// y: Measurments // u: Actuator thrust func (k *ExtKalmanFilter) Step(y, u matrix.Matrix) (x matrix.Matrix) { var y_ = k.h(k.x) var H = k.dhdx(k.x) var Ht = matrix.Transpose(H) // ----------------- // Estimation // Kalman gain matrix // K = P * H^t * (H*P*Ht + R)⁻¹ var inv = matrix.Inverse(matrix.Sum(matrix.Product(H, k.mP, Ht), k.mR)) var K = matrix.Product(k.mP, Ht, inv) var Kt = matrix.Transpose(K) // State estimation update // x_ = x + K * (y - h(x)) var ydiff, _ = y.Minus(y_) if k.normalize_ydiff != nil { ydiff = k.normalize_ydiff(ydiff) } var x_ = matrix.Sum(k.x, matrix.Product(K, ydiff)) // Error covariance update // P_ = (I - K*H) * P * (I - K*H)^t + K*R*K^t var IKH, _ = matrix.Eye(H.Cols()).Minus(matrix.Product(K, H)) var IKHt = matrix.Transpose(IKH) var P_ = matrix.Sum(matrix.Product(IKH, k.mP, IKHt), matrix.Product(K, k.mR, Kt)) // ----------------- // Propagation var F = k.dfdx(x_, u) var Ft = matrix.Transpose(F) // State estimation propagation // x(k+1) = A*x_(k) + B*u k.x = k.f(x_, u) // Error covariance propagation // P(k+1) = A*P_*A^t + W*Q*W^t k.mP = matrix.Sum(matrix.Product(F, P_, Ft), k.cWQWt) return k.x }
func ExtendedKalman( W, R, Q, x0, P0 matrix.Matrix, f, dfdx func(matrix.Matrix, matrix.Matrix) matrix.Matrix, h, dhdx, normalize_ydiff func(matrix.Matrix) matrix.Matrix) (k *ExtKalmanFilter) { k = new(ExtKalmanFilter) k.mW = W k.mR = R k.mQ = Q k.x = x0 k.mP = P0 k.f = f k.dfdx = dfdx k.h = h k.dhdx = dhdx k.normalize_ydiff = normalize_ydiff // Pre calculated constant k.cWQWt = matrix.Product(W, Q, matrix.Transpose(W)) return }