// maybeAcceptTransaction is the internal function which implements the public // MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for // more details. // // This function MUST be called with the mempool lock held (for writes). func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*wire.ShaHash, error) { txHash := tx.Sha() // Don't accept the transaction if it already exists in the pool. This // applies to orphan transactions as well. This check is intended to // be a quick check to weed out duplicates. if mp.haveTransaction(txHash) { str := fmt.Sprintf("already have transaction %v", txHash) return nil, txRuleError(wire.RejectDuplicate, str) } // Perform preliminary sanity checks on the transaction. This makes // use of btcchain which contains the invariant rules for what // transactions are allowed into blocks. err := blockchain.CheckTransactionSanity(tx) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // A standalone transaction must not be a coinbase transaction. if blockchain.IsCoinBase(tx) { str := fmt.Sprintf("transaction %v is an individual coinbase", txHash) return nil, txRuleError(wire.RejectInvalid, str) } // Don't accept transactions with a lock time after the maximum int32 // value for now. This is an artifact of older bitcoind clients which // treated this field as an int32 and would treat anything larger // incorrectly (as negative). if tx.MsgTx().LockTime > math.MaxInt32 { str := fmt.Sprintf("transaction %v has a lock time after "+ "2038 which is not accepted yet", txHash) return nil, txRuleError(wire.RejectNonstandard, str) } // Get the current height of the main chain. A standalone transaction // will be mined into the next block at best, so it's height is at least // one more than the current height. _, curHeight, err := mp.cfg.NewestSha() if err != nil { // This is an unexpected error so don't turn it into a rule // error. return nil, err } nextBlockHeight := curHeight + 1 // Don't allow non-standard transactions if the network parameters // forbid their relaying. if !activeNetParams.RelayNonStdTxs { err := checkTransactionStandard(tx, nextBlockHeight, mp.cfg.TimeSource, mp.cfg.MinRelayTxFee) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v is not standard: %v", txHash, err) return nil, txRuleError(rejectCode, str) } } // The transaction may not use any of the same outputs as other // transactions already in the pool as that would ultimately result in a // double spend. This check is intended to be quick and therefore only // detects double spends within the transaction pool itself. The // transaction could still be double spending coins from the main chain // at this point. There is a more in-depth check that happens later // after fetching the referenced transaction inputs from the main chain // which examines the actual spend data and prevents double spends. err = mp.checkPoolDoubleSpend(tx) if err != nil { return nil, err } // Fetch all of the transactions referenced by the inputs to this // transaction. This function also attempts to fetch the transaction // itself to be used for detecting a duplicate transaction without // needing to do a separate lookup. txStore, err := mp.fetchInputTransactions(tx, false) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Don't allow the transaction if it exists in the main chain and is not // not already fully spent. if txD, exists := txStore[*txHash]; exists && txD.Err == nil { for _, isOutputSpent := range txD.Spent { if !isOutputSpent { return nil, txRuleError(wire.RejectDuplicate, "transaction already exists") } } } delete(txStore, *txHash) // Transaction is an orphan if any of the referenced input transactions // don't exist. Adding orphans to the orphan pool is not handled by // this function, and the caller should use maybeAddOrphan if this // behavior is desired. var missingParents []*wire.ShaHash for _, txD := range txStore { if txD.Err == database.ErrTxShaMissing { missingParents = append(missingParents, txD.Hash) } } if len(missingParents) > 0 { return missingParents, nil } // Perform several checks on the transaction inputs using the invariant // rules in btcchain for what transactions are allowed into blocks. // Also returns the fees associated with the transaction which will be // used later. txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, txStore) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Don't allow transactions with non-standard inputs if the network // parameters forbid their relaying. if !activeNetParams.RelayNonStdTxs { err := checkInputsStandard(tx, txStore) if err != nil { // Attempt to extract a reject code from the error so // it can be retained. When not possible, fall back to // a non standard error. rejectCode, found := extractRejectCode(err) if !found { rejectCode = wire.RejectNonstandard } str := fmt.Sprintf("transaction %v has a non-standard "+ "input: %v", txHash, err) return nil, txRuleError(rejectCode, str) } } // NOTE: if you modify this code to accept non-standard transactions, // you should add code here to check that the transaction does a // reasonable number of ECDSA signature verifications. // Don't allow transactions with an excessive number of signature // operations which would result in making it impossible to mine. Since // the coinbase address itself can contain signature operations, the // maximum allowed signature operations per transaction is less than // the maximum allowed signature operations per block. numSigOps, err := blockchain.CountP2SHSigOps(tx, false, txStore) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } numSigOps += blockchain.CountSigOps(tx) if numSigOps > maxSigOpsPerTx { str := fmt.Sprintf("transaction %v has too many sigops: %d > %d", txHash, numSigOps, maxSigOpsPerTx) return nil, txRuleError(wire.RejectNonstandard, str) } // Don't allow transactions with fees too low to get into a mined block. // // Most miners allow a free transaction area in blocks they mine to go // alongside the area used for high-priority transactions as well as // transactions with fees. A transaction size of up to 1000 bytes is // considered safe to go into this section. Further, the minimum fee // calculated below on its own would encourage several small // transactions to avoid fees rather than one single larger transaction // which is more desirable. Therefore, as long as the size of the // transaction does not exceeed 1000 less than the reserved space for // high-priority transactions, don't require a fee for it. serializedSize := int64(tx.MsgTx().SerializeSize()) minFee := calcMinRequiredTxRelayFee(serializedSize, mp.cfg.MinRelayTxFee) if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee { str := fmt.Sprintf("transaction %v has %d fees which is under "+ "the required amount of %d", txHash, txFee, minFee) return nil, txRuleError(wire.RejectInsufficientFee, str) } // Require that free transactions have sufficient priority to be mined // in the next block. Transactions which are being added back to the // memory pool from blocks that have been disconnected during a reorg // are exempted. if isNew && !mp.cfg.DisableRelayPriority && txFee < minFee { currentPriority := calcPriority(tx.MsgTx(), txStore, nextBlockHeight) if currentPriority <= minHighPriority { str := fmt.Sprintf("transaction %v has insufficient "+ "priority (%g <= %g)", txHash, currentPriority, minHighPriority) return nil, txRuleError(wire.RejectInsufficientFee, str) } } // Free-to-relay transactions are rate limited here to prevent // penny-flooding with tiny transactions as a form of attack. if rateLimit && txFee < minFee { nowUnix := time.Now().Unix() // we decay passed data with an exponentially decaying ~10 // minutes window - matches bitcoind handling. mp.pennyTotal *= math.Pow(1.0-1.0/600.0, float64(nowUnix-mp.lastPennyUnix)) mp.lastPennyUnix = nowUnix // Are we still over the limit? if mp.pennyTotal >= mp.cfg.FreeTxRelayLimit*10*1000 { str := fmt.Sprintf("transaction %v has been rejected "+ "by the rate limiter due to low fees", txHash) return nil, txRuleError(wire.RejectInsufficientFee, str) } oldTotal := mp.pennyTotal mp.pennyTotal += float64(serializedSize) txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+ "limit %v", oldTotal, mp.pennyTotal, mp.cfg.FreeTxRelayLimit*10*1000) } // Verify crypto signatures for each input and reject the transaction if // any don't verify. err = blockchain.ValidateTransactionScripts(tx, txStore, txscript.StandardVerifyFlags, mp.cfg.SigCache) if err != nil { if cerr, ok := err.(blockchain.RuleError); ok { return nil, chainRuleError(cerr) } return nil, err } // Add to transaction pool. mp.addTransaction(txStore, tx, curHeight, txFee) txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash, len(mp.pool)) return nil, nil }
// NewBlockTemplate returns a new block template that is ready to be solved // using the transactions from the passed transaction memory pool and a coinbase // that either pays to the passed address if it is not nil, or a coinbase that // is redeemable by anyone if the passed address is nil. The nil address // functionality is useful since there are cases such as the getblocktemplate // RPC where external mining software is responsible for creating their own // coinbase which will replace the one generated for the block template. Thus // the need to have configured address can be avoided. // // The transactions selected and included are prioritized according to several // factors. First, each transaction has a priority calculated based on its // value, age of inputs, and size. Transactions which consist of larger // amounts, older inputs, and small sizes have the highest priority. Second, a // fee per kilobyte is calculated for each transaction. Transactions with a // higher fee per kilobyte are preferred. Finally, the block generation related // configuration options are all taken into account. // // Transactions which only spend outputs from other transactions already in the // block chain are immediately added to a priority queue which either // prioritizes based on the priority (then fee per kilobyte) or the fee per // kilobyte (then priority) depending on whether or not the BlockPrioritySize // configuration option allots space for high-priority transactions. // Transactions which spend outputs from other transactions in the memory pool // are added to a dependency map so they can be added to the priority queue once // the transactions they depend on have been included. // // Once the high-priority area (if configured) has been filled with transactions, // or the priority falls below what is considered high-priority, the priority // queue is updated to prioritize by fees per kilobyte (then priority). // // When the fees per kilobyte drop below the TxMinFreeFee configuration option, // the transaction will be skipped unless there is a BlockMinSize set, in which // case the block will be filled with the low-fee/free transactions until the // block size reaches that minimum size. // // Any transactions which would cause the block to exceed the BlockMaxSize // configuration option, exceed the maximum allowed signature operations per // block, or otherwise cause the block to be invalid are skipped. // // Given the above, a block generated by this function is of the following form: // // ----------------------------------- -- -- // | Coinbase Transaction | | | // |-----------------------------------| | | // | | | | ----- cfg.BlockPrioritySize // | High-priority Transactions | | | // | | | | // |-----------------------------------| | -- // | | | // | | | // | | |--- cfg.BlockMaxSize // | Transactions prioritized by fee | | // | until <= cfg.TxMinFreeFee | | // | | | // | | | // | | | // |-----------------------------------| | // | Low-fee/Non high-priority (free) | | // | transactions (while block size | | // | <= cfg.BlockMinSize) | | // ----------------------------------- -- func NewBlockTemplate(server *server, payToAddress btcutil.Address) (*BlockTemplate, error) { blockManager := server.blockManager timeSource := server.timeSource chainState := &blockManager.chainState // Extend the most recently known best block. chainState.Lock() prevHash := chainState.newestHash nextBlockHeight := chainState.newestHeight + 1 chainState.Unlock() // Create a standard coinbase transaction paying to the provided // address. NOTE: The coinbase value will be updated to include the // fees from the selected transactions later after they have actually // been selected. It is created here to detect any errors early // before potentially doing a lot of work below. The extra nonce helps // ensure the transaction is not a duplicate transaction (paying the // same value to the same public key address would otherwise be an // identical transaction for block version 1). extraNonce := uint64(0) coinbaseScript, err := standardCoinbaseScript(nextBlockHeight, extraNonce) if err != nil { return nil, err } coinbaseTx, err := createCoinbaseTx(coinbaseScript, nextBlockHeight, payToAddress) if err != nil { return nil, err } numCoinbaseSigOps := int64(blockchain.CountSigOps(coinbaseTx)) // Get the current memory pool transactions and create a priority queue // to hold the transactions which are ready for inclusion into a block // along with some priority related and fee metadata. Reserve the same // number of items that are in the memory pool for the priority queue. // Also, choose the initial sort order for the priority queue based on // whether or not there is an area allocated for high-priority // transactions. mempoolTxns := server.txMemPool.TxDescs() sortedByFee := cfg.BlockPrioritySize == 0 priorityQueue := newTxPriorityQueue(len(mempoolTxns), sortedByFee) // Create a slice to hold the transactions to be included in the // generated block with reserved space. Also create a transaction // store to house all of the input transactions so multiple lookups // can be avoided. blockTxns := make([]*btcutil.Tx, 0, len(mempoolTxns)) blockTxns = append(blockTxns, coinbaseTx) blockTxStore := make(blockchain.TxStore) // dependers is used to track transactions which depend on another // transaction in the memory pool. This, in conjunction with the // dependsOn map kept with each dependent transaction helps quickly // determine which dependent transactions are now eligible for inclusion // in the block once each transaction has been included. dependers := make(map[wire.ShaHash]*list.List) // Create slices to hold the fees and number of signature operations // for each of the selected transactions and add an entry for the // coinbase. This allows the code below to simply append details about // a transaction as it is selected for inclusion in the final block. // However, since the total fees aren't known yet, use a dummy value for // the coinbase fee which will be updated later. txFees := make([]int64, 0, len(mempoolTxns)) txSigOpCounts := make([]int64, 0, len(mempoolTxns)) txFees = append(txFees, -1) // Updated once known txSigOpCounts = append(txSigOpCounts, numCoinbaseSigOps) minrLog.Debugf("Considering %d mempool transactions for inclusion to "+ "new block", len(mempoolTxns)) mempoolLoop: for _, txDesc := range mempoolTxns { // A block can't have more than one coinbase or contain // non-finalized transactions. tx := txDesc.Tx if blockchain.IsCoinBase(tx) { minrLog.Tracef("Skipping coinbase tx %s", tx.Sha()) continue } if !blockchain.IsFinalizedTransaction(tx, nextBlockHeight, timeSource.AdjustedTime()) { minrLog.Tracef("Skipping non-finalized tx %s", tx.Sha()) continue } // Fetch all of the transactions referenced by the inputs to // this transaction. NOTE: This intentionally does not fetch // inputs from the mempool since a transaction which depends on // other transactions in the mempool must come after those // dependencies in the final generated block. txStore, err := blockManager.FetchTransactionStore(tx) if err != nil { minrLog.Warnf("Unable to fetch transaction store for "+ "tx %s: %v", tx.Sha(), err) continue } // Setup dependencies for any transactions which reference // other transactions in the mempool so they can be properly // ordered below. prioItem := &txPrioItem{tx: txDesc.Tx} for _, txIn := range tx.MsgTx().TxIn { originHash := &txIn.PreviousOutPoint.Hash originIndex := txIn.PreviousOutPoint.Index txData, exists := txStore[*originHash] if !exists || txData.Err != nil || txData.Tx == nil { if !server.txMemPool.HaveTransaction(originHash) { minrLog.Tracef("Skipping tx %s because "+ "it references tx %s which is "+ "not available", tx.Sha, originHash) continue mempoolLoop } // The transaction is referencing another // transaction in the memory pool, so setup an // ordering dependency. depList, exists := dependers[*originHash] if !exists { depList = list.New() dependers[*originHash] = depList } depList.PushBack(prioItem) if prioItem.dependsOn == nil { prioItem.dependsOn = make( map[wire.ShaHash]struct{}) } prioItem.dependsOn[*originHash] = struct{}{} // Skip the check below. We already know the // referenced transaction is available. continue } // Ensure the output index in the referenced transaction // is available. msgTx := txData.Tx.MsgTx() if originIndex > uint32(len(msgTx.TxOut)) { minrLog.Tracef("Skipping tx %s because "+ "it references output %d of tx %s "+ "which is out of bounds", tx.Sha, originIndex, originHash) continue mempoolLoop } } // Calculate the final transaction priority using the input // value age sum as well as the adjusted transaction size. The // formula is: sum(inputValue * inputAge) / adjustedTxSize prioItem.priority = txDesc.CurrentPriority(txStore, nextBlockHeight) // Calculate the fee in Satoshi/KB. // NOTE: This is a more precise value than the one calculated // during calcMinRelayFee which rounds up to the nearest full // kilobyte boundary. This is beneficial since it provides an // incentive to create smaller transactions. txSize := tx.MsgTx().SerializeSize() prioItem.feePerKB = float64(txDesc.Fee) / (float64(txSize) / 1000) prioItem.fee = txDesc.Fee // Add the transaction to the priority queue to mark it ready // for inclusion in the block unless it has dependencies. if prioItem.dependsOn == nil { heap.Push(priorityQueue, prioItem) } // Merge the store which contains all of the input transactions // for this transaction into the input transaction store. This // allows the code below to avoid a second lookup. mergeTxStore(blockTxStore, txStore) } minrLog.Tracef("Priority queue len %d, dependers len %d", priorityQueue.Len(), len(dependers)) // The starting block size is the size of the block header plus the max // possible transaction count size, plus the size of the coinbase // transaction. blockSize := blockHeaderOverhead + uint32(coinbaseTx.MsgTx().SerializeSize()) blockSigOps := numCoinbaseSigOps totalFees := int64(0) // Choose which transactions make it into the block. for priorityQueue.Len() > 0 { // Grab the highest priority (or highest fee per kilobyte // depending on the sort order) transaction. prioItem := heap.Pop(priorityQueue).(*txPrioItem) tx := prioItem.tx // Grab the list of transactions which depend on this one (if // any) and remove the entry for this transaction as it will // either be included or skipped, but in either case the deps // are no longer needed. deps := dependers[*tx.Sha()] delete(dependers, *tx.Sha()) // Enforce maximum block size. Also check for overflow. txSize := uint32(tx.MsgTx().SerializeSize()) blockPlusTxSize := blockSize + txSize if blockPlusTxSize < blockSize || blockPlusTxSize >= cfg.BlockMaxSize { minrLog.Tracef("Skipping tx %s because it would exceed "+ "the max block size", tx.Sha()) logSkippedDeps(tx, deps) continue } // Enforce maximum signature operations per block. Also check // for overflow. numSigOps := int64(blockchain.CountSigOps(tx)) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block", tx.Sha()) logSkippedDeps(tx, deps) continue } numP2SHSigOps, err := blockchain.CountP2SHSigOps(tx, false, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CountP2SHSigOps: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } numSigOps += int64(numP2SHSigOps) if blockSigOps+numSigOps < blockSigOps || blockSigOps+numSigOps > blockchain.MaxSigOpsPerBlock { minrLog.Tracef("Skipping tx %s because it would "+ "exceed the maximum sigops per block (p2sh)", tx.Sha()) logSkippedDeps(tx, deps) continue } // Skip free transactions once the block is larger than the // minimum block size. if sortedByFee && prioItem.feePerKB < float64(cfg.minRelayTxFee) && blockPlusTxSize >= cfg.BlockMinSize { minrLog.Tracef("Skipping tx %s with feePerKB %.2f "+ "< minTxRelayFee %d and block size %d >= "+ "minBlockSize %d", tx.Sha(), prioItem.feePerKB, cfg.minRelayTxFee, blockPlusTxSize, cfg.BlockMinSize) logSkippedDeps(tx, deps) continue } // Prioritize by fee per kilobyte once the block is larger than // the priority size or there are no more high-priority // transactions. if !sortedByFee && (blockPlusTxSize >= cfg.BlockPrioritySize || prioItem.priority <= minHighPriority) { minrLog.Tracef("Switching to sort by fees per "+ "kilobyte blockSize %d >= BlockPrioritySize "+ "%d || priority %.2f <= minHighPriority %.2f", blockPlusTxSize, cfg.BlockPrioritySize, prioItem.priority, minHighPriority) sortedByFee = true priorityQueue.SetLessFunc(txPQByFee) // Put the transaction back into the priority queue and // skip it so it is re-priortized by fees if it won't // fit into the high-priority section or the priority is // too low. Otherwise this transaction will be the // final one in the high-priority section, so just fall // though to the code below so it is added now. if blockPlusTxSize > cfg.BlockPrioritySize || prioItem.priority < minHighPriority { heap.Push(priorityQueue, prioItem) continue } } // Ensure the transaction inputs pass all of the necessary // preconditions before allowing it to be added to the block. _, err = blockchain.CheckTransactionInputs(tx, nextBlockHeight, blockTxStore) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "CheckTransactionInputs: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } err = blockchain.ValidateTransactionScripts(tx, blockTxStore, txscript.StandardVerifyFlags, server.sigCache) if err != nil { minrLog.Tracef("Skipping tx %s due to error in "+ "ValidateTransactionScripts: %v", tx.Sha(), err) logSkippedDeps(tx, deps) continue } // Spend the transaction inputs in the block transaction store // and add an entry for it to ensure any transactions which // reference this one have it available as an input and can // ensure they aren't double spending. spendTransaction(blockTxStore, tx, nextBlockHeight) // Add the transaction to the block, increment counters, and // save the fees and signature operation counts to the block // template. blockTxns = append(blockTxns, tx) blockSize += txSize blockSigOps += numSigOps totalFees += prioItem.fee txFees = append(txFees, prioItem.fee) txSigOpCounts = append(txSigOpCounts, numSigOps) minrLog.Tracef("Adding tx %s (priority %.2f, feePerKB %.2f)", prioItem.tx.Sha(), prioItem.priority, prioItem.feePerKB) // Add transactions which depend on this one (and also do not // have any other unsatisified dependencies) to the priority // queue. if deps != nil { for e := deps.Front(); e != nil; e = e.Next() { // Add the transaction to the priority queue if // there are no more dependencies after this // one. item := e.Value.(*txPrioItem) delete(item.dependsOn, *tx.Sha()) if len(item.dependsOn) == 0 { heap.Push(priorityQueue, item) } } } } // Now that the actual transactions have been selected, update the // block size for the real transaction count and coinbase value with // the total fees accordingly. blockSize -= wire.MaxVarIntPayload - uint32(wire.VarIntSerializeSize(uint64(len(blockTxns)))) coinbaseTx.MsgTx().TxOut[0].Value += totalFees txFees[0] = -totalFees // Calculate the required difficulty for the block. The timestamp // is potentially adjusted to ensure it comes after the median time of // the last several blocks per the chain consensus rules. ts, err := medianAdjustedTime(chainState, timeSource) if err != nil { return nil, err } requiredDifficulty, err := blockManager.CalcNextRequiredDifficulty(ts) if err != nil { return nil, err } // Create a new block ready to be solved. merkles := blockchain.BuildMerkleTreeStore(blockTxns) var msgBlock wire.MsgBlock msgBlock.Header = wire.BlockHeader{ Version: generatedBlockVersion, PrevBlock: *prevHash, MerkleRoot: *merkles[len(merkles)-1], Timestamp: ts, Bits: requiredDifficulty, } for _, tx := range blockTxns { if err := msgBlock.AddTransaction(tx.MsgTx()); err != nil { return nil, err } } // Finally, perform a full check on the created block against the chain // consensus rules to ensure it properly connects to the current best // chain with no issues. block := btcutil.NewBlock(&msgBlock) block.SetHeight(nextBlockHeight) if err := blockManager.CheckConnectBlock(block); err != nil { return nil, err } minrLog.Debugf("Created new block template (%d transactions, %d in "+ "fees, %d signature operations, %d bytes, target difficulty "+ "%064x)", len(msgBlock.Transactions), totalFees, blockSigOps, blockSize, blockchain.CompactToBig(msgBlock.Header.Bits)) return &BlockTemplate{ block: &msgBlock, fees: txFees, sigOpCounts: txSigOpCounts, height: nextBlockHeight, validPayAddress: payToAddress != nil, }, nil }