/// <summary> /// Upside Potential Ratio,compared to Sortino, was a further improvement, extending the /// measurement of only upside on the numerator, and only downside of the /// denominator of the ratio equation. /// (分子只考虑超过MAR部分,分母只考虑DownsideDeviation的下跌风险) /// </summary> func UpsidePotentialRatio(Ra *utils.SlidingWindow, MAR float64) (float64, error) { //var r = Ra.Where<float64>(singleData => singleData > MAR).ToList<float64>(); r, err := utils.AboveValue(Ra, MAR) if err != nil { return math.NaN(), err } var length int method := "subset" switch method { case "full": length = Ra.Count() break case "subset": length = r.Count() break default: return math.NaN(), errors.New("In UpsidePotentialRatio, method is default !!!") } add_Sliding, err := utils.Add(-MAR, r) if err != nil { return math.NaN(), err } dd2Data, err := DownsideDeviation2(Ra, MAR) if err != nil { return math.NaN(), err } var result = (add_Sliding.Sum() / float64(length)) / dd2Data return result, nil }
/// <summary> /// 峰度 /// </summary> // = "sample" func Kurtosis(Ra *utils.SlidingWindow) (float64, error) { if Ra == nil || Ra.Count() <= 3 { return math.NaN(), errors.New("In Kurtosis, Ra == nil || Ra.Count() <= 3") } n := float64(Ra.Count()) method := "sample_excess" switch method { case "sample_excess": //kurtosis = sum((x-mean(x))^4/var(x)^2)*n*(n+1)/((n-1)*(n-2)*(n-3)) - 3*(n-1)^2/((n-2)*(n-3)) var_data, err := Variance(Ra) if err != nil { return math.NaN(), err } add_Sliding, err := utils.Add(-Ra.Average(), Ra) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, 4.0) if err != nil { return math.NaN(), err } multi_Sliding, err := utils.Multi(1.0/math.Pow(var_data, 2.0), pow_Sliding) if err != nil { return math.NaN(), err } return multi_Sliding.Sum()*n*(n+1.0)/((n-1.0)*(n-2.0)*(n-3.0)) - 3*(n-1.0)*(n-1.0)/((n-2.0)*(n-3.0)), nil default: return math.NaN(), errors.New("In Kurtosis, method is default") } return math.NaN(), nil }
/// <summary> /// Kappa is a generalized downside risk-adjusted performance measure. /// To calculate it, we take the difference of the mean of the distribution /// to the target and we divide it by the l-root of the lth lower partial /// moment. To calculate the lth lower partial moment we take the subset of /// returns below the target and we sum the differences of the target to /// these returns. We then return return this sum divided by the length of /// the whole distribution. /// (非年化的超MAR平均收益率通过l阶根的低于MAR的收益率序列的l阶矩) /// </summary> func Kappa(Ra *utils.SlidingWindow, MAR float64, l float64) (float64, error) { undervalues, err := utils.NewSlidingWindow(Ra.Count()) if err != nil { return math.NaN(), err } for i := 0; i < Ra.Count(); i++ { if Ra.Data()[i] < MAR { undervalues.Add(Ra.Data()[i]) } } var n = float64(Ra.Count()) var m = float64(Ra.Average()) neg_Sliding, err := utils.Negative(undervalues) if err != nil { return math.NaN(), err } add_Sliding, err := utils.Add(MAR, neg_Sliding) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, float64(l)) if err != nil { return math.NaN(), err } var temp = pow_Sliding.Sum() / n return (m - MAR) / math.Pow(temp, (1.0/float64(l))), nil }
/// <summary> /// 偏度 /// </summary> // default = "moment" func Skewness(Ra *utils.SlidingWindow) (float64, error) { if Ra == nil || Ra.Count() <= 2 { return math.NaN(), errors.New("In Skewness, Ra == nil || Ra.Count() <= 2") } n := float64(Ra.Count()) method := "moment" switch method { //"moment", "fisher", "sample" case "moment": //skewness = sum((x-mean(x))^3/sqrt(var(x)*(n-1)/n)^3)/length(x) var_data, err := Variance(Ra) if err != nil { return math.NaN(), err } add_Sliding, err := utils.Add(-Ra.Average(), Ra) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, 3.0) if err != nil { return math.NaN(), err } multi_Sliding, err := utils.Multi(1.0/math.Pow(var_data*(n-1.0)/n, 1.5), pow_Sliding) if err != nil { return math.NaN(), err } return multi_Sliding.Sum() / n, nil default: return math.NaN(), errors.New("In Skewness, method is default") } return math.NaN(), nil }
/// <summary> /// 收益率序列的几何均值,非年化 /// </summary> func MeanGeometric(Ra *utils.SlidingWindow) (float64, error) { if Ra.Count() <= 0 { return math.NaN(), errors.New("In MeanGeometric, Ra.Count() <= 0") } add_Sliding, _ := utils.Add(1, Ra) log_Sliding, _ := utils.Log(add_Sliding) return math.Exp(log_Sliding.Average()) - 1.0, nil }
/// <summary> /// To calculate Mean absolute deviation we take /// the sum of the absolute value of the difference between the returns and the mean of the returns /// and we divide it by the number of returns. /// (描述收益率偏离均值得一个指标) /// </summary> func MeanAbsoluteDeviation(Ra *utils.SlidingWindow) (float64, error) { if Ra.Count() <= 0 { return math.NaN(), errors.New("In MeanAbsoluteDeviation, Ra.Count() <= 0") } add_Sliding, _ := utils.Add(-Ra.Average(), Ra) ads_Sliding, _ := utils.Abs(add_Sliding) return ads_Sliding.Sum() / float64(Ra.Count()), nil }
/// <param name="returns"></param> /// <returns></returns> func Centered(returns *utils.SlidingWindow) (*utils.SlidingWindow, error) { if returns == nil { return nil, errors.New("Centered Sliding window is nil") } if returns.Count() == 0 { return nil, errors.New("Centered Count is Zero !!!") } return utils.Add(-returns.Average(), returns) }
/// <summary> /// epsilon与R中不同,但似乎没有影响 /// Specific risk is the standard deviation of the error term in the /// regression equation. /// </summary> func SpecificRisk(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64) (float64, error) { //Period = Frequency(Ra) alpha, err := Alpha2(Ra, Rb, Rf) if err != nil { return math.NaN(), err } beta, err := Beta2(Ra, Rb, Rf) if err != nil { return math.NaN(), err } add_Ra_Sliding, err := utils.Add(-Rf, Ra) if err != nil { return math.NaN(), err } add_Rb_Sliding, err := utils.Add(-Rf, Rb) if err != nil { return math.NaN(), err } multi_beta_Slidinig, err := utils.Multi(beta, add_Rb_Sliding) if err != nil { return math.NaN(), err } sub_Ra_Beta, err := utils.Sub(add_Ra_Sliding, multi_beta_Slidinig) if err != nil { return math.NaN(), err } epsilon, err := utils.Add(-alpha, sub_Ra_Beta) if err != nil { return math.NaN(), err } var_eps, err := Variance(epsilon) if err != nil { return math.NaN(), err } var result = math.Sqrt(var_eps*float64(epsilon.Count()-1)/float64(epsilon.Count())) * math.Sqrt(float64(scale)) return result, nil }
func PainRatio(Ra *utils.SlidingWindow, Rf float64, scale float64) (float64, error) { PI, err := PainIndex(Ra) if err != nil { return math.NaN(), err } n := Ra.Count() add_Sliding, err := utils.Add(1.0, Ra) if err != nil { return math.NaN(), err } prod_Sliding, err := utils.Prod(add_Sliding) if err != nil { return math.NaN(), err } Rp := math.Pow(prod_Sliding, float64(scale)/float64(n)) - 1.0 Rf = Rf * scale return (Rp - Rf) / PI, nil }
/// <param name="returns"></param> /// <param name="geometric"></param> /// <returns></returns> func Cumulative(returns *utils.SlidingWindow, geometric bool) (float64, error) { if returns == nil { return math.NaN(), errors.New("Cumulative Sliding window is Nil !!!") } if returns.Count() == 0 { return math.NaN(), errors.New("Cumulative Count == 0 !!") } if !geometric { return (returns.Sum()), nil } else { add_data, err := utils.Add(1.0, returns) if err != nil { return math.NaN(), err } prod_data, err := utils.Prod(add_data) if err != nil { return math.NaN(), err } return (prod_data - 1.0), nil } }
/// <param name="returns"></param> /// <param name="scale"></param> /// <param name="geometric"></param> /// <returns></returns> func Annualized(returns *utils.SlidingWindow, scale float64, geometric bool) (float64, error) { if returns == nil { return math.NaN(), errors.New("Returns Utils Sliding Window is nil") } if returns.Count() == 0 { return math.NaN(), errors.New("Returns Windows content is Zero") } n := returns.Count() if geometric { add_Sliding, err := utils.Add(1.0, returns) if err != nil { return math.NaN(), err } prod_Data, err := utils.Prod(add_Sliding) if err != nil { return math.NaN(), err } return math.Pow(prod_Data, float64(scale)/float64(n)) - 1.0, nil } else { return returns.Average() * float64(scale), nil } }
/// <summary> /// Upside Risk is the similar of semideviation taking the return above the /// Minimum Acceptable Return instead of using the mean return or zero. /// (一般来说,非对称类的比较,单求此统计量意义有限) /// </summary> func UpsideRisk(Ra *utils.SlidingWindow, MAR float64, stat string) (float64, error) { r, err := utils.AboveValue(Ra, MAR) if err != nil { return math.NaN(), err } var length float64 method := "subset" switch method { case "full": length = float64(Ra.Count()) break case "subset": length = float64(r.Count()) break default: return math.NaN(), errors.New("In Upside Risk, method is default !!!") } if length <= 0 { return 0, nil } var result float64 switch stat { case "risk": add_Sliding, err := utils.Add(-MAR, r) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, 2.0) if err != nil { return math.NaN(), err } multi_Sliding, err := utils.Multi(1.0/length, pow_Sliding) if err != nil { return math.NaN(), err } result = math.Sqrt(multi_Sliding.Sum()) break case "variance": add_Sliding, err := utils.Add(-MAR, r) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, 2.0) if err != nil { return math.NaN(), err } multi_Sliding, err := utils.Multi(1.0/length, pow_Sliding) if err != nil { return math.NaN(), err } result = multi_Sliding.Sum() break case "potential": add_Sliding, err := utils.Add(-MAR, r) if err != nil { return math.NaN(), err } multi_Slding, err := utils.Multi(1.0/length, add_Sliding) if err != nil { return math.NaN(), err } result = multi_Slding.Sum() break default: return math.NaN(), errors.New("In UpSide Risk, method is default !!!") } return result, nil }
/// <summary> /// Appraisal ratio is the Jensen's alpha adjusted for specific risk. The numerator /// is divided by specific risk instead of total risk. /// </summary> func AppraisalRatio(Ra *utils.SlidingWindow, Rb *utils.SlidingWindow, scale float64, Rf float64, method string) (float64, error) { var result = 0.0 switch method { case "appraisal": be_data, err := Beta2(Ra, Rb, Rf) if err != nil { return math.NaN(), err } multi_Sliding, err := utils.Multi(be_data, Rb) if err != nil { return math.NaN(), err } sub_Sliding, err := utils.Sub(Ra, multi_Sliding) if err != nil { return math.NaN(), err } al_data, err := Alpha2(Ra, Rb, Rf) if err != nil { return math.NaN(), err } epsilon, err := utils.Add(-al_data, sub_Sliding) if err != nil { return math.NaN(), err } add_Sliding, err := utils.Add(-epsilon.Average(), epsilon) if err != nil { return math.NaN(), err } pow_Sliding, err := utils.Power(add_Sliding, 2) if err != nil { return math.NaN(), err } specifikRisk := math.Sqrt(pow_Sliding.Sum()/float64(epsilon.Count())) * math.Sqrt(float64(scale)) jsa_data, err := JensenAlpha2(Ra, Rb, Rf, scale) if err != nil { return math.NaN(), err } result = jsa_data / specifikRisk break case "modified": jsa2_data, err := JensenAlpha2(Ra, Rb, Rf, scale) if err != nil { return math.NaN(), err } be2_data, err := Beta2(Ra, Rb, Rf) if err != nil { return math.NaN(), err } result = jsa2_data / be2_data break case "alternative": jsa2_data, err := JensenAlpha2(Ra, Rb, Rf, scale) if err != nil { return math.NaN(), err } sr_data, err := SystematicRisk(Ra, Rb, scale, Rf) if err != nil { return math.NaN(), err } result = jsa2_data / sr_data break default: return math.NaN(), errors.New("In AppraisalRatio, method is default !!!") } return result, nil }
/// <param name="returns"></param> /// <param name="Rf"></param> /// <returns></returns> func Excess2(returns *utils.SlidingWindow, Rf float64) (*utils.SlidingWindow, error) { return utils.Add(-Rf, returns) }