Example #1
0
File: asm.go Project: ckeyer/gosrc
func adddynrel(s *ld.LSym, r *ld.Reloc) {
	targ := r.Sym
	ld.Ctxt.Cursym = s

	switch r.Type {
	default:
		if r.Type >= 256 {
			ld.Diag("unexpected relocation type %d", r.Type)
			return
		}

		// Handle relocations found in ELF object files.
	case 256 + ld.R_386_PC32:
		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected R_386_PC32 relocation for dynamic symbol %s", targ.Name)
		}
		if targ.Type == 0 || targ.Type == obj.SXREF {
			ld.Diag("unknown symbol %s in pcrel", targ.Name)
		}
		r.Type = obj.R_PCREL
		r.Add += 4
		return

	case 256 + ld.R_386_PLT32:
		r.Type = obj.R_PCREL
		r.Add += 4
		if targ.Type == obj.SDYNIMPORT {
			addpltsym(ld.Ctxt, targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add += int64(targ.Plt)
		}

		return

	case 256 + ld.R_386_GOT32, 256 + ld.R_386_GOT32X:
		if targ.Type != obj.SDYNIMPORT {
			// have symbol
			if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
				// turn MOVL of GOT entry into LEAL of symbol address, relative to GOT.
				s.P[r.Off-2] = 0x8d

				r.Type = obj.R_GOTOFF
				return
			}

			if r.Off >= 2 && s.P[r.Off-2] == 0xff && s.P[r.Off-1] == 0xb3 {
				// turn PUSHL of GOT entry into PUSHL of symbol itself.
				// use unnecessary SS prefix to keep instruction same length.
				s.P[r.Off-2] = 0x36

				s.P[r.Off-1] = 0x68
				r.Type = obj.R_ADDR
				return
			}

			ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
			return
		}

		addgotsym(ld.Ctxt, targ)
		r.Type = obj.R_CONST // write r->add during relocsym
		r.Sym = nil
		r.Add += int64(targ.Got)
		return

	case 256 + ld.R_386_GOTOFF:
		r.Type = obj.R_GOTOFF
		return

	case 256 + ld.R_386_GOTPC:
		r.Type = obj.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += 4
		return

	case 256 + ld.R_386_32:
		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected R_386_32 relocation for dynamic symbol %s", targ.Name)
		}
		r.Type = obj.R_ADDR
		return

	case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 0:
		r.Type = obj.R_ADDR
		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_GENERIC_RELOC_VANILLA*2 + 1:
		if targ.Type == obj.SDYNIMPORT {
			addpltsym(ld.Ctxt, targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			r.Type = obj.R_PCREL
			return
		}

		r.Type = obj.R_PCREL
		return

	case 512 + ld.MACHO_FAKE_GOTPCREL:
		if targ.Type != obj.SDYNIMPORT {
			// have symbol
			// turn MOVL of GOT entry into LEAL of symbol itself
			if r.Off < 2 || s.P[r.Off-2] != 0x8b {
				ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
				return
			}

			s.P[r.Off-2] = 0x8d
			r.Type = obj.R_PCREL
			return
		}

		addgotsym(ld.Ctxt, targ)
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += int64(targ.Got)
		r.Type = obj.R_PCREL
		return
	}

	// Handle references to ELF symbols from our own object files.
	if targ.Type != obj.SDYNIMPORT {
		return
	}

	switch r.Type {
	case obj.R_CALL,
		obj.R_PCREL:
		addpltsym(ld.Ctxt, targ)
		r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
		r.Add = int64(targ.Plt)
		return

	case obj.R_ADDR:
		if s.Type != obj.SDATA {
			break
		}
		if ld.Iself {
			ld.Adddynsym(ld.Ctxt, targ)
			rel := ld.Linklookup(ld.Ctxt, ".rel", 0)
			ld.Addaddrplus(ld.Ctxt, rel, s, int64(r.Off))
			ld.Adduint32(ld.Ctxt, rel, ld.ELF32_R_INFO(uint32(targ.Dynid), ld.R_386_32))
			r.Type = obj.R_CONST // write r->add during relocsym
			r.Sym = nil
			return
		}

		if ld.HEADTYPE == obj.Hdarwin && s.Size == PtrSize && r.Off == 0 {
			// Mach-O relocations are a royal pain to lay out.
			// They use a compact stateful bytecode representation
			// that is too much bother to deal with.
			// Instead, interpret the C declaration
			//	void *_Cvar_stderr = &stderr;
			// as making _Cvar_stderr the name of a GOT entry
			// for stderr.  This is separate from the usual GOT entry,
			// just in case the C code assigns to the variable,
			// and of course it only works for single pointers,
			// but we only need to support cgo and that's all it needs.
			ld.Adddynsym(ld.Ctxt, targ)

			got := ld.Linklookup(ld.Ctxt, ".got", 0)
			s.Type = got.Type | obj.SSUB
			s.Outer = got
			s.Sub = got.Sub
			got.Sub = s
			s.Value = got.Size
			ld.Adduint32(ld.Ctxt, got, 0)
			ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(targ.Dynid))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == obj.Hwindows && s.Size == PtrSize {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		}
	}

	ld.Ctxt.Cursym = s
	ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
}
Example #2
0
File: asm.go Project: ckeyer/gosrc
func adddynrel(s *ld.LSym, r *ld.Reloc) {
	targ := r.Sym
	ld.Ctxt.Cursym = s

	switch r.Type {
	default:
		if r.Type >= 256 {
			ld.Diag("unexpected relocation type %d", r.Type)
			return
		}

		// Handle relocations found in ELF object files.
	case 256 + ld.R_X86_64_PC32:
		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected R_X86_64_PC32 relocation for dynamic symbol %s", targ.Name)
		}
		if targ.Type == 0 || targ.Type == obj.SXREF {
			ld.Diag("unknown symbol %s in pcrel", targ.Name)
		}
		r.Type = obj.R_PCREL
		r.Add += 4
		return

	case 256 + ld.R_X86_64_PLT32:
		r.Type = obj.R_PCREL
		r.Add += 4
		if targ.Type == obj.SDYNIMPORT {
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add += int64(targ.Plt)
		}

		return

	case 256 + ld.R_X86_64_GOTPCREL, 256 + ld.R_X86_64_GOTPCRELX, 256 + ld.R_X86_64_REX_GOTPCRELX:
		if targ.Type != obj.SDYNIMPORT {
			// have symbol
			if r.Off >= 2 && s.P[r.Off-2] == 0x8b {
				// turn MOVQ of GOT entry into LEAQ of symbol itself
				s.P[r.Off-2] = 0x8d

				r.Type = obj.R_PCREL
				r.Add += 4
				return
			}
		}

		// fall back to using GOT and hope for the best (CMOV*)
		// TODO: just needs relocation, no need to put in .dynsym
		addgotsym(targ)

		r.Type = obj.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += 4
		r.Add += int64(targ.Got)
		return

	case 256 + ld.R_X86_64_64:
		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected R_X86_64_64 relocation for dynamic symbol %s", targ.Name)
		}
		r.Type = obj.R_ADDR
		return

	// Handle relocations found in Mach-O object files.
	case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 0,
		512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 0,
		512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 0:
		// TODO: What is the difference between all these?
		r.Type = obj.R_ADDR

		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_X86_64_RELOC_BRANCH*2 + 1:
		if targ.Type == obj.SDYNIMPORT {
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			r.Type = obj.R_PCREL
			return
		}
		fallthrough

		// fall through
	case 512 + ld.MACHO_X86_64_RELOC_UNSIGNED*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_1*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_2*2 + 1,
		512 + ld.MACHO_X86_64_RELOC_SIGNED_4*2 + 1:
		r.Type = obj.R_PCREL

		if targ.Type == obj.SDYNIMPORT {
			ld.Diag("unexpected pc-relative reloc for dynamic symbol %s", targ.Name)
		}
		return

	case 512 + ld.MACHO_X86_64_RELOC_GOT_LOAD*2 + 1:
		if targ.Type != obj.SDYNIMPORT {
			// have symbol
			// turn MOVQ of GOT entry into LEAQ of symbol itself
			if r.Off < 2 || s.P[r.Off-2] != 0x8b {
				ld.Diag("unexpected GOT_LOAD reloc for non-dynamic symbol %s", targ.Name)
				return
			}

			s.P[r.Off-2] = 0x8d
			r.Type = obj.R_PCREL
			return
		}
		fallthrough

		// fall through
	case 512 + ld.MACHO_X86_64_RELOC_GOT*2 + 1:
		if targ.Type != obj.SDYNIMPORT {
			ld.Diag("unexpected GOT reloc for non-dynamic symbol %s", targ.Name)
		}
		addgotsym(targ)
		r.Type = obj.R_PCREL
		r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
		r.Add += int64(targ.Got)
		return
	}

	// Handle references to ELF symbols from our own object files.
	if targ.Type != obj.SDYNIMPORT {
		return
	}

	switch r.Type {
	case obj.R_CALL,
		obj.R_PCREL:
		if ld.HEADTYPE == obj.Hwindows {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		} else {
			// for both ELF and Mach-O
			addpltsym(targ)
			r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
			r.Add = int64(targ.Plt)
			return
		}

	case obj.R_ADDR:
		if s.Type == obj.STEXT && ld.Iself {
			if ld.HEADTYPE == obj.Hsolaris {
				addpltsym(targ)
				r.Sym = ld.Linklookup(ld.Ctxt, ".plt", 0)
				r.Add += int64(targ.Plt)
				return
			}
			// The code is asking for the address of an external
			// function.  We provide it with the address of the
			// correspondent GOT symbol.
			addgotsym(targ)

			r.Sym = ld.Linklookup(ld.Ctxt, ".got", 0)
			r.Add += int64(targ.Got)
			return
		}

		if s.Type != obj.SDATA {
			break
		}
		if ld.Iself {
			ld.Adddynsym(ld.Ctxt, targ)
			rela := ld.Linklookup(ld.Ctxt, ".rela", 0)
			ld.Addaddrplus(ld.Ctxt, rela, s, int64(r.Off))
			if r.Siz == 8 {
				ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_64))
			} else {
				ld.Adduint64(ld.Ctxt, rela, ld.ELF64_R_INFO(uint32(targ.Dynid), ld.R_X86_64_32))
			}
			ld.Adduint64(ld.Ctxt, rela, uint64(r.Add))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == obj.Hdarwin && s.Size == int64(ld.Thearch.Ptrsize) && r.Off == 0 {
			// Mach-O relocations are a royal pain to lay out.
			// They use a compact stateful bytecode representation
			// that is too much bother to deal with.
			// Instead, interpret the C declaration
			//	void *_Cvar_stderr = &stderr;
			// as making _Cvar_stderr the name of a GOT entry
			// for stderr.  This is separate from the usual GOT entry,
			// just in case the C code assigns to the variable,
			// and of course it only works for single pointers,
			// but we only need to support cgo and that's all it needs.
			ld.Adddynsym(ld.Ctxt, targ)

			got := ld.Linklookup(ld.Ctxt, ".got", 0)
			s.Type = got.Type | obj.SSUB
			s.Outer = got
			s.Sub = got.Sub
			got.Sub = s
			s.Value = got.Size
			ld.Adduint64(ld.Ctxt, got, 0)
			ld.Adduint32(ld.Ctxt, ld.Linklookup(ld.Ctxt, ".linkedit.got", 0), uint32(targ.Dynid))
			r.Type = 256 // ignore during relocsym
			return
		}

		if ld.HEADTYPE == obj.Hwindows {
			// nothing to do, the relocation will be laid out in pereloc1
			return
		}
	}

	ld.Ctxt.Cursym = s
	ld.Diag("unsupported relocation for dynamic symbol %s (type=%d stype=%d)", targ.Name, r.Type, targ.Type)
}
Example #3
0
File: asm.go Project: ckeyer/gosrc
func genplt() {
	var s *ld.LSym
	var stub *ld.LSym
	var pprevtextp **ld.LSym
	var r *ld.Reloc
	var n string
	var o1 uint32
	var i int

	// The ppc64 ABI PLT has similar concepts to other
	// architectures, but is laid out quite differently.  When we
	// see an R_PPC64_REL24 relocation to a dynamic symbol
	// (indicating that the call needs to go through the PLT), we
	// generate up to three stubs and reserve a PLT slot.
	//
	// 1) The call site will be bl x; nop (where the relocation
	//    applies to the bl).  We rewrite this to bl x_stub; ld
	//    r2,24(r1).  The ld is necessary because x_stub will save
	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
	//
	// 2) We reserve space for a pointer in the .plt section (once
	//    per referenced dynamic function).  .plt is a data
	//    section filled solely by the dynamic linker (more like
	//    .plt.got on other architectures).  Initially, the
	//    dynamic linker will fill each slot with a pointer to the
	//    corresponding x@plt entry point.
	//
	// 3) We generate the "call stub" x_stub (once per dynamic
	//    function/object file pair).  This saves the TOC in the
	//    TOC save slot, reads the function pointer from x's .plt
	//    slot and calls it like any other global entry point
	//    (including setting r12 to the function address).
	//
	// 4) We generate the "symbol resolver stub" x@plt (once per
	//    dynamic function).  This is solely a branch to the glink
	//    resolver stub.
	//
	// 5) We generate the glink resolver stub (only once).  This
	//    computes which symbol resolver stub we came through and
	//    invokes the dynamic resolver via a pointer provided by
	//    the dynamic linker.  This will patch up the .plt slot to
	//    point directly at the function so future calls go
	//    straight from the call stub to the real function, and
	//    then call the function.

	// NOTE: It's possible we could make ppc64 closer to other
	// architectures: ppc64's .plt is like .plt.got on other
	// platforms and ppc64's .glink is like .plt on other
	// platforms.

	// Find all R_PPC64_REL24 relocations that reference dynamic
	// imports.  Reserve PLT entries for these symbols and
	// generate call stubs.  The call stubs need to live in .text,
	// which is why we need to do this pass this early.
	//
	// This assumes "case 1" from the ABI, where the caller needs
	// us to save and restore the TOC pointer.
	pprevtextp = &ld.Ctxt.Textp

	for s = *pprevtextp; s != nil; pprevtextp, s = &s.Next, s.Next {
		for i = range s.R {
			r = &s.R[i]
			if r.Type != 256+ld.R_PPC64_REL24 || r.Sym.Type != obj.SDYNIMPORT {
				continue
			}

			// Reserve PLT entry and generate symbol
			// resolver
			addpltsym(ld.Ctxt, r.Sym)

			// Generate call stub
			n = fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)

			stub = ld.Linklookup(ld.Ctxt, n, 0)
			stub.Reachable = stub.Reachable || s.Reachable
			if stub.Size == 0 {
				// Need outer to resolve .TOC.
				stub.Outer = s

				// Link in to textp before s (we could
				// do it after, but would have to skip
				// the subsymbols)
				*pprevtextp = stub

				stub.Next = s
				pprevtextp = &stub.Next

				gencallstub(1, stub, r.Sym)
			}

			// Update the relocation to use the call stub
			r.Sym = stub

			// Restore TOC after bl.  The compiler put a
			// nop here for us to overwrite.
			o1 = 0xe8410018 // ld r2,24(r1)
			ld.Ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
		}
	}

}