // An offset from the thread-local storage base is written off(reg)(TLS*1). // Semantically it is off(reg), but the (TLS*1) annotation marks this as // indexing from the loaded TLS base. This emits a relocation so that // if the linker needs to adjust the offset, it can. For example: // // MOVQ TLS, AX // MOVQ 0(AX)(TLS*1), CX // load g into CX // // On systems that support direct access to the TLS memory, this // pair of instructions can be reduced to a direct TLS memory reference: // // MOVQ 0(TLS), CX // load g into CX // // The 2-instruction and 1-instruction forms correspond to the two code // sequences for loading a TLS variable in the local exec model given in "ELF // Handling For Thread-Local Storage". // // We apply this rewrite on systems that support the 1-instruction form. // The decision is made using only the operating system and the -shared flag, // not the link mode. If some link modes on a particular operating system // require the 2-instruction form, then all builds for that operating system // will use the 2-instruction form, so that the link mode decision can be // delayed to link time. // // In this way, all supported systems use identical instructions to // access TLS, and they are rewritten appropriately first here in // liblink and then finally using relocations in the linker. // // When -shared is passed, we leave the code in the 2-instruction form but // assemble (and relocate) them in different ways to generate the initial // exec code sequence. It's a bit of a fluke that this is possible without // rewriting the instructions more comprehensively, and it only does because // we only support a single TLS variable (g). if canuse1insntls(ctxt) { // Reduce 2-instruction sequence to 1-instruction sequence. // Sequences like // MOVQ TLS, BX // ... off(BX)(TLS*1) ... // become // NOP // ... off(TLS) ... // // TODO(rsc): Remove the Hsolaris special case. It exists only to // guarantee we are producing byte-identical binaries as before this code. // But it should be unnecessary. if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_REG && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 && ctxt.Headtype != obj.Hsolaris { obj.Nopout(p) } if p.From.Type == obj.TYPE_MEM && p.From.Index == REG_TLS && REG_AX <= p.From.Reg && p.From.Reg <= REG_R15 { p.From.Reg = REG_TLS p.From.Scale = 0 p.From.Index = REG_NONE } if p.To.Type == obj.TYPE_MEM && p.To.Index == REG_TLS && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { p.To.Reg = REG_TLS p.To.Scale = 0 p.To.Index = REG_NONE } } else { // load_g_cx, below, always inserts the 1-instruction sequence. Rewrite it // as the 2-instruction sequence if necessary. // MOVQ 0(TLS), BX // becomes // MOVQ TLS, BX // MOVQ 0(BX)(TLS*1), BX if (p.As == AMOVQ || p.As == AMOVL) && p.From.Type == obj.TYPE_MEM && p.From.Reg == REG_TLS && p.To.Type == obj.TYPE_REG && REG_AX <= p.To.Reg && p.To.Reg <= REG_R15 { q := obj.Appendp(ctxt, p) q.As = p.As q.From = p.From q.From.Type = obj.TYPE_MEM q.From.Reg = p.To.Reg q.From.Index = REG_TLS q.From.Scale = 2 // TODO: use 1 q.To = p.To p.From.Type = obj.TYPE_REG p.From.Reg = REG_TLS p.From.Index = REG_NONE p.From.Offset = 0 } } // TODO: Remove. if ctxt.Headtype == obj.Hwindows && p.Mode == 64 || ctxt.Headtype == obj.Hplan9 { if p.From.Scale == 1 && p.From.Index == REG_TLS { p.From.Scale = 2 } if p.To.Scale == 1 && p.To.Index == REG_TLS { p.To.Scale = 2 } } // Rewrite 0 to $0 in 3rd argment to CMPPS etc. // That's what the tables expect. switch p.As { case ACMPPD, ACMPPS, ACMPSD, ACMPSS: if p.To.Type == obj.TYPE_MEM && p.To.Name == obj.NAME_NONE && p.To.Reg == REG_NONE && p.To.Index == REG_NONE && p.To.Sym == nil { p.To.Type = obj.TYPE_CONST } } // Rewrite CALL/JMP/RET to symbol as TYPE_BRANCH. switch p.As { case obj.ACALL, obj.AJMP, obj.ARET: if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Rewrite MOVL/MOVQ $XXX(FP/SP) as LEAL/LEAQ. if p.From.Type == obj.TYPE_ADDR && (ctxt.Arch.Thechar == '6' || p.From.Name != obj.NAME_EXTERN && p.From.Name != obj.NAME_STATIC) { switch p.As { case AMOVL: p.As = ALEAL p.From.Type = obj.TYPE_MEM case AMOVQ: p.As = ALEAQ p.From.Type = obj.TYPE_MEM } } if ctxt.Headtype == obj.Hnacl && p.Mode == 64 { if p.From3 != nil { nacladdr(ctxt, p, p.From3) } nacladdr(ctxt, p, &p.From) nacladdr(ctxt, p, &p.To) } // Rewrite float constants to values stored in memory. switch p.As { // Convert AMOVSS $(0), Xx to AXORPS Xx, Xx case AMOVSS: if p.From.Type == obj.TYPE_FCONST { if p.From.Val.(float64) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVF, AFADDF, AFSUBF, AFSUBRF, AFMULF, AFDIVF, AFDIVRF, AFCOMF, AFCOMFP, AADDSS, ASUBSS, AMULSS, ADIVSS, ACOMISS, AUCOMISS: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", i32) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Local = true p.From.Offset = 0 } case AMOVSD: // Convert AMOVSD $(0), Xx to AXORPS Xx, Xx if p.From.Type == obj.TYPE_FCONST { if p.From.Val.(float64) == 0 { if p.To.Type == obj.TYPE_REG && REG_X0 <= p.To.Reg && p.To.Reg <= REG_X15 { p.As = AXORPS p.From = p.To break } } } fallthrough case AFMOVD, AFADDD, AFSUBD, AFSUBRD, AFMULD, AFDIVD, AFDIVRD, AFCOMD, AFCOMDP, AADDSD, ASUBSD, AMULSD, ADIVSD, ACOMISD, AUCOMISD: if p.From.Type == obj.TYPE_FCONST { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", i64) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_EXTERN p.From.Sym = s p.From.Sym.Local = true p.From.Offset = 0 } } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p) } if ctxt.Flag_shared != 0 && p.Mode == 32 { rewriteToPcrel(ctxt, p) } }
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog { // MOVW g_stackguard(g), R1 p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_MEM p.From.Reg = REGG p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 if framesize <= obj.StackSmall { // small stack: SP < stackguard // CMP stackguard, SP p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.Reg = REGSP } else if framesize <= obj.StackBig { // large stack: SP-framesize < stackguard-StackSmall // MOVW $-framesize(SP), R2 // CMP stackguard, R2 p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_ADDR p.From.Reg = REGSP p.From.Offset = int64(-framesize) p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.Reg = REG_R2 } else { // Such a large stack we need to protect against wraparound // if SP is close to zero. // SP-stackguard+StackGuard < framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // CMP $StackPreempt, R1 // MOVW.NE $StackGuard(SP), R2 // SUB.NE R1, R2 // MOVW.NE $(framesize+(StackGuard-StackSmall)), R3 // CMP.NE R3, R2 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_CONST p.From.Offset = int64(uint32(obj.StackPreempt & (1<<32 - 1))) p.Reg = REG_R1 p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_ADDR p.From.Reg = REGSP p.From.Offset = obj.StackGuard p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p.Scond = C_SCOND_NE p = obj.Appendp(ctxt, p) p.As = ASUB p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p.Scond = C_SCOND_NE p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_ADDR p.From.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall) p.To.Type = obj.TYPE_REG p.To.Reg = REG_R3 p.Scond = C_SCOND_NE p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R3 p.Reg = REG_R2 p.Scond = C_SCOND_NE } // BLS call-to-morestack bls := obj.Appendp(ctxt, p) bls.As = ABLS bls.To.Type = obj.TYPE_BRANCH var last *obj.Prog for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link { } spfix := obj.Appendp(ctxt, last) spfix.As = obj.ANOP spfix.Spadj = -framesize // MOVW LR, R3 movw := obj.Appendp(ctxt, spfix) movw.As = AMOVW movw.From.Type = obj.TYPE_REG movw.From.Reg = REGLINK movw.To.Type = obj.TYPE_REG movw.To.Reg = REG_R3 bls.Pcond = movw // BL runtime.morestack call := obj.Appendp(ctxt, movw) call.As = obj.ACALL call.To.Type = obj.TYPE_BRANCH morestack := "runtime.morestack" switch { case ctxt.Cursym.Cfunc != 0: morestack = "runtime.morestackc" case ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0: morestack = "runtime.morestack_noctxt" } call.To.Sym = obj.Linklookup(ctxt, morestack, 0) // B start b := obj.Appendp(ctxt, call) b.As = obj.AJMP b.To.Type = obj.TYPE_BRANCH b.Pcond = ctxt.Cursym.Text.Link b.Spadj = +framesize return bls }
// UNUSED func peep(firstp *obj.Prog) { g := (*gc.Graph)(gc.Flowstart(firstp, nil)) if g == nil { return } gactive = 0 var r *gc.Flow var p *obj.Prog var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { /* * elide shift into TYPE_SHIFT operand of subsequent instruction */ // if(shiftprop(r)) { // excise(r); // t++; // break; // } case arm.ASLL, arm.ASRL, arm.ASRA: break case arm.AMOVB, arm.AMOVH, arm.AMOVW, arm.AMOVF, arm.AMOVD: if regtyp(&p.From) { if p.From.Type == p.To.Type && isfloatreg(&p.From) == isfloatreg(&p.To) { if p.Scond == arm.C_SCOND_NONE { if copyprop(g, r) { excise(r) t++ break } if subprop(r) && copyprop(g, r) { excise(r) t++ break } } } } case arm.AMOVHS, arm.AMOVHU, arm.AMOVBS, arm.AMOVBU: if p.From.Type == obj.TYPE_REG { if shortprop(r) { t++ } } } } /* if(p->scond == C_SCOND_NONE) if(regtyp(&p->to)) if(isdconst(&p->from)) { constprop(&p->from, &p->to, r->s1); } break; */ if t != 0 { goto loop1 } for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { /* * EOR -1,x,y => MVN x,y */ case arm.AEOR: if isdconst(&p.From) && p.From.Offset == -1 { p.As = arm.AMVN p.From.Type = obj.TYPE_REG if p.Reg != 0 { p.From.Reg = p.Reg } else { p.From.Reg = p.To.Reg } p.Reg = 0 } } } for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case arm.AMOVW, arm.AMOVB, arm.AMOVBS, arm.AMOVBU: if p.From.Type == obj.TYPE_MEM && p.From.Offset == 0 { xtramodes(g, r, &p.From) } else if p.To.Type == obj.TYPE_MEM && p.To.Offset == 0 { xtramodes(g, r, &p.To) } else { continue } } } // case ACMP: // /* // * elide CMP $0,x if calculation of x can set condition codes // */ // if(isdconst(&p->from) || p->from.offset != 0) // continue; // r2 = r->s1; // if(r2 == nil) // continue; // t = r2->prog->as; // switch(t) { // default: // continue; // case ABEQ: // case ABNE: // case ABMI: // case ABPL: // break; // case ABGE: // t = ABPL; // break; // case ABLT: // t = ABMI; // break; // case ABHI: // t = ABNE; // break; // case ABLS: // t = ABEQ; // break; // } // r1 = r; // do // r1 = uniqp(r1); // while (r1 != nil && r1->prog->as == ANOP); // if(r1 == nil) // continue; // p1 = r1->prog; // if(p1->to.type != TYPE_REG) // continue; // if(p1->to.reg != p->reg) // if(!(p1->as == AMOVW && p1->from.type == TYPE_REG && p1->from.reg == p->reg)) // continue; // // switch(p1->as) { // default: // continue; // case AMOVW: // if(p1->from.type != TYPE_REG) // continue; // case AAND: // case AEOR: // case AORR: // case ABIC: // case AMVN: // case ASUB: // case ARSB: // case AADD: // case AADC: // case ASBC: // case ARSC: // break; // } // p1->scond |= C_SBIT; // r2->prog->as = t; // excise(r); // continue; // predicate(g); gc.Flowend(g) }
// movb elimination. // movb is simulated by the linker // when a register other than ax, bx, cx, dx // is used, so rewrite to other instructions // when possible. a movb into a register // can smash the entire 64-bit register without // causing any trouble. func elimshortmov(g *gc.Graph) { var p *obj.Prog for r := g.Start; r != nil; r = r.Link { p = r.Prog if regtyp(&p.To) { switch p.As { case x86.AINCB, x86.AINCW: p.As = x86.AINCL case x86.ADECB, x86.ADECW: p.As = x86.ADECL case x86.ANEGB, x86.ANEGW: p.As = x86.ANEGL case x86.ANOTB, x86.ANOTW: p.As = x86.ANOTL } if regtyp(&p.From) || p.From.Type == obj.TYPE_CONST { // move or artihmetic into partial register. // from another register or constant can be movl. // we don't switch to 32-bit arithmetic if it can // change how the carry bit is set (and the carry bit is needed). switch p.As { case x86.AMOVB, x86.AMOVW: p.As = x86.AMOVL case x86.AADDB, x86.AADDW: if !needc(p.Link) { p.As = x86.AADDL } case x86.ASUBB, x86.ASUBW: if !needc(p.Link) { p.As = x86.ASUBL } case x86.AMULB, x86.AMULW: p.As = x86.AMULL case x86.AIMULB, x86.AIMULW: p.As = x86.AIMULL case x86.AANDB, x86.AANDW: p.As = x86.AANDL case x86.AORB, x86.AORW: p.As = x86.AORL case x86.AXORB, x86.AXORW: p.As = x86.AXORL case x86.ASHLB, x86.ASHLW: p.As = x86.ASHLL } } else { // explicit zero extension switch p.As { case x86.AMOVB: p.As = x86.AMOVBLZX case x86.AMOVW: p.As = x86.AMOVWLZX } } } } }
// Rewrite p, if necessary, to access global data via the global offset table. func rewriteToUseGot(ctxt *obj.Link, p *obj.Prog) { if p.As == obj.ADUFFCOPY || p.As == obj.ADUFFZERO { // ADUFFxxx $offset // becomes // MOVW runtime.duffxxx@GOT, R9 // ADD $offset, R9 // CALL (R9) var sym *obj.LSym if p.As == obj.ADUFFZERO { sym = obj.Linklookup(ctxt, "runtime.duffzero", 0) } else { sym = obj.Linklookup(ctxt, "runtime.duffcopy", 0) } offset := p.To.Offset p.As = AMOVW p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF p.From.Sym = sym p.To.Type = obj.TYPE_REG p.To.Reg = REG_R9 p.To.Name = obj.NAME_NONE p.To.Offset = 0 p.To.Sym = nil p1 := obj.Appendp(ctxt, p) p1.As = AADD p1.From.Type = obj.TYPE_CONST p1.From.Offset = offset p1.To.Type = obj.TYPE_REG p1.To.Reg = REG_R9 p2 := obj.Appendp(ctxt, p1) p2.As = obj.ACALL p2.To.Type = obj.TYPE_MEM p2.To.Reg = REG_R9 return } // We only care about global data: NAME_EXTERN means a global // symbol in the Go sense, and p.Sym.Local is true for a few // internally defined symbols. if p.From.Type == obj.TYPE_ADDR && p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local { // MOVW $sym, Rx becomes MOVW sym@GOT, Rx // MOVW $sym+<off>, Rx becomes MOVW sym@GOT, Rx; ADD <off>, Rx if p.As != AMOVW { ctxt.Diag("do not know how to handle TYPE_ADDR in %v with -dynlink", p) } if p.To.Type != obj.TYPE_REG { ctxt.Diag("do not know how to handle LEAQ-type insn to non-register in %v with -dynlink", p) } p.From.Type = obj.TYPE_MEM p.From.Name = obj.NAME_GOTREF if p.From.Offset != 0 { q := obj.Appendp(ctxt, p) q.As = AADD q.From.Type = obj.TYPE_CONST q.From.Offset = p.From.Offset q.To = p.To p.From.Offset = 0 } } if p.From3 != nil && p.From3.Name == obj.NAME_EXTERN { ctxt.Diag("don't know how to handle %v with -dynlink", p) } var source *obj.Addr // MOVx sym, Ry becomes MOVW sym@GOT, R9; MOVx (R9), Ry // MOVx Ry, sym becomes MOVW sym@GOT, R9; MOVx Ry, (R9) // An addition may be inserted between the two MOVs if there is an offset. if p.From.Name == obj.NAME_EXTERN && !p.From.Sym.Local { if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local { ctxt.Diag("cannot handle NAME_EXTERN on both sides in %v with -dynlink", p) } source = &p.From } else if p.To.Name == obj.NAME_EXTERN && !p.To.Sym.Local { source = &p.To } else { return } if p.As == obj.ATEXT || p.As == obj.AFUNCDATA || p.As == obj.ACALL || p.As == obj.ARET || p.As == obj.AJMP { return } if source.Sym.Type == obj.STLSBSS { return } if source.Type != obj.TYPE_MEM { ctxt.Diag("don't know how to handle %v with -dynlink", p) } p1 := obj.Appendp(ctxt, p) p2 := obj.Appendp(ctxt, p1) p1.As = AMOVW p1.From.Type = obj.TYPE_MEM p1.From.Sym = source.Sym p1.From.Name = obj.NAME_GOTREF p1.To.Type = obj.TYPE_REG p1.To.Reg = REG_R9 p2.As = p.As p2.From = p.From p2.To = p.To if p.From.Name == obj.NAME_EXTERN { p2.From.Reg = REG_R9 p2.From.Name = obj.NAME_NONE p2.From.Sym = nil } else if p.To.Name == obj.NAME_EXTERN { p2.To.Reg = REG_R9 p2.To.Name = obj.NAME_NONE p2.To.Sym = nil } else { return } obj.Nopout(p) }
func stacksplit(ctxt *obj.Link, p *obj.Prog, framesize int32) *obj.Prog { // MOV g_stackguard(g), R1 p = obj.Appendp(ctxt, p) p.As = AMOVD p.From.Type = obj.TYPE_MEM p.From.Reg = REGG p.From.Offset = 2 * int64(ctxt.Arch.Ptrsize) // G.stackguard0 if ctxt.Cursym.Cfunc != 0 { p.From.Offset = 3 * int64(ctxt.Arch.Ptrsize) // G.stackguard1 } p.To.Type = obj.TYPE_REG p.To.Reg = REG_R1 q := (*obj.Prog)(nil) if framesize <= obj.StackSmall { // small stack: SP < stackguard // MOV SP, R2 // CMP stackguard, R2 p = obj.Appendp(ctxt, p) p.As = AMOVD p.From.Type = obj.TYPE_REG p.From.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.Reg = REG_R2 } else if framesize <= obj.StackBig { // large stack: SP-framesize < stackguard-StackSmall // SUB $framesize, SP, R2 // CMP stackguard, R2 p = obj.Appendp(ctxt, p) p.As = ASUB p.From.Type = obj.TYPE_CONST p.From.Offset = int64(framesize) p.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.Reg = REG_R2 } else { // Such a large stack we need to protect against wraparound // if SP is close to zero. // SP-stackguard+StackGuard < framesize + (StackGuard-StackSmall) // The +StackGuard on both sides is required to keep the left side positive: // SP is allowed to be slightly below stackguard. See stack.h. // CMP $StackPreempt, R1 // BEQ label_of_call_to_morestack // ADD $StackGuard, SP, R2 // SUB R1, R2 // MOV $(framesize+(StackGuard-StackSmall)), R3 // CMP R3, R2 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_CONST p.From.Offset = obj.StackPreempt p.Reg = REG_R1 p = obj.Appendp(ctxt, p) q = p p.As = ABEQ p.To.Type = obj.TYPE_BRANCH p = obj.Appendp(ctxt, p) p.As = AADD p.From.Type = obj.TYPE_CONST p.From.Offset = obj.StackGuard p.Reg = REGSP p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = ASUB p.From.Type = obj.TYPE_REG p.From.Reg = REG_R1 p.To.Type = obj.TYPE_REG p.To.Reg = REG_R2 p = obj.Appendp(ctxt, p) p.As = AMOVD p.From.Type = obj.TYPE_CONST p.From.Offset = int64(framesize) + (obj.StackGuard - obj.StackSmall) p.To.Type = obj.TYPE_REG p.To.Reg = REG_R3 p = obj.Appendp(ctxt, p) p.As = ACMP p.From.Type = obj.TYPE_REG p.From.Reg = REG_R3 p.Reg = REG_R2 } // BLS do-morestack bls := obj.Appendp(ctxt, p) bls.As = ABLS bls.To.Type = obj.TYPE_BRANCH var last *obj.Prog for last = ctxt.Cursym.Text; last.Link != nil; last = last.Link { } spfix := obj.Appendp(ctxt, last) spfix.As = obj.ANOP spfix.Spadj = -framesize // MOV LR, R3 movlr := obj.Appendp(ctxt, spfix) movlr.As = AMOVD movlr.From.Type = obj.TYPE_REG movlr.From.Reg = REGLINK movlr.To.Type = obj.TYPE_REG movlr.To.Reg = REG_R3 if q != nil { q.Pcond = movlr } bls.Pcond = movlr debug := movlr if false { debug = obj.Appendp(ctxt, debug) debug.As = AMOVD debug.From.Type = obj.TYPE_CONST debug.From.Offset = int64(framesize) debug.To.Type = obj.TYPE_REG debug.To.Reg = REGTMP } // BL runtime.morestack(SB) call := obj.Appendp(ctxt, debug) call.As = ABL call.To.Type = obj.TYPE_BRANCH morestack := "runtime.morestack" switch { case ctxt.Cursym.Cfunc != 0: morestack = "runtime.morestackc" case ctxt.Cursym.Text.From3.Offset&obj.NEEDCTXT == 0: morestack = "runtime.morestack_noctxt" } call.To.Sym = obj.Linklookup(ctxt, morestack, 0) // B start jmp := obj.Appendp(ctxt, call) jmp.As = AB jmp.To.Type = obj.TYPE_BRANCH jmp.Pcond = ctxt.Cursym.Text.Link jmp.Spadj = +framesize // placeholder for bls's jump target // p = obj.Appendp(ctxt, p) // p.As = obj.ANOP return bls }
func progedit(ctxt *obj.Link, p *obj.Prog) { p.From.Class = 0 p.To.Class = 0 // Rewrite B/BL to symbol as TYPE_BRANCH. switch p.As { case AB, ABL, obj.ADUFFZERO, obj.ADUFFCOPY: if p.To.Type == obj.TYPE_MEM && (p.To.Name == obj.NAME_EXTERN || p.To.Name == obj.NAME_STATIC) && p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } } // Replace TLS register fetches on older ARM procesors. switch p.As { // Treat MRC 15, 0, <reg>, C13, C0, 3 specially. case AMRC: if p.To.Offset&0xffff0fff == 0xee1d0f70 { // Because the instruction might be rewriten to a BL which returns in R0 // the register must be zero. if p.To.Offset&0xf000 != 0 { ctxt.Diag("%v: TLS MRC instruction must write to R0 as it might get translated into a BL instruction", p.Line()) } if ctxt.Goarm < 7 { // Replace it with BL runtime.read_tls_fallback(SB) for ARM CPUs that lack the tls extension. if progedit_tlsfallback == nil { progedit_tlsfallback = obj.Linklookup(ctxt, "runtime.read_tls_fallback", 0) } // MOVW LR, R11 p.As = AMOVW p.From.Type = obj.TYPE_REG p.From.Reg = REGLINK p.To.Type = obj.TYPE_REG p.To.Reg = REGTMP // BL runtime.read_tls_fallback(SB) p = obj.Appendp(ctxt, p) p.As = ABL p.To.Type = obj.TYPE_BRANCH p.To.Sym = progedit_tlsfallback p.To.Offset = 0 // MOVW R11, LR p = obj.Appendp(ctxt, p) p.As = AMOVW p.From.Type = obj.TYPE_REG p.From.Reg = REGTMP p.To.Type = obj.TYPE_REG p.To.Reg = REGLINK break } } // Otherwise, MRC/MCR instructions need no further treatment. p.As = AWORD } // Rewrite float constants to values stored in memory. switch p.As { case AMOVF: if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", i32) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } case AMOVD: if p.From.Type == obj.TYPE_FCONST && chipfloat5(ctxt, p.From.Val.(float64)) < 0 && (chipzero5(ctxt, p.From.Val.(float64)) < 0 || p.Scond&C_SCOND != C_SCOND_NONE) { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", i64) s := obj.Linklookup(ctxt, literal, 0) p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p) } }
func peep(firstp *obj.Prog) { g := (*gc.Graph)(gc.Flowstart(firstp, nil)) if g == nil { return } gactive = 0 // byte, word arithmetic elimination. elimshortmov(g) // constant propagation // find MOV $con,R followed by // another MOV $con,R without // setting R in the interim var p *obj.Prog for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.ALEAL, x86.ALEAQ: if regtyp(&p.To) { if p.From.Sym != nil { if p.From.Index == x86.REG_NONE { conprop(r) } } } case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if p.From.Type == obj.TYPE_CONST || p.From.Type == obj.TYPE_FCONST { conprop(r) } } } } var r *gc.Flow var r1 *gc.Flow var p1 *obj.Prog var t int loop1: if gc.Debug['P'] != 0 && gc.Debug['v'] != 0 { gc.Dumpit("loop1", g.Start, 0) } t = 0 for r = g.Start; r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVL, x86.AMOVQ, x86.AMOVSS, x86.AMOVSD: if regtyp(&p.To) { if regtyp(&p.From) { if copyprop(g, r) { excise(r) t++ } else if subprop(r) && copyprop(g, r) { excise(r) t++ } } } case x86.AMOVBLZX, x86.AMOVWLZX, x86.AMOVBLSX, x86.AMOVWLSX: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVL t++ } } } case x86.AMOVBQSX, x86.AMOVBQZX, x86.AMOVWQSX, x86.AMOVWQZX, x86.AMOVLQSX, x86.AMOVLQZX, x86.AMOVQL: if regtyp(&p.To) { r1 = rnops(gc.Uniqs(r)) if r1 != nil { p1 = r1.Prog if p.As == p1.As && p.To.Type == p1.From.Type && p.To.Reg == p1.From.Reg { p1.As = x86.AMOVQ t++ } } } case x86.AADDL, x86.AADDQ, x86.AADDW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.AADDQ { p.As = x86.ADECQ } else if p.As == x86.AADDL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.AADDQ { p.As = x86.AINCQ } else if p.As == x86.AADDL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } case x86.ASUBL, x86.ASUBQ, x86.ASUBW: if p.From.Type != obj.TYPE_CONST || needc(p.Link) { break } if p.From.Offset == -1 { if p.As == x86.ASUBQ { p.As = x86.AINCQ } else if p.As == x86.ASUBL { p.As = x86.AINCL } else { p.As = x86.AINCW } p.From = obj.Addr{} break } if p.From.Offset == 1 { if p.As == x86.ASUBQ { p.As = x86.ADECQ } else if p.As == x86.ASUBL { p.As = x86.ADECL } else { p.As = x86.ADECW } p.From = obj.Addr{} break } } } if t != 0 { goto loop1 } // MOVLQZX removal. // The MOVLQZX exists to avoid being confused for a // MOVL that is just copying 32-bit data around during // copyprop. Now that copyprop is done, remov MOVLQZX R1, R2 // if it is dominated by an earlier ADDL/MOVL/etc into R1 that // will have already cleared the high bits. // // MOVSD removal. // We never use packed registers, so a MOVSD between registers // can be replaced by MOVAPD, which moves the pair of float64s // instead of just the lower one. We only use the lower one, but // the processor can do better if we do moves using both. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog if p.As == x86.AMOVLQZX { if regtyp(&p.From) { if p.From.Type == p.To.Type && p.From.Reg == p.To.Reg { if prevl(r, int(p.From.Reg)) { excise(r) } } } } if p.As == x86.AMOVSD { if regtyp(&p.From) { if regtyp(&p.To) { p.As = x86.AMOVAPD } } } } // load pipelining // push any load from memory as early as possible // to give it time to complete before use. for r := (*gc.Flow)(g.Start); r != nil; r = r.Link { p = r.Prog switch p.As { case x86.AMOVB, x86.AMOVW, x86.AMOVL, x86.AMOVQ, x86.AMOVLQZX: if regtyp(&p.To) && !regconsttyp(&p.From) { pushback(r) } } } gc.Flowend(g) }
func xfol(ctxt *obj.Link, p *obj.Prog, last **obj.Prog) { var q *obj.Prog var r *obj.Prog var a int var i int loop: if p == nil { return } a = int(p.As) if a == AB { q = p.Pcond if q != nil && q.As != obj.ATEXT { p.Mark |= FOLL p = q if p.Mark&FOLL == 0 { goto loop } } } if p.Mark&FOLL != 0 { i = 0 q = p for ; i < 4; i, q = i+1, q.Link { if q == *last || q == nil { break } a = int(q.As) if a == obj.ANOP { i-- continue } if a == AB || (a == obj.ARET && q.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF { goto copy } if q.Pcond == nil || (q.Pcond.Mark&FOLL != 0) { continue } if a != ABEQ && a != ABNE { continue } copy: for { r = ctxt.NewProg() *r = *p if r.Mark&FOLL == 0 { fmt.Printf("can't happen 1\n") } r.Mark |= FOLL if p != q { p = p.Link (*last).Link = r *last = r continue } (*last).Link = r *last = r if a == AB || (a == obj.ARET && q.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF { return } r.As = ABNE if a == ABNE { r.As = ABEQ } r.Pcond = p.Link r.Link = p.Pcond if r.Link.Mark&FOLL == 0 { xfol(ctxt, r.Link, last) } if r.Pcond.Mark&FOLL == 0 { fmt.Printf("can't happen 2\n") } return } } a = AB q = ctxt.NewProg() q.As = int16(a) q.Lineno = p.Lineno q.To.Type = obj.TYPE_BRANCH q.To.Offset = p.Pc q.Pcond = p p = q } p.Mark |= FOLL (*last).Link = p *last = p if a == AB || (a == obj.ARET && p.Scond == C_SCOND_NONE) || a == ARFE || a == obj.AUNDEF { return } if p.Pcond != nil { if a != ABL && a != ABX && p.Link != nil { q = obj.Brchain(ctxt, p.Link) if a != obj.ATEXT { if q != nil && (q.Mark&FOLL != 0) { p.As = int16(relinv(a)) p.Link = p.Pcond p.Pcond = q } } xfol(ctxt, p.Link, last) q = obj.Brchain(ctxt, p.Pcond) if q == nil { q = p.Pcond } if q.Mark&FOLL != 0 { p.Pcond = q return } p = q goto loop } } p = p.Link goto loop }
func progedit(ctxt *obj.Link, p *obj.Prog) { p.From.Class = 0 p.To.Class = 0 // $0 results in C_ZCON, which matches both C_REG and various // C_xCON, however the C_REG cases in asmout don't expect a // constant, so they will use the register fields and assemble // a R0. To prevent that, rewrite $0 as ZR. if p.From.Type == obj.TYPE_CONST && p.From.Offset == 0 { p.From.Type = obj.TYPE_REG p.From.Reg = REGZERO } if p.To.Type == obj.TYPE_CONST && p.To.Offset == 0 { p.To.Type = obj.TYPE_REG p.To.Reg = REGZERO } // Rewrite BR/BL to symbol as TYPE_BRANCH. switch p.As { case AB, ABL, obj.ARET, obj.ADUFFZERO, obj.ADUFFCOPY: if p.To.Sym != nil { p.To.Type = obj.TYPE_BRANCH } break } // Rewrite float constants to values stored in memory. switch p.As { case AFMOVS: if p.From.Type == obj.TYPE_FCONST { f32 := float32(p.From.Val.(float64)) i32 := math.Float32bits(f32) literal := fmt.Sprintf("$f32.%08x", uint32(i32)) s := obj.Linklookup(ctxt, literal, 0) s.Size = 4 p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Sym.Local = true p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } case AFMOVD: if p.From.Type == obj.TYPE_FCONST { i64 := math.Float64bits(p.From.Val.(float64)) literal := fmt.Sprintf("$f64.%016x", uint64(i64)) s := obj.Linklookup(ctxt, literal, 0) s.Size = 8 p.From.Type = obj.TYPE_MEM p.From.Sym = s p.From.Sym.Local = true p.From.Name = obj.NAME_EXTERN p.From.Offset = 0 } break } // Rewrite negative immediates as positive immediates with // complementary instruction. switch p.As { case AADD, AADDW, ASUB, ASUBW, ACMP, ACMPW, ACMN, ACMNW: if p.From.Type == obj.NAME_EXTERN && p.From.Offset < 0 { p.From.Offset = -p.From.Offset p.As = complements[p.As] } break } if ctxt.Flag_dynlink { rewriteToUseGot(ctxt, p) } }