Example #1
0
func (s *SPVCon) AskForMerkBlocks(current, last uint32) error {
	var hdr wire.BlockHeader
	_, err := s.headerFile.Seek(int64(current*80), os.SEEK_SET)
	if err != nil {
		return err
	}
	for current < last {
		err = hdr.Deserialize(s.headerFile)
		if err != nil {
			return err
		}
		current++

		bHash := hdr.BlockSha()
		iv1 := wire.NewInvVect(wire.InvTypeFilteredBlock, &bHash)
		gdataMsg := wire.NewMsgGetData()
		err = gdataMsg.AddInvVect(iv1)
		if err != nil {
			return err
		}
		s.outMsgQueue <- gdataMsg
	}

	return nil
}
Example #2
0
func sendMBReq(cn net.Conn, blkhash wire.ShaHash) error {
	iv1 := wire.NewInvVect(wire.InvTypeFilteredBlock, &blkhash)
	gdataB := wire.NewMsgGetData()
	_ = gdataB.AddInvVect(iv1)
	n, err := wire.WriteMessageN(cn, gdataB, VERSION, NETVERSION)
	if err != nil {
		return err
	}
	log.Printf("sent %d byte block request\n", n)
	return nil
}
// TestGetData tests the MsgGetData API.
func TestGetData(t *testing.T) {
	pver := wire.ProtocolVersion

	// Ensure the command is expected value.
	wantCmd := "getdata"
	msg := wire.NewMsgGetData()
	if cmd := msg.Command(); cmd != wantCmd {
		t.Errorf("NewMsgGetData: wrong command - got %v want %v",
			cmd, wantCmd)
	}

	// Ensure max payload is expected value for latest protocol version.
	// Num inventory vectors (varInt) + max allowed inventory vectors.
	wantPayload := uint32(1800009)
	maxPayload := msg.MaxPayloadLength(pver)
	if maxPayload != wantPayload {
		t.Errorf("MaxPayloadLength: wrong max payload length for "+
			"protocol version %d - got %v, want %v", pver,
			maxPayload, wantPayload)
	}

	// Ensure inventory vectors are added properly.
	hash := wire.ShaHash{}
	iv := wire.NewInvVect(wire.InvTypeBlock, &hash)
	err := msg.AddInvVect(iv)
	if err != nil {
		t.Errorf("AddInvVect: %v", err)
	}
	if msg.InvList[0] != iv {
		t.Errorf("AddInvVect: wrong invvect added - got %v, want %v",
			spew.Sprint(msg.InvList[0]), spew.Sprint(iv))
	}

	// Ensure adding more than the max allowed inventory vectors per
	// message returns an error.
	for i := 0; i < wire.MaxInvPerMsg; i++ {
		err = msg.AddInvVect(iv)
	}
	if err == nil {
		t.Errorf("AddInvVect: expected error on too many inventory " +
			"vectors not received")
	}

	// Ensure creating the message with a size hint larger than the max
	// works as expected.
	msg = wire.NewMsgGetDataSizeHint(wire.MaxInvPerMsg + 1)
	wantCap := wire.MaxInvPerMsg
	if cap(msg.InvList) != wantCap {
		t.Errorf("NewMsgGetDataSizeHint: wrong cap for size hint - "+
			"got %v, want %v", cap(msg.InvList), wantCap)
	}

	return
}
Example #4
0
// ProcessTransaction is the main workhorse for handling insertion of new
// free-standing transactions into the memory pool.  It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) ProcessTransaction(tx *btcutil.Tx, allowOrphan, rateLimit bool) error {
	// Protect concurrent access.
	mp.Lock()
	defer mp.Unlock()

	txmpLog.Tracef("Processing transaction %v", tx.Sha())

	// Potentially accept the transaction to the memory pool.
	missingParents, err := mp.maybeAcceptTransaction(tx, true, rateLimit)
	if err != nil {
		return err
	}

	if len(missingParents) == 0 {
		// Generate the inventory vector and relay it.
		iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
		mp.server.RelayInventory(iv, tx)

		// Accept any orphan transactions that depend on this
		// transaction (they may no longer be orphans if all inputs
		// are now available) and repeat for those accepted
		// transactions until there are no more.
		err := mp.processOrphans(tx.Sha())
		if err != nil {
			return err
		}
	} else {
		// The transaction is an orphan (has inputs missing).  Reject
		// it if the flag to allow orphans is not set.
		if !allowOrphan {
			// Only use the first missing parent transaction in
			// the error message.
			//
			// NOTE: RejectDuplicate is really not an accurate
			// reject code here, but it matches the reference
			// implementation and there isn't a better choice due
			// to the limited number of reject codes.  Missing
			// inputs is assumed to mean they are already spent
			// which is not really always the case.
			str := fmt.Sprintf("orphan transaction %v references "+
				"outputs of unknown or fully-spent "+
				"transaction %v", tx.Sha(), missingParents[0])
			return txRuleError(wire.RejectDuplicate, str)
		}

		// Potentially add the orphan transaction to the orphan pool.
		err := mp.maybeAddOrphan(tx)
		if err != nil {
			return err
		}
	}

	return nil
}
Example #5
0
// TestMruInventoryMapStringer tests the stringized output for the
// MruInventoryMap type.
func TestMruInventoryMapStringer(t *testing.T) {
	// Create a couple of fake inventory vectors to use in testing the mru
	// inventory stringer code.
	hash1 := &wire.ShaHash{0x01}
	hash2 := &wire.ShaHash{0x02}
	iv1 := wire.NewInvVect(wire.InvTypeBlock, hash1)
	iv2 := wire.NewInvVect(wire.InvTypeBlock, hash2)

	// Create new mru inventory map and add the inventory vectors.
	mruInvMap := newMruInventoryMap(uint(2))
	mruInvMap.Add(iv1)
	mruInvMap.Add(iv2)

	// Ensure the stringer gives the expected result.  Since map iteration
	// is not ordered, either entry could be first, so account for both
	// cases.
	wantStr1 := fmt.Sprintf("<%d>[%s, %s]", 2, *iv1, *iv2)
	wantStr2 := fmt.Sprintf("<%d>[%s, %s]", 2, *iv2, *iv1)
	gotStr := mruInvMap.String()
	if gotStr != wantStr1 && gotStr != wantStr2 {
		t.Fatalf("unexpected string representation - got %q, want %q "+
			"or %q", gotStr, wantStr1, wantStr2)
	}
}
Example #6
0
// TestInvVect tests the InvVect API.
func TestInvVect(t *testing.T) {
	ivType := wire.InvTypeBlock
	hash := wire.ShaHash{}

	// Ensure we get the same payload and signature back out.
	iv := wire.NewInvVect(ivType, &hash)
	if iv.Type != ivType {
		t.Errorf("NewInvVect: wrong type - got %v, want %v",
			iv.Type, ivType)
	}
	if !iv.Hash.IsEqual(&hash) {
		t.Errorf("NewInvVect: wrong hash - got %v, want %v",
			spew.Sdump(iv.Hash), spew.Sdump(hash))
	}

}
Example #7
0
// fetchHeaderBlocks creates and sends a request to the syncPeer for the next
// list of blocks to be downloaded based on the current list of headers.
func (b *blockManager) fetchHeaderBlocks() {
	// Nothing to do if there is no start header.
	if b.startHeader == nil {
		bmgrLog.Warnf("fetchHeaderBlocks called with no start header")
		return
	}

	// Build up a getdata request for the list of blocks the headers
	// describe.  The size hint will be limited to wire.MaxInvPerMsg by
	// the function, so no need to double check it here.
	gdmsg := wire.NewMsgGetDataSizeHint(uint(b.headerList.Len()))
	numRequested := 0
	for e := b.startHeader; e != nil; e = e.Next() {
		node, ok := e.Value.(*headerNode)
		if !ok {
			bmgrLog.Warn("Header list node type is not a headerNode")
			continue
		}

		iv := wire.NewInvVect(wire.InvTypeBlock, node.sha)
		haveInv, err := b.haveInventory(iv)
		if err != nil {
			bmgrLog.Warnf("Unexpected failure when checking for "+
				"existing inventory during header block "+
				"fetch: %v", err)
		}
		if !haveInv {
			b.requestedBlocks[*node.sha] = struct{}{}
			b.syncPeer.requestedBlocks[*node.sha] = struct{}{}
			gdmsg.AddInvVect(iv)
			numRequested++
		}
		b.startHeader = e.Next()
		if numRequested >= wire.MaxInvPerMsg {
			break
		}
	}
	if len(gdmsg.InvList) > 0 {
		b.syncPeer.QueueMessage(gdmsg, nil)
	}
}
Example #8
0
func (s *SPVCon) NewOutgoingTx(tx *wire.MsgTx) error {
	txid := tx.TxSha()
	// assign height of zero for txs we create
	err := s.TS.AddTxid(&txid, 0)
	if err != nil {
		return err
	}
	_, err = s.TS.Ingest(tx, 0) // our own tx; don't keep track of false positives
	if err != nil {
		return err
	}
	// make an inv message instead of a tx message to be polite
	iv1 := wire.NewInvVect(wire.InvTypeTx, &txid)
	invMsg := wire.NewMsgInv()
	err = invMsg.AddInvVect(iv1)
	if err != nil {
		return err
	}
	s.outMsgQueue <- invMsg
	return nil
}
Example #9
0
// GetPendingInv returns an inv message containing all txs known to the
// db which are at height 0 (not known to be confirmed).
// This can be useful on startup or to rebroadcast unconfirmed txs.
func (ts *TxStore) GetPendingInv() (*wire.MsgInv, error) {
	// use a map (really a set) do avoid dupes
	txidMap := make(map[wire.ShaHash]struct{})

	utxos, err := ts.GetAllUtxos() // get utxos from db
	if err != nil {
		return nil, err
	}
	stxos, err := ts.GetAllStxos() // get stxos from db
	if err != nil {
		return nil, err
	}

	// iterate through utxos, adding txids of anything with height 0
	for _, utxo := range utxos {
		if utxo.AtHeight == 0 {
			txidMap[utxo.Op.Hash] = struct{}{} // adds to map
		}
	}
	// do the same with stxos based on height at which spent
	for _, stxo := range stxos {
		if stxo.SpendHeight == 0 {
			txidMap[stxo.SpendTxid] = struct{}{}
		}
	}

	invMsg := wire.NewMsgInv()
	for txid := range txidMap {
		item := wire.NewInvVect(wire.InvTypeTx, &txid)
		err = invMsg.AddInvVect(item)
		if err != nil {
			if err != nil {
				return nil, err
			}
		}
	}

	// return inv message with all txids (maybe none)
	return invMsg, nil
}
// BenchmarkMruInventoryList performs basic benchmarks on the most recently
// used inventory handling.
func BenchmarkMruInventoryList(b *testing.B) {
	// Create a bunch of fake inventory vectors to use in benchmarking
	// the mru inventory code.
	b.StopTimer()
	numInvVects := 100000
	invVects := make([]*wire.InvVect, 0, numInvVects)
	for i := 0; i < numInvVects; i++ {
		hashBytes := make([]byte, wire.HashSize)
		rand.Read(hashBytes)
		hash, _ := wire.NewShaHash(hashBytes)
		iv := wire.NewInvVect(wire.InvTypeBlock, hash)
		invVects = append(invVects, iv)
	}
	b.StartTimer()

	// Benchmark the add plus evicition code.
	limit := 20000
	mruInvMap := NewMruInventoryMap(uint(limit))
	for i := 0; i < b.N; i++ {
		mruInvMap.Add(invVects[i%numInvVects])
	}
}
Example #11
0
// TestOutboundPeer tests that the outbound peer works as expected.
func TestOutboundPeer(t *testing.T) {
	// Use a mock NewestBlock func to test errs
	var errBlockNotFound = errors.New("newest block not found")
	var mockNewestSha = func() (*wire.ShaHash, int32, error) {
		return nil, 0, errBlockNotFound
	}

	peerCfg := &peer.Config{
		NewestBlock:      mockNewestSha,
		UserAgentName:    "peer",
		UserAgentVersion: "1.0",
		ChainParams:      &chaincfg.MainNetParams,
		Services:         0,
	}

	r, w := io.Pipe()
	c := &conn{raddr: "10.0.0.1:8333", Writer: w, Reader: r}

	p, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}

	wantErr := errBlockNotFound
	if err := p.Connect(c); err != wantErr {
		t.Errorf("Connect: expected err %v, got %v\n", wantErr, err)
		return
	}

	// Test already connected.
	if err := p.Connect(c); err != nil {
		t.Errorf("Connect: unexpected err %v\n", err)
		return
	}

	// Test Queue Inv
	fakeBlockHash := &wire.ShaHash{0: 0x00, 1: 0x01}
	fakeInv := wire.NewInvVect(wire.InvTypeBlock, fakeBlockHash)
	p.QueueInventory(fakeInv)
	p.AddKnownInventory(fakeInv)
	p.QueueInventory(fakeInv)

	// Test Queue Message
	fakeMsg := wire.NewMsgVerAck()
	p.QueueMessage(fakeMsg, nil)
	done := make(chan struct{})
	p.QueueMessage(fakeMsg, done)
	<-done
	p.Disconnect()

	// Test NewestBlock
	var newestBlock = func() (*wire.ShaHash, int32, error) {
		hashStr := "14a0810ac680a3eb3f82edc878cea25ec41d6b790744e5daeef"
		hash, err := wire.NewShaHashFromStr(hashStr)
		if err != nil {
			return nil, 0, err
		}
		return hash, 234439, nil
	}
	peerCfg.NewestBlock = newestBlock
	r1, w1 := io.Pipe()
	c1 := &conn{raddr: "10.0.0.1:8333", Writer: w1, Reader: r1}
	p1, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}
	if err := p1.Connect(c1); err != nil {
		t.Errorf("Connect: unexpected err %v\n", err)
		return
	}

	// Test update latest block
	latestBlockSha, err := wire.NewShaHashFromStr("1a63f9cdff1752e6375c8c76e543a71d239e1a2e5c6db1aa679")
	if err != nil {
		t.Errorf("NewShaHashFromStr: unexpected err %v\n", err)
		return
	}
	p1.UpdateLastAnnouncedBlock(latestBlockSha)
	p1.UpdateLastBlockHeight(234440)
	if p1.LastAnnouncedBlock() != latestBlockSha {
		t.Errorf("LastAnnouncedBlock: wrong block - got %v, want %v",
			p1.LastAnnouncedBlock(), latestBlockSha)
		return
	}

	// Test Queue Inv after connection
	p1.QueueInventory(fakeInv)
	p1.Disconnect()

	// Test regression
	peerCfg.ChainParams = &chaincfg.RegressionNetParams
	peerCfg.Services = wire.SFNodeBloom
	r2, w2 := io.Pipe()
	c2 := &conn{raddr: "10.0.0.1:8333", Writer: w2, Reader: r2}
	p2, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}
	if err := p2.Connect(c2); err != nil {
		t.Errorf("Connect: unexpected err %v\n", err)
		return
	}

	// Test PushXXX
	var addrs []*wire.NetAddress
	for i := 0; i < 5; i++ {
		na := wire.NetAddress{}
		addrs = append(addrs, &na)
	}
	if _, err := p2.PushAddrMsg(addrs); err != nil {
		t.Errorf("PushAddrMsg: unexpected err %v\n", err)
		return
	}
	if err := p2.PushGetBlocksMsg(nil, &wire.ShaHash{}); err != nil {
		t.Errorf("PushGetBlocksMsg: unexpected err %v\n", err)
		return
	}
	if err := p2.PushGetHeadersMsg(nil, &wire.ShaHash{}); err != nil {
		t.Errorf("PushGetHeadersMsg: unexpected err %v\n", err)
		return
	}
	p2.PushRejectMsg("block", wire.RejectMalformed, "malformed", nil, true)
	p2.PushRejectMsg("block", wire.RejectInvalid, "invalid", nil, false)

	// Test Queue Messages
	p2.QueueMessage(wire.NewMsgGetAddr(), nil)
	p2.QueueMessage(wire.NewMsgPing(1), nil)
	p2.QueueMessage(wire.NewMsgMemPool(), nil)
	p2.QueueMessage(wire.NewMsgGetData(), nil)
	p2.QueueMessage(wire.NewMsgGetHeaders(), nil)

	p2.Disconnect()
}
// TestGetDataWireErrors performs negative tests against wire encode and decode
// of MsgGetData to confirm error paths work correctly.
func TestGetDataWireErrors(t *testing.T) {
	pver := wire.ProtocolVersion
	wireErr := &wire.MessageError{}

	// Block 203707 hash.
	hashStr := "3264bc2ac36a60840790ba1d475d01367e7c723da941069e9dc"
	blockHash, err := wire.NewShaHashFromStr(hashStr)
	if err != nil {
		t.Errorf("NewShaHashFromStr: %v", err)
	}

	iv := wire.NewInvVect(wire.InvTypeBlock, blockHash)

	// Base message used to induce errors.
	baseGetData := wire.NewMsgGetData()
	baseGetData.AddInvVect(iv)
	baseGetDataEncoded := []byte{
		0x02,                   // Varint for number of inv vectors
		0x02, 0x00, 0x00, 0x00, // InvTypeBlock
		0xdc, 0xe9, 0x69, 0x10, 0x94, 0xda, 0x23, 0xc7,
		0xe7, 0x67, 0x13, 0xd0, 0x75, 0xd4, 0xa1, 0x0b,
		0x79, 0x40, 0x08, 0xa6, 0x36, 0xac, 0xc2, 0x4b,
		0x26, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Block 203707 hash
	}

	// Message that forces an error by having more than the max allowed inv
	// vectors.
	maxGetData := wire.NewMsgGetData()
	for i := 0; i < wire.MaxInvPerMsg; i++ {
		maxGetData.AddInvVect(iv)
	}
	maxGetData.InvList = append(maxGetData.InvList, iv)
	maxGetDataEncoded := []byte{
		0xfd, 0x51, 0xc3, // Varint for number of inv vectors (50001)
	}

	tests := []struct {
		in       *wire.MsgGetData // Value to encode
		buf      []byte           // Wire encoding
		pver     uint32           // Protocol version for wire encoding
		max      int              // Max size of fixed buffer to induce errors
		writeErr error            // Expected write error
		readErr  error            // Expected read error
	}{
		// Latest protocol version with intentional read/write errors.
		// Force error in inventory vector count
		{baseGetData, baseGetDataEncoded, pver, 0, io.ErrShortWrite, io.EOF},
		// Force error in inventory list.
		{baseGetData, baseGetDataEncoded, pver, 1, io.ErrShortWrite, io.EOF},
		// Force error with greater than max inventory vectors.
		{maxGetData, maxGetDataEncoded, pver, 3, wireErr, wireErr},
	}

	t.Logf("Running %d tests", len(tests))
	for i, test := range tests {
		// Encode to wire format.
		w := newFixedWriter(test.max)
		err := test.in.BtcEncode(w, test.pver)
		if reflect.TypeOf(err) != reflect.TypeOf(test.writeErr) {
			t.Errorf("BtcEncode #%d wrong error got: %v, want: %v",
				i, err, test.writeErr)
			continue
		}

		// For errors which are not of type wire.MessageError, check
		// them for equality.
		if _, ok := err.(*wire.MessageError); !ok {
			if err != test.writeErr {
				t.Errorf("BtcEncode #%d wrong error got: %v, "+
					"want: %v", i, err, test.writeErr)
				continue
			}
		}

		// Decode from wire format.
		var msg wire.MsgGetData
		r := newFixedReader(test.max, test.buf)
		err = msg.BtcDecode(r, test.pver)
		if reflect.TypeOf(err) != reflect.TypeOf(test.readErr) {
			t.Errorf("BtcDecode #%d wrong error got: %v, want: %v",
				i, err, test.readErr)
			continue
		}

		// For errors which are not of type wire.MessageError, check
		// them for equality.
		if _, ok := err.(*wire.MessageError); !ok {
			if err != test.readErr {
				t.Errorf("BtcDecode #%d wrong error got: %v, "+
					"want: %v", i, err, test.readErr)
				continue
			}
		}
	}
}
Example #13
0
// TestMruInventoryMap ensures the MruInventoryMap behaves as expected including
// limiting, eviction of least-recently used entries, specific entry removal,
// and existence tests.
func TestMruInventoryMap(t *testing.T) {
	// Create a bunch of fake inventory vectors to use in testing the mru
	// inventory code.
	numInvVects := 10
	invVects := make([]*wire.InvVect, 0, numInvVects)
	for i := 0; i < numInvVects; i++ {
		hash := &wire.ShaHash{byte(i)}
		iv := wire.NewInvVect(wire.InvTypeBlock, hash)
		invVects = append(invVects, iv)
	}

	tests := []struct {
		name  string
		limit int
	}{
		{name: "limit 0", limit: 0},
		{name: "limit 1", limit: 1},
		{name: "limit 5", limit: 5},
		{name: "limit 7", limit: 7},
		{name: "limit one less than available", limit: numInvVects - 1},
		{name: "limit all available", limit: numInvVects},
	}

testLoop:
	for i, test := range tests {
		// Create a new mru inventory map limited by the specified test
		// limit and add all of the test inventory vectors.  This will
		// cause evicition since there are more test inventory vectors
		// than the limits.
		mruInvMap := newMruInventoryMap(uint(test.limit))
		for j := 0; j < numInvVects; j++ {
			mruInvMap.Add(invVects[j])
		}

		// Ensure the limited number of most recent entries in the
		// inventory vector list exist.
		for j := numInvVects - test.limit; j < numInvVects; j++ {
			if !mruInvMap.Exists(invVects[j]) {
				t.Errorf("Exists #%d (%s) entry %s does not "+
					"exist", i, test.name, *invVects[j])
				continue testLoop
			}
		}

		// Ensure the entries before the limited number of most recent
		// entries in the inventory vector list do not exist.
		for j := 0; j < numInvVects-test.limit; j++ {
			if mruInvMap.Exists(invVects[j]) {
				t.Errorf("Exists #%d (%s) entry %s exists", i,
					test.name, *invVects[j])
				continue testLoop
			}
		}

		// Readd the entry that should currently be the least-recently
		// used entry so it becomes the most-recently used entry, then
		// force an eviction by adding an entry that doesn't exist and
		// ensure the evicted entry is the new least-recently used
		// entry.
		//
		// This check needs at least 2 entries.
		if test.limit > 1 {
			origLruIndex := numInvVects - test.limit
			mruInvMap.Add(invVects[origLruIndex])

			iv := wire.NewInvVect(wire.InvTypeBlock,
				&wire.ShaHash{0x00, 0x01})
			mruInvMap.Add(iv)

			// Ensure the original lru entry still exists since it
			// was updated and should've have become the mru entry.
			if !mruInvMap.Exists(invVects[origLruIndex]) {
				t.Errorf("MRU #%d (%s) entry %s does not exist",
					i, test.name, *invVects[origLruIndex])
				continue testLoop
			}

			// Ensure the entry that should've become the new lru
			// entry was evicted.
			newLruIndex := origLruIndex + 1
			if mruInvMap.Exists(invVects[newLruIndex]) {
				t.Errorf("MRU #%d (%s) entry %s exists", i,
					test.name, *invVects[newLruIndex])
				continue testLoop
			}
		}

		// Delete all of the entries in the inventory vector list,
		// including those that don't exist in the map, and ensure they
		// no longer exist.
		for j := 0; j < numInvVects; j++ {
			mruInvMap.Delete(invVects[j])
			if mruInvMap.Exists(invVects[j]) {
				t.Errorf("Delete #%d (%s) entry %s exists", i,
					test.name, *invVects[j])
				continue testLoop
			}
		}
	}
}
Example #14
0
// handleNotifyMsg handles notifications from blockchain.  It does things such
// as request orphan block parents and relay accepted blocks to connected peers.
func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) {
	switch notification.Type {
	// A block has been accepted into the block chain.  Relay it to other
	// peers.
	case blockchain.NTBlockAccepted:
		// Don't relay if we are not current. Other peers that are
		// current should already know about it.
		if !b.current() {
			return
		}

		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain accepted notification is not a block.")
			break
		}

		// Generate the inventory vector and relay it.
		iv := wire.NewInvVect(wire.InvTypeBlock, block.Sha())
		b.server.RelayInventory(iv, block.MsgBlock().Header)

	// A block has been connected to the main block chain.
	case blockchain.NTBlockConnected:
		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain connected notification is not a block.")
			break
		}

		// Remove all of the transactions (except the coinbase) in the
		// connected block from the transaction pool.  Secondly, remove any
		// transactions which are now double spends as a result of these
		// new transactions.  Finally, remove any transaction that is
		// no longer an orphan. Transactions which depend on a confirmed
		// transaction are NOT removed recursively because they are still
		// valid.
		for _, tx := range block.Transactions()[1:] {
			b.server.txMemPool.RemoveTransaction(tx, false)
			b.server.txMemPool.RemoveDoubleSpends(tx)
			b.server.txMemPool.RemoveOrphan(tx.Sha())
			acceptedTxs := b.server.txMemPool.ProcessOrphans(tx.Sha())
			b.server.AnnounceNewTransactions(acceptedTxs)
		}

		if r := b.server.rpcServer; r != nil {
			// Now that this block is in the blockchain we can mark
			// all the transactions (except the coinbase) as no
			// longer needing rebroadcasting.
			for _, tx := range block.Transactions()[1:] {
				iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
				b.server.RemoveRebroadcastInventory(iv)
			}

			// Notify registered websocket clients of incoming block.
			r.ntfnMgr.NotifyBlockConnected(block)
		}

	// A block has been disconnected from the main block chain.
	case blockchain.NTBlockDisconnected:
		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain disconnected notification is not a block.")
			break
		}

		// Reinsert all of the transactions (except the coinbase) into
		// the transaction pool.
		for _, tx := range block.Transactions()[1:] {
			_, err := b.server.txMemPool.MaybeAcceptTransaction(tx,
				false, false)
			if err != nil {
				// Remove the transaction and all transactions
				// that depend on it if it wasn't accepted into
				// the transaction pool.
				b.server.txMemPool.RemoveTransaction(tx, true)
			}
		}

		// Notify registered websocket clients.
		if r := b.server.rpcServer; r != nil {
			r.ntfnMgr.NotifyBlockDisconnected(block)
		}
	}
}
Example #15
0
// handleNotifyMsg handles notifications from blockchain.  It does things such
// as request orphan block parents and relay accepted blocks to connected peers.
func (b *blockManager) handleNotifyMsg(notification *blockchain.Notification) {
	switch notification.Type {
	// A block has been accepted into the block chain.  Relay it to other
	// peers.
	case blockchain.NTBlockAccepted:
		// Don't relay if we are not current. Other peers that are
		// current should already know about it.

		if !b.current() {
			return
		}

		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain accepted notification is not a block.")
			break
		}

		// It's ok to ignore the error here since the notification is
		// coming from the chain code which has already cached the hash.
		hash, _ := block.Sha()

		// Generate the inventory vector and relay it.
		iv := wire.NewInvVect(wire.InvTypeBlock, hash)
		b.server.RelayInventory(iv, nil)

	// A block has been connected to the main block chain.
	case blockchain.NTBlockConnected:
		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain connected notification is not a block.")
			break
		}

		// Remove all of the transactions (except the coinbase) in the
		// connected block from the transaction pool.  Secondly, remove any
		// transactions which are now double spends as a result of these
		// new transactions.  Finally, remove any transaction that is
		// no longer an orphan.  Note that removing a transaction from
		// pool also removes any transactions which depend on it,
		// recursively.
		for _, tx := range block.Transactions()[1:] {
			b.server.txMemPool.RemoveTransaction(tx)
			b.server.txMemPool.RemoveDoubleSpends(tx)
			b.server.txMemPool.RemoveOrphan(tx.Sha())
		}

		if r := b.server.rpcServer; r != nil {
			// Now that this block is in the blockchain we can mark
			// all the transactions (except the coinbase) as no
			// longer needing rebroadcasting.
			for _, tx := range block.Transactions()[1:] {
				iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
				b.server.RemoveRebroadcastInventory(iv)
			}

			// Notify registered websocket clients of incoming block.
			r.ntfnMgr.NotifyBlockConnected(block)
		}

		// If we're maintaing the address index, and it is up to date
		// then update it based off this new block.
		if cfg.AddrIndex && b.server.addrIndexer.IsCaughtUp() {
			b.server.addrIndexer.UpdateAddressIndex(block)
		}

	// A block has been disconnected from the main block chain.
	case blockchain.NTBlockDisconnected:
		block, ok := notification.Data.(*btcutil.Block)
		if !ok {
			bmgrLog.Warnf("Chain disconnected notification is not a block.")
			break
		}

		// Reinsert all of the transactions (except the coinbase) into
		// the transaction pool.
		for _, tx := range block.Transactions()[1:] {
			_, err := b.server.txMemPool.MaybeAcceptTransaction(tx,
				false, false)
			if err != nil {
				// Remove the transaction and all transactions
				// that depend on it if it wasn't accepted into
				// the transaction pool.
				b.server.txMemPool.RemoveTransaction(tx)
			}
		}

		// Notify registered websocket clients.
		if r := b.server.rpcServer; r != nil {
			r.ntfnMgr.NotifyBlockDisconnected(block)
		}
	}
}
Example #16
0
// processOrphans is the internal function which implements the public
// ProcessOrphans.  See the comment for ProcessOrphans for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) processOrphans(hash *wire.ShaHash) error {
	// Start with processing at least the passed hash.
	processHashes := list.New()
	processHashes.PushBack(hash)
	for processHashes.Len() > 0 {
		// Pop the first hash to process.
		firstElement := processHashes.Remove(processHashes.Front())
		processHash := firstElement.(*wire.ShaHash)

		// Look up all orphans that are referenced by the transaction we
		// just accepted.  This will typically only be one, but it could
		// be multiple if the referenced transaction contains multiple
		// outputs.  Skip to the next item on the list of hashes to
		// process if there are none.
		orphans, exists := mp.orphansByPrev[*processHash]
		if !exists || orphans == nil {
			continue
		}

		var enext *list.Element
		for e := orphans.Front(); e != nil; e = enext {
			enext = e.Next()
			tx := e.Value.(*btcutil.Tx)

			// Remove the orphan from the orphan pool.  Current
			// behavior requires that all saved orphans with
			// a newly accepted parent are removed from the orphan
			// pool and potentially added to the memory pool, but
			// transactions which cannot be added to memory pool
			// (including due to still being orphans) are expunged
			// from the orphan pool.
			//
			// TODO(jrick): The above described behavior sounds
			// like a bug, and I think we should investigate
			// potentially moving orphans to the memory pool, but
			// leaving them in the orphan pool if not all parent
			// transactions are known yet.
			orphanHash := tx.Sha()
			mp.removeOrphan(orphanHash)

			// Potentially accept the transaction into the
			// transaction pool.
			missingParents, err := mp.maybeAcceptTransaction(tx,
				true, true)
			if err != nil {
				return err
			}

			if len(missingParents) == 0 {
				// Generate and relay the inventory vector for the
				// newly accepted transaction.
				iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
				mp.server.RelayInventory(iv, tx)
			} else {
				// Transaction is still an orphan.
				// TODO(jrick): This removeOrphan call is
				// likely unnecessary as it was unconditionally
				// removed above and maybeAcceptTransaction won't
				// add it back.
				mp.removeOrphan(orphanHash)
			}

			// Add this transaction to the list of transactions to
			// process so any orphans that depend on this one are
			// handled too.
			//
			// TODO(jrick): In the case that this is still an orphan,
			// we know that any other transactions in the orphan
			// pool with this orphan as their parent are still
			// orphans as well, and should be removed.  While
			// recursively calling removeOrphan and
			// maybeAcceptTransaction on these transactions is not
			// wrong per se, it is overkill if all we care about is
			// recursively removing child transactions of this
			// orphan.
			processHashes.PushBack(orphanHash)
		}
	}

	return nil
}
Example #17
0
// AskForMerkBlocks requests blocks from current to last
// right now this asks for 1 block per getData message.
// Maybe it's faster to ask for many in a each message?
func (s *SPVCon) AskForBlocks() error {
	var hdr wire.BlockHeader

	s.headerMutex.Lock() // lock just to check filesize
	stat, err := os.Stat(headerFileName)
	s.headerMutex.Unlock() // checked, unlock
	endPos := stat.Size()

	headerTip := int32(endPos/80) - 1 // move back 1 header length to read

	dbTip, err := s.TS.GetDBSyncHeight()
	if err != nil {
		return err
	}
	fmt.Printf("dbTip %d headerTip %d\n", dbTip, headerTip)
	if dbTip > headerTip {
		return fmt.Errorf("error- db longer than headers! shouldn't happen.")
	}
	if dbTip == headerTip {
		// nothing to ask for; set wait state and return
		fmt.Printf("no blocks to request, entering wait state\n")
		fmt.Printf("%d bytes received\n", s.RBytes)
		s.inWaitState <- true
		// also advertise any unconfirmed txs here
		s.Rebroadcast()
		return nil
	}

	fmt.Printf("will request merkleblocks %d to %d\n", dbTip, headerTip)

	if !s.HardMode { // don't send this in hardmode! that's the whole point
		// create initial filter
		filt, err := s.TS.GimmeFilter()
		if err != nil {
			return err
		}
		// send filter
		s.SendFilter(filt)
		fmt.Printf("sent filter %x\n", filt.MsgFilterLoad().Filter)
	}
	// loop through all heights where we want merkleblocks.
	for dbTip <= headerTip {
		// load header from file

		s.headerMutex.Lock() // seek to header we need
		_, err = s.headerFile.Seek(int64((dbTip-1)*80), os.SEEK_SET)
		if err != nil {
			return err
		}
		err = hdr.Deserialize(s.headerFile) // read header, done w/ file for now
		s.headerMutex.Unlock()              // unlock after reading 1 header
		if err != nil {
			log.Printf("header deserialize error!\n")
			return err
		}

		bHash := hdr.BlockSha()
		// create inventory we're asking for
		iv1 := new(wire.InvVect)
		// if hardmode, ask for legit blocks, none of this ralphy stuff
		if s.HardMode {
			iv1 = wire.NewInvVect(wire.InvTypeBlock, &bHash)
		} else { // ah well
			iv1 = wire.NewInvVect(wire.InvTypeFilteredBlock, &bHash)
		}
		gdataMsg := wire.NewMsgGetData()
		// add inventory
		err = gdataMsg.AddInvVect(iv1)
		if err != nil {
			return err
		}
		hah := NewRootAndHeight(hdr.BlockSha(), dbTip)
		if dbTip == headerTip { // if this is the last block, indicate finality
			hah.final = true
		}
		s.outMsgQueue <- gdataMsg
		// waits here most of the time for the queue to empty out
		s.blockQueue <- hah // push height and mroot of requested block on queue
		dbTip++
	}
	return nil
}
Example #18
0
// AskForTx requests a tx we heard about from an inv message.
// It's one at a time but should be fast enough.
// I don't like this function because SPV shouldn't even ask...
func (s *SPVCon) AskForTx(txid wire.ShaHash) {
	gdata := wire.NewMsgGetData()
	inv := wire.NewInvVect(wire.InvTypeTx, &txid)
	gdata.AddInvVect(inv)
	s.outMsgQueue <- gdata
}
// TestGetDataWire tests the MsgGetData wire encode and decode for various
// numbers of inventory vectors and protocol versions.
func TestGetDataWire(t *testing.T) {
	// Block 203707 hash.
	hashStr := "3264bc2ac36a60840790ba1d475d01367e7c723da941069e9dc"
	blockHash, err := wire.NewShaHashFromStr(hashStr)
	if err != nil {
		t.Errorf("NewShaHashFromStr: %v", err)
	}

	// Transation 1 of Block 203707 hash.
	hashStr = "d28a3dc7392bf00a9855ee93dd9a81eff82a2c4fe57fbd42cfe71b487accfaf0"
	txHash, err := wire.NewShaHashFromStr(hashStr)
	if err != nil {
		t.Errorf("NewShaHashFromStr: %v", err)
	}

	iv := wire.NewInvVect(wire.InvTypeBlock, blockHash)
	iv2 := wire.NewInvVect(wire.InvTypeTx, txHash)

	// Empty MsgGetData message.
	NoInv := wire.NewMsgGetData()
	NoInvEncoded := []byte{
		0x00, // Varint for number of inventory vectors
	}

	// MsgGetData message with multiple inventory vectors.
	MultiInv := wire.NewMsgGetData()
	MultiInv.AddInvVect(iv)
	MultiInv.AddInvVect(iv2)
	MultiInvEncoded := []byte{
		0x02,                   // Varint for number of inv vectors
		0x02, 0x00, 0x00, 0x00, // InvTypeBlock
		0xdc, 0xe9, 0x69, 0x10, 0x94, 0xda, 0x23, 0xc7,
		0xe7, 0x67, 0x13, 0xd0, 0x75, 0xd4, 0xa1, 0x0b,
		0x79, 0x40, 0x08, 0xa6, 0x36, 0xac, 0xc2, 0x4b,
		0x26, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Block 203707 hash
		0x01, 0x00, 0x00, 0x00, // InvTypeTx
		0xf0, 0xfa, 0xcc, 0x7a, 0x48, 0x1b, 0xe7, 0xcf,
		0x42, 0xbd, 0x7f, 0xe5, 0x4f, 0x2c, 0x2a, 0xf8,
		0xef, 0x81, 0x9a, 0xdd, 0x93, 0xee, 0x55, 0x98,
		0x0a, 0xf0, 0x2b, 0x39, 0xc7, 0x3d, 0x8a, 0xd2, // Tx 1 of block 203707 hash
	}

	tests := []struct {
		in   *wire.MsgGetData // Message to encode
		out  *wire.MsgGetData // Expected decoded message
		buf  []byte           // Wire encoding
		pver uint32           // Protocol version for wire encoding
	}{
		// Latest protocol version with no inv vectors.
		{
			NoInv,
			NoInv,
			NoInvEncoded,
			wire.ProtocolVersion,
		},

		// Latest protocol version with multiple inv vectors.
		{
			MultiInv,
			MultiInv,
			MultiInvEncoded,
			wire.ProtocolVersion,
		},

		// Protocol version BIP0035Version no inv vectors.
		{
			NoInv,
			NoInv,
			NoInvEncoded,
			wire.BIP0035Version,
		},

		// Protocol version BIP0035Version with multiple inv vectors.
		{
			MultiInv,
			MultiInv,
			MultiInvEncoded,
			wire.BIP0035Version,
		},

		// Protocol version BIP0031Version no inv vectors.
		{
			NoInv,
			NoInv,
			NoInvEncoded,
			wire.BIP0031Version,
		},

		// Protocol version BIP0031Version with multiple inv vectors.
		{
			MultiInv,
			MultiInv,
			MultiInvEncoded,
			wire.BIP0031Version,
		},

		// Protocol version NetAddressTimeVersion no inv vectors.
		{
			NoInv,
			NoInv,
			NoInvEncoded,
			wire.NetAddressTimeVersion,
		},

		// Protocol version NetAddressTimeVersion with multiple inv vectors.
		{
			MultiInv,
			MultiInv,
			MultiInvEncoded,
			wire.NetAddressTimeVersion,
		},

		// Protocol version MultipleAddressVersion no inv vectors.
		{
			NoInv,
			NoInv,
			NoInvEncoded,
			wire.MultipleAddressVersion,
		},

		// Protocol version MultipleAddressVersion with multiple inv vectors.
		{
			MultiInv,
			MultiInv,
			MultiInvEncoded,
			wire.MultipleAddressVersion,
		},
	}

	t.Logf("Running %d tests", len(tests))
	for i, test := range tests {
		// Encode the message to wire format.
		var buf bytes.Buffer
		err := test.in.BtcEncode(&buf, test.pver)
		if err != nil {
			t.Errorf("BtcEncode #%d error %v", i, err)
			continue
		}
		if !bytes.Equal(buf.Bytes(), test.buf) {
			t.Errorf("BtcEncode #%d\n got: %s want: %s", i,
				spew.Sdump(buf.Bytes()), spew.Sdump(test.buf))
			continue
		}

		// Decode the message from wire format.
		var msg wire.MsgGetData
		rbuf := bytes.NewReader(test.buf)
		err = msg.BtcDecode(rbuf, test.pver)
		if err != nil {
			t.Errorf("BtcDecode #%d error %v", i, err)
			continue
		}
		if !reflect.DeepEqual(&msg, test.out) {
			t.Errorf("BtcDecode #%d\n got: %s want: %s", i,
				spew.Sdump(msg), spew.Sdump(test.out))
			continue
		}
	}
}
Example #20
0
// TestOutboundPeer tests that the outbound peer works as expected.
func TestOutboundPeer(t *testing.T) {

	peerCfg := &peer.Config{
		NewestBlock: func() (*wire.ShaHash, int32, error) {
			return nil, 0, errors.New("newest block not found")
		},
		UserAgentName:    "peer",
		UserAgentVersion: "1.0",
		ChainParams:      &chaincfg.MainNetParams,
		Services:         0,
	}

	r, w := io.Pipe()
	c := &conn{raddr: "10.0.0.1:8333", Writer: w, Reader: r}

	p, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}

	// Test trying to connect twice.
	p.Connect(c)
	p.Connect(c)

	disconnected := make(chan struct{})
	go func() {
		p.WaitForDisconnect()
		disconnected <- struct{}{}
	}()

	select {
	case <-disconnected:
		close(disconnected)
	case <-time.After(time.Second):
		t.Fatal("Peer did not automatically disconnect.")
	}

	if p.Connected() {
		t.Fatalf("Should not be connected as NewestBlock produces error.")
	}

	// Test Queue Inv
	fakeBlockHash := &wire.ShaHash{0: 0x00, 1: 0x01}
	fakeInv := wire.NewInvVect(wire.InvTypeBlock, fakeBlockHash)

	// Should be noops as the peer could not connect.
	p.QueueInventory(fakeInv)
	p.AddKnownInventory(fakeInv)
	p.QueueInventory(fakeInv)

	fakeMsg := wire.NewMsgVerAck()
	p.QueueMessage(fakeMsg, nil)
	done := make(chan struct{})
	p.QueueMessage(fakeMsg, done)
	<-done
	p.Disconnect()

	// Test NewestBlock
	var newestBlock = func() (*wire.ShaHash, int32, error) {
		hashStr := "14a0810ac680a3eb3f82edc878cea25ec41d6b790744e5daeef"
		hash, err := wire.NewShaHashFromStr(hashStr)
		if err != nil {
			return nil, 0, err
		}
		return hash, 234439, nil
	}

	peerCfg.NewestBlock = newestBlock
	r1, w1 := io.Pipe()
	c1 := &conn{raddr: "10.0.0.1:8333", Writer: w1, Reader: r1}
	p1, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}
	p1.Connect(c1)

	// Test update latest block
	latestBlockSha, err := wire.NewShaHashFromStr("1a63f9cdff1752e6375c8c76e543a71d239e1a2e5c6db1aa679")
	if err != nil {
		t.Errorf("NewShaHashFromStr: unexpected err %v\n", err)
		return
	}
	p1.UpdateLastAnnouncedBlock(latestBlockSha)
	p1.UpdateLastBlockHeight(234440)
	if p1.LastAnnouncedBlock() != latestBlockSha {
		t.Errorf("LastAnnouncedBlock: wrong block - got %v, want %v",
			p1.LastAnnouncedBlock(), latestBlockSha)
		return
	}

	// Test Queue Inv after connection
	p1.QueueInventory(fakeInv)
	p1.Disconnect()

	// Test regression
	peerCfg.ChainParams = &chaincfg.RegressionNetParams
	peerCfg.Services = wire.SFNodeBloom
	r2, w2 := io.Pipe()
	c2 := &conn{raddr: "10.0.0.1:8333", Writer: w2, Reader: r2}
	p2, err := peer.NewOutboundPeer(peerCfg, "10.0.0.1:8333")
	if err != nil {
		t.Errorf("NewOutboundPeer: unexpected err - %v\n", err)
		return
	}
	p2.Connect(c2)

	// Test PushXXX
	var addrs []*wire.NetAddress
	for i := 0; i < 5; i++ {
		na := wire.NetAddress{}
		addrs = append(addrs, &na)
	}
	if _, err := p2.PushAddrMsg(addrs); err != nil {
		t.Errorf("PushAddrMsg: unexpected err %v\n", err)
		return
	}
	if err := p2.PushGetBlocksMsg(nil, &wire.ShaHash{}); err != nil {
		t.Errorf("PushGetBlocksMsg: unexpected err %v\n", err)
		return
	}
	if err := p2.PushGetHeadersMsg(nil, &wire.ShaHash{}); err != nil {
		t.Errorf("PushGetHeadersMsg: unexpected err %v\n", err)
		return
	}

	p2.PushRejectMsg("block", wire.RejectMalformed, "malformed", nil, false)
	p2.PushRejectMsg("block", wire.RejectInvalid, "invalid", nil, false)

	// Test Queue Messages
	p2.QueueMessage(wire.NewMsgGetAddr(), nil)
	p2.QueueMessage(wire.NewMsgPing(1), nil)
	p2.QueueMessage(wire.NewMsgMemPool(), nil)
	p2.QueueMessage(wire.NewMsgGetData(), nil)
	p2.QueueMessage(wire.NewMsgGetHeaders(), nil)

	p2.Disconnect()
}