func readAlpha(chunkData io.Reader, widthMinusOne, heightMinusOne uint32, compression byte) ( alpha []byte, alphaStride int, err error) { switch compression { case 0: w := int(widthMinusOne) + 1 h := int(heightMinusOne) + 1 alpha = make([]byte, w*h) if _, err := io.ReadFull(chunkData, alpha); err != nil { return nil, 0, err } return alpha, w, nil case 1: // Read the VP8L-compressed alpha values. First, synthesize a 5-byte VP8L header: // a 1-byte magic number, a 14-bit widthMinusOne, a 14-bit heightMinusOne, // a 1-bit (ignored, zero) alphaIsUsed and a 3-bit (zero) version. // TODO(nigeltao): be more efficient than decoding an *image.NRGBA just to // extract the green values to a separately allocated []byte. Fixing this // will require changes to the vp8l package's API. if widthMinusOne > 0x3fff || heightMinusOne > 0x3fff { return nil, 0, errors.New("webp: invalid format") } alphaImage, err := vp8l.Decode(io.MultiReader( bytes.NewReader([]byte{ 0x2f, // VP8L magic number. uint8(widthMinusOne), uint8(widthMinusOne>>8) | uint8(heightMinusOne<<6), uint8(heightMinusOne >> 2), uint8(heightMinusOne >> 10), }), chunkData, )) if err != nil { return nil, 0, err } // The green values of the inner NRGBA image are the alpha values of the // outer NYCbCrA image. pix := alphaImage.(*image.NRGBA).Pix alpha = make([]byte, len(pix)/4) for i := range alpha { alpha[i] = pix[4*i+1] } return alpha, int(widthMinusOne) + 1, nil } return nil, 0, errInvalidFormat }
func decode(r io.Reader, configOnly bool) (image.Image, image.Config, error) { formType, riffReader, err := riff.NewReader(r) if err != nil { return nil, image.Config{}, err } if formType != fccWEBP { return nil, image.Config{}, errInvalidFormat } var ( alpha []byte alphaStride int wantAlpha bool widthMinusOne uint32 heightMinusOne uint32 buf [10]byte ) for { chunkID, chunkLen, chunkData, err := riffReader.Next() if err == io.EOF { err = errInvalidFormat } if err != nil { return nil, image.Config{}, err } switch chunkID { case fccALPH: if !wantAlpha { return nil, image.Config{}, errInvalidFormat } wantAlpha = false // Read the Pre-processing | Filter | Compression byte. if _, err := io.ReadFull(chunkData, buf[:1]); err != nil { if err == io.EOF { err = errInvalidFormat } return nil, image.Config{}, err } alpha, alphaStride, err = readAlpha(chunkData, widthMinusOne, heightMinusOne, buf[0]&0x03) if err != nil { return nil, image.Config{}, err } unfilterAlpha(alpha, alphaStride, (buf[0]>>2)&0x03) case fccVP8: if wantAlpha { return nil, image.Config{}, errInvalidFormat } d := vp8.NewDecoder() d.Init(chunkData, int(chunkLen)) fh, err := d.DecodeFrameHeader() if err != nil { return nil, image.Config{}, err } if configOnly { return nil, image.Config{ ColorModel: color.YCbCrModel, Width: fh.Width, Height: fh.Height, }, nil } m, err := d.DecodeFrame() if err != nil { return nil, image.Config{}, err } if alpha != nil { return &nycbcra.Image{ YCbCr: *m, A: alpha, AStride: alphaStride, }, image.Config{}, nil } return m, image.Config{}, nil case fccVP8L: if wantAlpha || alpha != nil { return nil, image.Config{}, errInvalidFormat } if configOnly { c, err := vp8l.DecodeConfig(chunkData) return nil, c, err } m, err := vp8l.Decode(chunkData) return m, image.Config{}, err case fccVP8X: if chunkLen != 10 { return nil, image.Config{}, errInvalidFormat } if _, err := io.ReadFull(chunkData, buf[:10]); err != nil { return nil, image.Config{}, err } const ( animationBit = 1 << 1 xmpMetadataBit = 1 << 2 exifMetadataBit = 1 << 3 alphaBit = 1 << 4 iccProfileBit = 1 << 5 ) if buf[0] != alphaBit { return nil, image.Config{}, errors.New("webp: non-Alpha VP8X is not implemented") } widthMinusOne = uint32(buf[4]) | uint32(buf[5])<<8 | uint32(buf[6])<<16 heightMinusOne = uint32(buf[7]) | uint32(buf[8])<<8 | uint32(buf[9])<<16 if configOnly { return nil, image.Config{ ColorModel: nycbcra.ColorModel, Width: int(widthMinusOne) + 1, Height: int(heightMinusOne) + 1, }, nil } wantAlpha = true } } }