/* ValueAt wraps gsl_fit_linear_est from gsl_fit.h. * A LinearFit can be interrogated for the value of a result at a particular * point x. All of the parameters mentioned below are taken from the * LinearFit. * From the GSL manual: * This function uses the best-fit linear regression coefficients Y0, Slope * and their covariance Cov00, Cov01, Cov11 to compute the fitted function * y and its standard deviation y_err for the model * Y = Y0 + Slope* X at the point x. */ func (f *LinearFit) ValueAt(x float64) (y, y_err float64, e error) { er := C.gsl_fit_linear_est((C.double)(x), (C.double)(f.Y0), (C.double)(f.Slope), (C.double)(f.Cov00), (C.double)(f.Cov01), (C.double)(f.Cov11), (*C.double)(&y), (*C.double)(&y_err)) if er != (C.int)(0) { e = gsl.NewGSLError((int)(er)) } return }
func LinearEst(x float64, c0 float64, c1 float64, cov00 float64, cov01 float64, cov11 float64) (int32, float64, float64) { var _outptr_6 C.double var _outptr_7 C.double _result := int32(C.gsl_fit_linear_est(C.double(x), C.double(c0), C.double(c1), C.double(cov00), C.double(cov01), C.double(cov11), &_outptr_6, &_outptr_7)) return _result, *(*float64)(unsafe.Pointer(&_outptr_6)), *(*float64)(unsafe.Pointer(&_outptr_7)) }