func circle2circleQuery(p1, p2 vect.Vect, r1, r2 vect.Float, con *Contact) int { minDist := r1 + r2 delta := vect.Sub(p2, p1) distSqr := delta.LengthSqr() if distSqr >= minDist*minDist { return 0 } dist := vect.Float(math.Sqrt(float64(distSqr))) pDist := dist if dist == 0.0 { pDist = vect.Float(math.Inf(1)) } pos := vect.Add(p1, vect.Mult(delta, 0.5+(r1-0.5*minDist)/pDist)) norm := vect.Vect{1, 0} if dist != 0.0 { norm = vect.Mult(delta, 1.0/dist) } con.reset(pos, norm, dist-minDist, 0) return 1 }
func (body *Body) UpdateVelocity(gravity vect.Vect, damping, dt vect.Float) { if body.UpdateVelocityFunc != nil { body.UpdateVelocityFunc(body, gravity, damping, dt) return } body.v = vect.Add(vect.Mult(body.v, damping), vect.Mult(vect.Add(gravity, vect.Mult(body.f, body.m_inv)), dt)) body.w = (body.w * damping) + (body.t * body.i_inv * dt) body.f = vect.Vector_Zero }
func (arb *Arbiter) applyImpulse3() { a := arb.ShapeA.Body b := arb.ShapeB.Body for i := 0; i < arb.NumContacts; i++ { con := arb.Contacts[i] n := con.n r1 := con.r1 r2 := con.r2 // Calculate the relative bias velocities. vb1 := vect.Add(a.v_bias, vect.Mult(vect.Perp(r1), a.w_bias)) vb2 := vect.Add(b.v_bias, vect.Mult(vect.Perp(r2), b.w_bias)) vbn := vect.Dot(vect.Sub(vb2, vb1), n) // Calculate the relative velocity. vr := relative_velocity(a, b, r1, r2) vrn := vect.Dot(vr, n) // Calculate the relative tangent velocity. vrt := vect.Dot(vect.Add(vr, arb.Surface_vr), vect.Perp(n)) // Calculate and clamp the bias impulse. jbn := (con.bias - vbn) * con.nMass jbnOld := con.jBias con.jBias = vect.FMax(jbnOld+jbn, 0.0) // Calculate and clamp the normal impulse. jn := -(con.bounce + vrn) * con.nMass jnOld := con.jnAcc con.jnAcc = vect.FMax(jnOld+jn, 0.0) // Calculate and clamp the friction impulse. jtMax := arb.u * con.jnAcc jt := -vrt * con.tMass jtOld := con.jtAcc con.jtAcc = vect.FClamp(jtOld+jt, -jtMax, jtMax) // Apply the bias impulse. apply_bias_impulses(a, b, r1, r2, vect.Mult(n, con.jBias-jbnOld)) // Apply the final impulse. apply_impulses(a, b, r1, r2, transform.RotateVect(n, transform.Rotation{con.jnAcc - jnOld, con.jtAcc - jtOld})) } }
func (body *Body) UpdatePosition(dt vect.Float) { if body.UpdatePositionFunc != nil { body.UpdatePositionFunc(body, dt) return } body.p = vect.Add(body.p, vect.Mult(vect.Add(body.v, body.v_bias), dt)) body.setAngle(body.a + (body.w+body.w_bias)*dt) body.v_bias = vect.Vector_Zero body.w_bias = 0.0 }
func (arb *Arbiter) applyCachedImpulse2(dt_coef vect.Float) { if arb.state == arbiterStateFirstColl && arb.NumContacts > 0 { return } //println("asd") a := arb.ShapeA.Body b := arb.ShapeB.Body for _, con := range arb.Contacts { j := transform.RotateVect(con.n, transform.Rotation{con.jnAcc, con.jtAcc}) apply_impulses(a, b, con.r1, con.r2, vect.Mult(j, dt_coef)) } }
func circle2polyFunc(contacts []*Contact, circle *CircleShape, poly *PolygonShape) int { axes := poly.TAxes mini := 0 min := vect.Dot(axes[0].N, circle.Tc) - axes[0].D - circle.Radius for i, axis := range axes { dist := vect.Dot(axis.N, circle.Tc) - axis.D - circle.Radius if dist > 0.0 { return 0 } else if dist > min { min = dist mini = i } } n := axes[mini].N a := poly.TVerts[mini] b := poly.TVerts[(mini+1)%poly.NumVerts] dta := vect.Cross(n, a) dtb := vect.Cross(n, b) dt := vect.Cross(n, circle.Tc) if dt < dtb { return circle2circleQuery(circle.Tc, b, circle.Radius, 0.0, contacts[0]) } else if dt < dta { contacts[0].reset( vect.Sub(circle.Tc, vect.Mult(n, circle.Radius+min/2.0)), vect.Mult(n, -1), min, 0, ) return 1 } else { return circle2circleQuery(circle.Tc, a, circle.Radius, 0.0, contacts[0]) } panic("Never reached") }
func (spring *DampedSpring) PreStep(dt vect.Float) { a := spring.BodyA b := spring.BodyB spring.r1 = transform.RotateVect(spring.Anchor1, transform.Rotation{a.rot.X, a.rot.Y}) spring.r2 = transform.RotateVect(spring.Anchor2, transform.Rotation{a.rot.X, a.rot.Y}) delta := vect.Sub(vect.Add(b.p, spring.r2), vect.Add(a.p, spring.r1)) dist := vect.Length(delta) if dist == 0 { dist = vect.Float(math.Inf(1)) } spring.n = vect.Mult(delta, 1.0/dist) k := k_scalar(a, b, spring.r1, spring.r2, spring.n) spring.nMass = 1.0 / k spring.targetVRN = 0.0 spring.vCoef = vect.Float(1.0 - math.Exp(float64(-spring.Damping*dt*k))) fSpring := spring.SpringForceFunc(spring, dist) apply_impulses(a, b, spring.r1, spring.r2, vect.Mult(spring.n, fSpring*dt)) }
func findPoinsBehindSeg(contacts []*Contact, num *int, seg *SegmentShape, poly *PolygonShape, pDist, coef vect.Float) { dta := vect.Cross(seg.Tn, seg.Ta) dtb := vect.Cross(seg.Tn, seg.Tb) n := vect.Mult(seg.Tn, coef) for i := 0; i < poly.NumVerts; i++ { v := poly.TVerts[i] if vect.Dot(v, n) < vect.Dot(seg.Tn, seg.Ta)*coef+seg.Radius { dt := vect.Cross(seg.Tn, v) if dta >= dt && dt >= dtb { nextContact(contacts, num).reset(v, n, pDist, hashPair(poly.Shape.Hash(), HashValue(i))) } } } }
func (spring *DampedSpring) ApplyImpulse() { a := spring.BodyA b := spring.BodyB n := spring.n r1 := spring.r1 r2 := spring.r2 vrn := normal_relative_velocity(a, b, r1, r2, n) vDamp := (spring.targetVRN - vrn) * spring.vCoef spring.targetVRN = vrn + vDamp apply_impulses(a, b, spring.r1, spring.r2, vect.Mult(spring.n, vDamp*spring.nMass)) }
func (this *PivotJoint) PreStep(dt vect.Float) { a, b := this.BodyA, this.BodyB this.r1 = transform.RotateVect(this.Anchor1, transform.Rotation{a.rot.X, a.rot.Y}) this.r2 = transform.RotateVect(this.Anchor2, transform.Rotation{b.rot.X, b.rot.Y}) // Calculate mass tensor k_tensor(a, b, this.r1, this.r2, &this.k1, &this.k2) // compute max impulse this.jMaxLen = this.MaxForce * dt // calculate bias velocity delta := vect.Sub(vect.Add(b.p, this.r2), vect.Add(a.p, this.r1)) this.bias = vect.Clamp(vect.Mult(delta, -bias_coef(this.ErrorBias, dt)/dt), this.MaxBias) }
func findVertsFallback(contacts []*Contact, poly1, poly2 *PolygonShape, n vect.Vect, dist vect.Float) int { num := 0 for i, v := range poly1.TVerts { if poly2.ContainsVertPartial(v, vect.Mult(n, -1)) { c := nextContact(contacts, &num) c.reset(v, n, dist, hashPair(poly1.Shape.Hash(), HashValue(i))) } } for i, v := range poly2.TVerts { if poly1.ContainsVertPartial(v, n) { nextContact(contacts, &num).reset(v, n, dist, hashPair(poly2.Shape.Hash(), HashValue(i))) } } return num }
func circle2segmentFunc(contacts []*Contact, circle *CircleShape, segment *SegmentShape) int { rsum := circle.Radius + segment.Radius //Calculate normal distance from segment dn := vect.Dot(segment.Tn, circle.Tc) - vect.Dot(segment.Ta, segment.Tn) dist := vect.FAbs(dn) - rsum if dist > 0.0 { return 0 } //Calculate tangential distance along segment dt := -vect.Cross(segment.Tn, circle.Tc) dtMin := -vect.Cross(segment.Tn, segment.Ta) dtMax := -vect.Cross(segment.Tn, segment.Tb) // Decision tree to decide which feature of the segment to collide with. if dt < dtMin { if dt < (dtMin - rsum) { return 0 } else { return segmentEncapQuery(circle.Tc, segment.Ta, circle.Radius, segment.Radius, contacts[0], segment.A_tangent) } } else { if dt < dtMax { n := segment.Tn if dn >= 0.0 { n.Mult(-1) } con := contacts[0] pos := vect.Add(circle.Tc, vect.Mult(n, circle.Radius+dist*0.5)) con.reset(pos, n, dist, 0) return 1 } else { if dt < (dtMax + rsum) { return segmentEncapQuery(circle.Tc, segment.Tb, circle.Radius, segment.Radius, contacts[0], segment.B_tangent) } else { return 0 } } } panic("Never reached") }
func poly2polyFunc(contacts []*Contact, poly1, poly2 *PolygonShape) int { min1, mini1 := findMSA(poly2, poly1.TAxes, poly1.NumVerts) if mini1 == -1 { return 0 } min2, mini2 := findMSA(poly1, poly2.TAxes, poly2.NumVerts) if mini2 == -1 { return 0 } // There is overlap, find the penetrating verts if min1 > min2 { return findVerts(contacts, poly1, poly2, poly1.TAxes[mini1].N, min1) } else { return findVerts(contacts, poly1, poly2, vect.Mult(poly2.TAxes[mini2].N, -1), min2) } panic("Never reached") }
func (tree *BBTree) GetBB(obj Indexable) AABB { v, ok := obj.Velocity() if ok { bb := obj.AABB() coef := vect.Float(0.1) l := bb.Lower.X b := bb.Lower.Y r := bb.Upper.X t := bb.Upper.Y x := (r - l) * coef y := (t - b) * coef v = vect.Mult(v, 0.1) return NewAABB(l+vect.FMin(-x, v.X), b+vect.FMin(-y, v.Y), r+vect.FMax(x, v.X), t+vect.FMax(y, v.Y)) } return obj.AABB() }
func seg2polyFunc(contacts []*Contact, seg *SegmentShape, poly *PolygonShape) int { axes := poly.TAxes segD := vect.Dot(seg.Tn, seg.Ta) minNorm := poly.ValueOnAxis(seg.Tn, segD) - seg.Radius minNeg := poly.ValueOnAxis(vect.Mult(seg.Tn, -1), -segD) - seg.Radius if minNeg > 0.0 || minNorm > 0.0 { return 0 } mini := 0 poly_min := segValueOnAxis(seg, axes[0].N, axes[0].D) if poly_min > 0.0 { return 0 } for i := 0; i < poly.NumVerts; i++ { dist := segValueOnAxis(seg, axes[i].N, axes[i].D) if dist > 0.0 { return 0 } else if dist > poly_min { poly_min = dist mini = i } } num := 0 poly_n := vect.Mult(axes[mini].N, -1) va := vect.Add(seg.Ta, vect.Mult(poly_n, seg.Radius)) vb := vect.Add(seg.Tb, vect.Mult(poly_n, seg.Radius)) if poly.ContainsVert(va) { nextContact(contacts, &num).reset(va, poly_n, poly_min, hashPair(seg.Shape.Hash(), 0)) } if poly.ContainsVert(vb) { nextContact(contacts, &num).reset(vb, poly_n, poly_min, hashPair(seg.Shape.Hash(), 1)) } if minNorm >= poly_min || minNeg >= poly_min { if minNorm > minNeg { findPoinsBehindSeg(contacts, &num, seg, poly, minNorm, 1.0) } else { findPoinsBehindSeg(contacts, &num, seg, poly, minNeg, -1.0) } } // If no other collision points are found, try colliding endpoints. if num == 0 { poly_a := poly.TVerts[mini] poly_b := poly.TVerts[(mini+1)%poly.NumVerts] if segmentEncapQuery(seg.Ta, poly_a, seg.Radius, 0.0, contacts[0], vect.Mult(seg.A_tangent, -1)) != 0 { return 1 } if segmentEncapQuery(seg.Tb, poly_a, seg.Radius, 0.0, contacts[0], vect.Mult(seg.B_tangent, -1)) != 0 { return 1 } if segmentEncapQuery(seg.Ta, poly_b, seg.Radius, 0.0, contacts[0], vect.Mult(seg.A_tangent, -1)) != 0 { return 1 } if segmentEncapQuery(seg.Tb, poly_b, seg.Radius, 0.0, contacts[0], vect.Mult(seg.B_tangent, -1)) != 0 { return 1 } } return num }
//returns the center of the aabb func (aabb *AABB) Center() vect.Vect { return vect.Mult(vect.Add(aabb.Lower, aabb.Upper), 0.5) }
func (this *PivotJoint) ApplyCachedImpulse(dt_coef vect.Float) { a, b := this.BodyA, this.BodyB apply_impulses(a, b, this.r1, this.r2, vect.Mult(this.jAcc, dt_coef)) }
func (aabb *AABB) Extents() vect.Vect { return vect.Mult(vect.Sub(aabb.Upper, aabb.Lower), .5) }