/* * generate division. * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) { t := nl.Type t0 := t if t.Width < 8 { if t.IsSigned() { t = gc.Types[gc.TINT64] } else { t = gc.Types[gc.TUINT64] } } a := optoas(gc.ODIV, t) var tl gc.Node gc.Regalloc(&tl, t0, nil) var tr gc.Node gc.Regalloc(&tr, t0, nil) if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &tl) gc.Cgen(nr, &tr) } else { gc.Cgen(nr, &tr) gc.Cgen(nl, &tl) } if t != t0 { // Convert tl2 := tl tr2 := tr tl.Type = t tr.Type = t gmove(&tl2, &tl) gmove(&tr2, &tr) } // Handle divide-by-zero panic. p1 := ginsbranch(mips.ABNE, nil, &tr, nil, 0) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) gins3(a, &tr, &tl, nil) gc.Regfree(&tr) if op == gc.ODIV { var lo gc.Node gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO) gins(mips.AMOVV, &lo, &tl) } else { // remainder in REG_HI var hi gc.Node gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI) gins(mips.AMOVV, &hi, &tl) } gmove(&tl, res) gc.Regfree(&tl) }
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n1.Int() == 0 && n2.Op != gc.OLITERAL { op = gc.Brrev(op) n1, n2 = n2, n1 } var r1, r2, g1, g2 gc.Node gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) if gc.Isint[t.Etype] && n2.Op == gc.OLITERAL && n2.Int() == 0 { gins(arm.ACMP, &r1, n2) } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) gins(optoas(gc.OCMP, t), &r1, &r2) gc.Regfree(&g2) gc.Regfree(&r2) } gc.Regfree(&g1) gc.Regfree(&r1) return gc.Gbranch(optoas(op, t), nil, likely) }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { t := nl.Type a := optoas(gc.OHMUL, t) if nl.Ullman < nr.Ullman { nl, nr = nr, nl } var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) var ax, oldax, dx, olddx gc.Node savex(x86.REG_AX, &ax, &oldax, res, gc.Types[gc.TUINT64]) savex(x86.REG_DX, &dx, &olddx, res, gc.Types[gc.TUINT64]) gmove(&n1, &ax) gins(a, &n2, nil) gc.Regfree(&n2) gc.Regfree(&n1) if t.Width == 1 { // byte multiply behaves differently. var byteAH, byteDX gc.Node gc.Nodreg(&byteAH, t, x86.REG_AH) gc.Nodreg(&byteDX, t, x86.REG_DX) gmove(&byteAH, &byteDX) } gmove(&dx, res) restx(&ax, &oldax) restx(&dx, &olddx) }
/* * generate array index into res. * n might be any size; res is 32-bit. * returns Prog* to patch to panic call. */ func cgenindex(n *gc.Node, res *gc.Node, bounded bool) *obj.Prog { if !gc.Is64(n.Type) { gc.Cgen(n, res) return nil } var tmp gc.Node gc.Tempname(&tmp, gc.Types[gc.TINT64]) gc.Cgen(n, &tmp) var lo gc.Node var hi gc.Node split64(&tmp, &lo, &hi) gmove(&lo, res) if bounded { splitclean() return nil } var n1 gc.Node gc.Regalloc(&n1, gc.Types[gc.TINT32], nil) var n2 gc.Node gc.Regalloc(&n2, gc.Types[gc.TINT32], nil) var zero gc.Node gc.Nodconst(&zero, gc.Types[gc.TINT32], 0) gmove(&hi, &n1) gmove(&zero, &n2) gins(arm.ACMP, &n1, &n2) gc.Regfree(&n2) gc.Regfree(&n1) splitclean() return gc.Gbranch(arm.ABNE, nil, -1) }
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && gc.Smallintconst(n1) && n2.Op != gc.OLITERAL { // Reverse comparison to place constant last. op = gc.Brrev(op) n1, n2 = n2, n1 } // General case. var r1, r2, g1, g2 gc.Node if n1.Op == gc.ONAME && n1.Class&gc.PHEAP == 0 || n1.Op == gc.OINDREG { r1 = *n1 } else { gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) } if n2.Op == gc.OLITERAL && gc.Isint[t.Etype] && gc.Smallintconst(n2) { r2 = *n2 } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) } gins(optoas(gc.OCMP, t), &r1, &r2) if r1.Op == gc.OREGISTER { gc.Regfree(&g1) gc.Regfree(&r1) } if r2.Op == gc.OREGISTER { gc.Regfree(&g2) gc.Regfree(&r2) } return gc.Gbranch(optoas(op, t), nil, likely) }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { t := nl.Type a := optoas(gc.OHMUL, t) if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) var ax gc.Node gc.Nodreg(&ax, t, x86.REG_AX) gmove(&n1, &ax) gins(a, &n2, nil) gc.Regfree(&n2) gc.Regfree(&n1) var dx gc.Node if t.Width == 1 { // byte multiply behaves differently. gc.Nodreg(&ax, t, x86.REG_AH) gc.Nodreg(&dx, t, x86.REG_DX) gmove(&ax, &dx) } gc.Nodreg(&dx, t, x86.REG_DX) gmove(&dx, res) }
func ginscmp(op int, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if gc.Isint[t.Etype] && n1.Op == gc.OLITERAL && n2.Op != gc.OLITERAL { // Reverse comparison to place constant last. op = gc.Brrev(op) n1, n2 = n2, n1 } var r1, r2, g1, g2 gc.Node gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) if gc.Isint[t.Etype] && gc.Isconst(n2, gc.CTINT) { ginscon2(optoas(gc.OCMP, t), &r1, n2.Int()) } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) gcmp(optoas(gc.OCMP, t), &r1, &r2) gc.Regfree(&g2) gc.Regfree(&r2) } gc.Regfree(&g1) gc.Regfree(&r1) return gc.Gbranch(optoas(op, t), nil, likely) }
/* * generate byte multiply: * res = nl * nr * there is no 2-operand byte multiply instruction so * we do a full-width multiplication and truncate afterwards. */ func cgen_bmul(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { if optoas(op, nl.Type) != x86.AIMULB { return false } // copy from byte to full registers t := gc.Types[gc.TUINT32] if gc.Issigned[nl.Type.Etype] { t = gc.Types[gc.TINT32] } // largest ullman on left. if nl.Ullman < nr.Ullman { nl, nr = nr, nl } var nt gc.Node gc.Tempname(&nt, nl.Type) gc.Cgen(nl, &nt) var n1 gc.Node gc.Regalloc(&n1, t, res) gc.Cgen(nr, &n1) var n2 gc.Node gc.Regalloc(&n2, t, nil) gmove(&nt, &n2) a := optoas(op, t) gins(a, &n2, &n1) gc.Regfree(&n2) gmove(&n1, res) gc.Regfree(&n1) return true }
func sudoclean() { if clean[cleani-1].Op != gc.OEMPTY { gc.Regfree(&clean[cleani-1]) } if clean[cleani-2].Op != gc.OEMPTY { gc.Regfree(&clean[cleani-2]) } cleani -= 2 }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { // largest ullman on left. if nl.Ullman < nr.Ullman { nl, nr = nr, nl } t := nl.Type w := t.Width * 8 var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16, gc.TINT32: gins3(optoas(gc.OMUL, t), &n2, &n1, nil) var lo gc.Node gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO) gins(mips.AMOVV, &lo, &n1) p := gins(mips.ASRAV, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = w case gc.TUINT8, gc.TUINT16, gc.TUINT32: gins3(optoas(gc.OMUL, t), &n2, &n1, nil) var lo gc.Node gc.Nodreg(&lo, gc.Types[gc.TUINT64], mips.REG_LO) gins(mips.AMOVV, &lo, &n1) p := gins(mips.ASRLV, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = w case gc.TINT64, gc.TUINT64: if t.IsSigned() { gins3(mips.AMULV, &n2, &n1, nil) } else { gins3(mips.AMULVU, &n2, &n1, nil) } var hi gc.Node gc.Nodreg(&hi, gc.Types[gc.TUINT64], mips.REG_HI) gins(mips.AMOVV, &hi, &n1) default: gc.Fatalf("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate high multiply * res = (nl * nr) >> wordsize */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } t := nl.Type w := int(t.Width * 8) var n1 gc.Node gc.Regalloc(&n1, t, res) gc.Cgen(nl, &n1) var n2 gc.Node gc.Regalloc(&n2, t, nil) gc.Cgen(nr, &n2) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16: gins(optoas(gc.OMUL, t), &n2, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_AR, int32(w), &n1) case gc.TUINT8, gc.TUINT16: gins(optoas(gc.OMUL, t), &n2, &n1) gshift(arm.AMOVW, &n1, arm.SHIFT_LR, int32(w), &n1) // perform a long multiplication. case gc.TINT32, gc.TUINT32: var p *obj.Prog if gc.Issigned[t.Etype] { p = gins(arm.AMULL, &n2, nil) } else { p = gins(arm.AMULLU, &n2, nil) } // n2 * n1 -> (n1 n2) p.Reg = n1.Reg p.To.Type = obj.TYPE_REGREG p.To.Reg = n1.Reg p.To.Offset = int64(n2.Reg) default: gc.Fatalf("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate * as $c, n */ func ginscon(as int, c int64, n2 *gc.Node) { var n1 gc.Node switch as { case x86.AADDL, x86.AMOVL, x86.ALEAL: gc.Nodconst(&n1, gc.Types[gc.TINT32], c) default: gc.Nodconst(&n1, gc.Types[gc.TINT64], c) } if as != x86.AMOVQ && (c < -(1<<31) || c >= 1<<31) { // cannot have 64-bit immediate in ADD, etc. // instead, MOV into register first. var ntmp gc.Node gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil) gins(x86.AMOVQ, &n1, &ntmp) gins(as, &ntmp, n2) gc.Regfree(&ntmp) return } gins(as, &n1, n2) }
/* * generate * as n, $c (CMP/CMPU) */ func ginscon2(as int, n2 *gc.Node, c int64) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) switch as { default: gc.Fatalf("ginscon2") case ppc64.ACMP: if -ppc64.BIG <= c && c <= ppc64.BIG { rawgins(as, n2, &n1) return } case ppc64.ACMPU: if 0 <= c && c <= 2*ppc64.BIG { rawgins(as, n2, &n1) return } } // MOV n1 into register first var ntmp gc.Node gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil) rawgins(ppc64.AMOVD, &n1, &ntmp) rawgins(as, n2, &ntmp) gc.Regfree(&ntmp) }
// RightShiftWithCarry generates a constant unsigned // right shift with carry. // // res = n >> shift // with carry func RightShiftWithCarry(n *gc.Node, shift uint, res *gc.Node) { // Extra 1 is for carry bit. maxshift := uint(n.Type.Width*8 + 1) if shift == 0 { gmove(n, res) } else if shift < maxshift { // 1. clear rightmost bit of target var n1 gc.Node gc.Nodconst(&n1, n.Type, 1) gins(optoas(gc.ORSH, n.Type), &n1, n) gins(optoas(gc.OLSH, n.Type), &n1, n) // 2. add carry flag to target var n2 gc.Node gc.Nodconst(&n1, n.Type, 0) gc.Regalloc(&n2, n.Type, nil) gins(optoas(gc.OAS, n.Type), &n1, &n2) gins(arm64.AADC, &n2, n) // 3. right rotate 1 bit gc.Nodconst(&n1, n.Type, 1) gins(arm64.AROR, &n1, n) // ARM64 backend doesn't eliminate shifts by 0. It is manually checked here. if shift > 1 { var n3 gc.Node gc.Nodconst(&n3, n.Type, int64(shift-1)) cgen_shift(gc.ORSH, true, n, &n3, res) } else { gmove(n, res) } gc.Regfree(&n2) } else { gc.Fatalf("RightShiftWithCarry: shift(%v) is bigger than max size(%v)", shift, maxshift) } }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { // largest ullman on left. if nl.Ullman < nr.Ullman { tmp := (*gc.Node)(nl) nl = nr nr = tmp } t := (*gc.Type)(nl.Type) w := int(int(t.Width * 8)) var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16, gc.TINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := (*obj.Prog)(gins(ppc64.ASRAD, nil, &n1)) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TUINT8, gc.TUINT16, gc.TUINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := (*obj.Prog)(gins(ppc64.ASRD, nil, &n1)) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TINT64, gc.TUINT64: if gc.Issigned[t.Etype] { gins(ppc64.AMULHD, &n2, &n1) } else { gins(ppc64.AMULHDU, &n2, &n1) } default: gc.Fatal("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) }
func restx(x *gc.Node, oldx *gc.Node) { gc.Regfree(x) if oldx.Op != 0 { x.Type = gc.Types[gc.TINT32] gmove(oldx, x) } }
func restx(x *gc.Node, oldx *gc.Node) { if oldx.Op != 0 { x.Type = gc.Types[gc.TINT64] reg[x.Reg] = oldx.Etype gmove(oldx, x) gc.Regfree(oldx) } }
func restx(x *gc.Node, oldx *gc.Node) { if oldx.Op != 0 { x.Type = gc.Types[gc.TINT64] gc.SetReg(int(x.Reg), int(oldx.Etype)) gmove(oldx, x) gc.Regfree(oldx) } }
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if gc.Isint[t.Etype] || t.Etype == gc.Tptr { if (n1.Op == gc.OLITERAL || n1.Op == gc.OADDR && n1.Left.Op == gc.ONAME) && n2.Op != gc.OLITERAL { // Reverse comparison to place constant (including address constant) last. op = gc.Brrev(op) n1, n2 = n2, n1 } } // General case. var r1, r2, g1, g2 gc.Node // A special case to make write barriers more efficient. // Comparing the first field of a named struct can be done directly. base := n1 if n1.Op == gc.ODOT && n1.Left.Type.Etype == gc.TSTRUCT && n1.Left.Type.Type.Sym == n1.Right.Sym { base = n1.Left } if base.Op == gc.ONAME && base.Class&gc.PHEAP == 0 || n1.Op == gc.OINDREG { r1 = *n1 } else { gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) } if n2.Op == gc.OLITERAL && gc.Isint[t.Etype] || n2.Op == gc.OADDR && n2.Left.Op == gc.ONAME && n2.Left.Class == gc.PEXTERN { r2 = *n2 } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) } gins(optoas(gc.OCMP, t), &r1, &r2) if r1.Op == gc.OREGISTER { gc.Regfree(&g1) gc.Regfree(&r1) } if r2.Op == gc.OREGISTER { gc.Regfree(&g2) gc.Regfree(&r2) } return gc.Gbranch(optoas(op, t), nil, likely) }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { // largest ullman on left. if nl.Ullman < nr.Ullman { nl, nr = nr, nl } t := nl.Type w := t.Width * 8 var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16, gc.TINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := gins(arm64.AASR, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = w case gc.TUINT8, gc.TUINT16, gc.TUINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := gins(arm64.ALSR, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = w case gc.TINT64, gc.TUINT64: if gc.Issigned[t.Etype] { gins(arm64.ASMULH, &n2, &n1) } else { gins(arm64.AUMULH, &n2, &n1) } default: gc.Fatalf("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) }
func splitclean() { if nsclean <= 0 { gc.Fatalf("splitclean") } nsclean-- if sclean[nsclean].Op != gc.OEMPTY { gc.Regfree(&sclean[nsclean]) } }
/* * generate * as $c, n */ func ginscon(as int, c int64, n *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT32], c) var n2 gc.Node gc.Regalloc(&n2, gc.Types[gc.TINT32], nil) gmove(&n1, &n2) gins(as, &n2, n) gc.Regfree(&n2) }
func ginscmp(op gc.Op, t *gc.Type, n1, n2 *gc.Node, likely int) *obj.Prog { if t.IsInteger() && n1.Op == gc.OLITERAL && gc.Smallintconst(n1) && n2.Op != gc.OLITERAL { // Reverse comparison to place constant last. op = gc.Brrev(op) n1, n2 = n2, n1 } // General case. var r1, r2, g1, g2 gc.Node // A special case to make write barriers more efficient. // Comparing the first field of a named struct can be done directly. base := n1 if n1.Op == gc.ODOT && n1.Left.Type.IsStruct() && n1.Left.Type.Field(0).Sym == n1.Sym { base = n1.Left } if base.Op == gc.ONAME && base.Class != gc.PAUTOHEAP || n1.Op == gc.OINDREG { r1 = *n1 } else { gc.Regalloc(&r1, t, n1) gc.Regalloc(&g1, n1.Type, &r1) gc.Cgen(n1, &g1) gmove(&g1, &r1) } if n2.Op == gc.OLITERAL && t.IsInteger() && gc.Smallintconst(n2) { r2 = *n2 } else { gc.Regalloc(&r2, t, n2) gc.Regalloc(&g2, n1.Type, &r2) gc.Cgen(n2, &g2) gmove(&g2, &r2) } gins(optoas(gc.OCMP, t), &r1, &r2) if r1.Op == gc.OREGISTER { gc.Regfree(&g1) gc.Regfree(&r1) } if r2.Op == gc.OREGISTER { gc.Regfree(&g2) gc.Regfree(&r2) } return gc.Gbranch(optoas(op, t), nil, likely) }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { // largest ullman on left. if nl.Ullman < nr.Ullman { nl, nr = nr, nl } t := nl.Type w := int(t.Width) * 8 var n1 gc.Node gc.Cgenr(nl, &n1, res) var n2 gc.Node gc.Cgenr(nr, &n2, nil) switch gc.Simtype[t.Etype] { case gc.TINT8, gc.TINT16, gc.TINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := gins(s390x.ASRAD, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TUINT8, gc.TUINT16, gc.TUINT32: gins(optoas(gc.OMUL, t), &n2, &n1) p := gins(s390x.ASRD, nil, &n1) p.From.Type = obj.TYPE_CONST p.From.Offset = int64(w) case gc.TINT64: gins(s390x.AMULHD, &n2, &n1) case gc.TUINT64: gins(s390x.AMULHDU, &n2, &n1) default: gc.Fatalf("cgen_hmul %v", t) } gc.Cgen(&n1, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate byte multiply: * res = nl * nr * there is no 2-operand byte multiply instruction so * we do a full-width multiplication and truncate afterwards. */ func cgen_bmul(op int, nl *gc.Node, nr *gc.Node, res *gc.Node) bool { if optoas(op, nl.Type) != x86.AIMULB { return false } // largest ullman on left. if nl.Ullman < nr.Ullman { tmp := nl nl = nr nr = tmp } // generate operands in "8-bit" registers. var n1b gc.Node gc.Regalloc(&n1b, nl.Type, res) gc.Cgen(nl, &n1b) var n2b gc.Node gc.Regalloc(&n2b, nr.Type, nil) gc.Cgen(nr, &n2b) // perform full-width multiplication. t := gc.Types[gc.TUINT64] if gc.Issigned[nl.Type.Etype] { t = gc.Types[gc.TINT64] } var n1 gc.Node gc.Nodreg(&n1, t, int(n1b.Reg)) var n2 gc.Node gc.Nodreg(&n2, t, int(n2b.Reg)) a := optoas(op, t) gins(a, &n2, &n1) // truncate. gmove(&n1, res) gc.Regfree(&n1b) gc.Regfree(&n2b) return true }
// res = runtime.getg() func getg(res *gc.Node) { var n1 gc.Node gc.Regalloc(&n1, res.Type, res) mov := optoas(gc.OAS, gc.Types[gc.Tptr]) p := gins(mov, nil, &n1) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_TLS p = gins(mov, nil, &n1) p.From = p.To p.From.Type = obj.TYPE_MEM p.From.Index = x86.REG_TLS p.From.Scale = 1 gmove(&n1, res) gc.Regfree(&n1) }
/* * generate * as $c, n */ func ginscon(as int, c int64, n2 *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) if as != arm64.AMOVD && (c < -arm64.BIG || c > arm64.BIG) || as == arm64.AMUL || n2 != nil && n2.Op != gc.OREGISTER { // cannot have more than 16-bit of immediate in ADD, etc. // instead, MOV into register first. var ntmp gc.Node gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil) gins(arm64.AMOVD, &n1, &ntmp) gins(as, &ntmp, n2) gc.Regfree(&ntmp) return } rawgins(as, &n1, n2) }
/* * generate * as $c, n */ func ginscon(as int, c int64, n2 *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) if as != mips.AMOVV && (c < -mips.BIG || c > mips.BIG) || n2.Op != gc.OREGISTER || as == mips.AMUL || as == mips.AMULU || as == mips.AMULV || as == mips.AMULVU { // cannot have more than 16-bit of immediate in ADD, etc. // instead, MOV into register first. var ntmp gc.Node gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil) rawgins(mips.AMOVV, &n1, &ntmp) rawgins(as, &ntmp, n2) gc.Regfree(&ntmp) return } rawgins(as, &n1, n2) }
// generate // as $c, n func ginscon(as obj.As, c int64, n2 *gc.Node) { var n1 gc.Node gc.Nodconst(&n1, gc.Types[gc.TINT64], c) if as != s390x.AMOVD && (c < -s390x.BIG || c > s390x.BIG) || n2.Op != gc.OREGISTER { // cannot have more than 16-bit of immediate in ADD, etc. // instead, MOV into register first. var ntmp gc.Node gc.Regalloc(&ntmp, gc.Types[gc.TINT64], nil) rawgins(s390x.AMOVD, &n1, &ntmp) rawgins(as, &ntmp, n2) gc.Regfree(&ntmp) return } rawgins(as, &n1, n2) }
/* * generate high multiply: * res = (nl*nr) >> width */ func cgen_hmul(nl *gc.Node, nr *gc.Node, res *gc.Node) { var n1 gc.Node var n2 gc.Node var ax gc.Node var dx gc.Node t := nl.Type a := optoas(gc.OHMUL, t) // gen nl in n1. gc.Tempname(&n1, t) gc.Cgen(nl, &n1) // gen nr in n2. gc.Regalloc(&n2, t, res) gc.Cgen(nr, &n2) // multiply. gc.Nodreg(&ax, t, x86.REG_AX) gmove(&n2, &ax) gins(a, &n1, nil) gc.Regfree(&n2) if t.Width == 1 { // byte multiply behaves differently. gc.Nodreg(&ax, t, x86.REG_AH) gc.Nodreg(&dx, t, x86.REG_DX) gmove(&ax, &dx) } gc.Nodreg(&dx, t, x86.REG_DX) gmove(&dx, res) }