func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { r := gc.GetReg(dr) gc.Nodreg(x, gc.Types[gc.TINT32], dr) // save current ax and dx if they are live // and not the destination *oldx = gc.Node{} if r > 0 && !gc.Samereg(x, res) { gc.Tempname(oldx, gc.Types[gc.TINT32]) gmove(x, oldx) } gc.Regalloc(x, t, x) }
/* * register dr is one of the special ones (AX, CX, DI, SI, etc.). * we need to use it. if it is already allocated as a temporary * (r > 1; can only happen if a routine like sgen passed a * special as cgen's res and then cgen used regalloc to reuse * it as its own temporary), then move it for now to another * register. caller must call restx to move it back. * the move is not necessary if dr == res, because res is * known to be dead. */ func savex(dr int, x *gc.Node, oldx *gc.Node, res *gc.Node, t *gc.Type) { r := uint8(gc.GetReg(dr)) // save current ax and dx if they are live // and not the destination *oldx = gc.Node{} gc.Nodreg(x, t, dr) if r > 1 && !gc.Samereg(x, res) { gc.Regalloc(oldx, gc.Types[gc.TINT64], nil) x.Type = gc.Types[gc.TINT64] gmove(x, oldx) x.Type = t oldx.Etype = r // squirrel away old r value gc.SetReg(dr, 1) } }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op int, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gc.Cgen(nl, &n1) sc := uint64(nr.Int()) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 var n3 gc.Node gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n1) gins(a, &n3, &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } if nl.Ullman >= gc.UINF { var n4 gc.Node gc.Tempname(&n4, nl.Type) gc.Cgen(nl, &n4) nl = &n4 } if nr.Ullman >= gc.UINF { var n5 gc.Node gc.Tempname(&n5, nr.Type) gc.Cgen(nr, &n5) nr = &n5 } rcx := gc.GetReg(x86.REG_CX) var n1 gc.Node gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) // Allow either uint32 or uint64 as shift type, // to avoid unnecessary conversion from uint32 to uint64 // just to do the comparison. tcount := gc.Types[gc.Simtype[nr.Type.Etype]] if tcount.Etype < gc.TUINT32 { tcount = gc.Types[gc.TUINT32] } gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX var n3 gc.Node gc.Regalloc(&n3, tcount, &n1) // to clear high bits of CX var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT64], x86.REG_CX) var oldcx gc.Node if rcx > 0 && !gc.Samereg(&cx, res) { gc.Regalloc(&oldcx, gc.Types[gc.TUINT64], nil) gmove(&cx, &oldcx) } cx.Type = tcount var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) gmove(&n1, &n3) } else { gc.Cgen(nr, &n1) gmove(&n1, &n3) gc.Cgen(nl, &n2) } gc.Regfree(&n3) // test and fix up large shifts if !bounded { gc.Nodconst(&n3, tcount, nl.Type.Width*8) gins(optoas(gc.OCMP, tcount), &n1, &n3) p1 := gc.Gbranch(optoas(gc.OLT, tcount), nil, +1) if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gc.Nodconst(&n3, gc.Types[gc.TUINT32], nl.Type.Width*8-1) gins(a, &n3, &n2) } else { gc.Nodconst(&n3, nl.Type, 0) gmove(&n3, &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { cx.Type = gc.Types[gc.TUINT64] gmove(&oldcx, &cx) gc.Regfree(&oldcx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate shift according to op, one of: * res = nl << nr * res = nl >> nr */ func cgen_shift(op gc.Op, bounded bool, nl *gc.Node, nr *gc.Node, res *gc.Node) { if nl.Type.Width > 4 { gc.Fatalf("cgen_shift %v", nl.Type) } w := int(nl.Type.Width * 8) a := optoas(op, nl.Type) if nr.Op == gc.OLITERAL { var n2 gc.Node gc.Tempname(&n2, nl.Type) gc.Cgen(nl, &n2) var n1 gc.Node gc.Regalloc(&n1, nl.Type, res) gmove(&n2, &n1) sc := uint64(nr.Int()) if sc >= uint64(nl.Type.Width*8) { // large shift gets 2 shifts by width-1 gins(a, ncon(uint32(w)-1), &n1) gins(a, ncon(uint32(w)-1), &n1) } else { gins(a, nr, &n1) } gmove(&n1, res) gc.Regfree(&n1) return } var oldcx gc.Node var cx gc.Node gc.Nodreg(&cx, gc.Types[gc.TUINT32], x86.REG_CX) if gc.GetReg(x86.REG_CX) > 1 && !gc.Samereg(&cx, res) { gc.Tempname(&oldcx, gc.Types[gc.TUINT32]) gmove(&cx, &oldcx) } var n1 gc.Node var nt gc.Node if nr.Type.Width > 4 { gc.Tempname(&nt, nr.Type) n1 = nt } else { gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, nr.Type, &n1) // to hold the shift type in CX } var n2 gc.Node if gc.Samereg(&cx, res) { gc.Regalloc(&n2, nl.Type, nil) } else { gc.Regalloc(&n2, nl.Type, res) } if nl.Ullman >= nr.Ullman { gc.Cgen(nl, &n2) gc.Cgen(nr, &n1) } else { gc.Cgen(nr, &n1) gc.Cgen(nl, &n2) } // test and fix up large shifts if bounded { if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) splitclean() } } else { var p1 *obj.Prog if nr.Type.Width > 4 { // delayed reg alloc gc.Nodreg(&n1, gc.Types[gc.TUINT32], x86.REG_CX) gc.Regalloc(&n1, gc.Types[gc.TUINT32], &n1) // to hold the shift type in CX var lo gc.Node var hi gc.Node split64(&nt, &lo, &hi) gmove(&lo, &n1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &hi, ncon(0)) p2 := gc.Gbranch(optoas(gc.ONE, gc.Types[gc.TUINT32]), nil, +1) gins(optoas(gc.OCMP, gc.Types[gc.TUINT32]), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) splitclean() gc.Patch(p2, gc.Pc) } else { gins(optoas(gc.OCMP, nr.Type), &n1, ncon(uint32(w))) p1 = gc.Gbranch(optoas(gc.OLT, gc.Types[gc.TUINT32]), nil, +1) } if op == gc.ORSH && gc.Issigned[nl.Type.Etype] { gins(a, ncon(uint32(w)-1), &n2) } else { gmove(ncon(0), &n2) } gc.Patch(p1, gc.Pc) } gins(a, &n1, &n2) if oldcx.Op != 0 { gmove(&oldcx, &cx) } gmove(&n2, res) gc.Regfree(&n1) gc.Regfree(&n2) }
/* * generate division. * caller must set: * ax = allocated AX register * dx = allocated DX register * generates one of: * res = nl / nr * res = nl % nr * according to op. */ func dodiv(op gc.Op, nl *gc.Node, nr *gc.Node, res *gc.Node, ax *gc.Node, dx *gc.Node) { // Have to be careful about handling // most negative int divided by -1 correctly. // The hardware will trap. // Also the byte divide instruction needs AH, // which we otherwise don't have to deal with. // Easiest way to avoid for int8, int16: use int32. // For int32 and int64, use explicit test. // Could use int64 hw for int32. t := nl.Type t0 := t check := false if gc.Issigned[t.Etype] { check = true if gc.Isconst(nl, gc.CTINT) && nl.Int() != -1<<uint64(t.Width*8-1) { check = false } else if gc.Isconst(nr, gc.CTINT) && nr.Int() != -1 { check = false } } if t.Width < 4 { if gc.Issigned[t.Etype] { t = gc.Types[gc.TINT32] } else { t = gc.Types[gc.TUINT32] } check = false } var t1 gc.Node gc.Tempname(&t1, t) var t2 gc.Node gc.Tempname(&t2, t) if t0 != t { var t3 gc.Node gc.Tempname(&t3, t0) var t4 gc.Node gc.Tempname(&t4, t0) gc.Cgen(nl, &t3) gc.Cgen(nr, &t4) // Convert. gmove(&t3, &t1) gmove(&t4, &t2) } else { gc.Cgen(nl, &t1) gc.Cgen(nr, &t2) } var n1 gc.Node if !gc.Samereg(ax, res) && !gc.Samereg(dx, res) { gc.Regalloc(&n1, t, res) } else { gc.Regalloc(&n1, t, nil) } gmove(&t2, &n1) gmove(&t1, ax) var p2 *obj.Prog var n4 gc.Node if gc.Nacl { // Native Client does not relay the divide-by-zero trap // to the executing program, so we must insert a check // for ourselves. gc.Nodconst(&n4, t, 0) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if panicdiv == nil { panicdiv = gc.Sysfunc("panicdivide") } gc.Ginscall(panicdiv, -1) gc.Patch(p1, gc.Pc) } if check { gc.Nodconst(&n4, t, -1) gins(optoas(gc.OCMP, t), &n1, &n4) p1 := gc.Gbranch(optoas(gc.ONE, t), nil, +1) if op == gc.ODIV { // a / (-1) is -a. gins(optoas(gc.OMINUS, t), nil, ax) gmove(ax, res) } else { // a % (-1) is 0. gc.Nodconst(&n4, t, 0) gmove(&n4, res) } p2 = gc.Gbranch(obj.AJMP, nil, 0) gc.Patch(p1, gc.Pc) } if !gc.Issigned[t.Etype] { var nz gc.Node gc.Nodconst(&nz, t, 0) gmove(&nz, dx) } else { gins(optoas(gc.OEXTEND, t), nil, nil) } gins(optoas(op, t), &n1, nil) gc.Regfree(&n1) if op == gc.ODIV { gmove(ax, res) } else { gmove(dx, res) } if check { gc.Patch(p2, gc.Pc) } }