func main() { // options verbose := false show := true // finalise analysis process and catch errors upon exit defer out.End() // start analysis process out.Start("spo754.sim", 0, 0) // all nodes out.Define("all nodes", out.AllNodes()) out.Define("A", out.At{0, 5}) // load results out.LoadResults(nil) // check skipK := true tolK := 1e-17 tolu := 1e-11 tols := 1e-04 var tst testing.T fem.TestingCompareResultsU(&tst, "data/spo754.sim", "spo754.cmp", tolK, tolu, tols, skipK, verbose) // plot out.Splot("Plot") out.Plot("uy", "t", "A", plt.Fmt{C: "r", M: "o"}, -1) out.Draw("", "", show, nil) }
func main() { // finalise analysis process and catch errors upon exit defer out.End() // start analysis process out.Start("o2elast.sim", 0, 0) // define entities out.Define("rod", out.Along{{0.05, 0.2, 0.05}, {0.05, 0.6, 0.05}}) // load results out.LoadResults([]float64{0.2, 0.4, 0.6, 0.8, 0.9, 0.98, 1}) // read comparison results rcmp_nod := read_pyfem_rod_data("cmp/pyfem_o2_rod_nod.dat") // plot uy along y for selected times out.Splot("rod displacements") for i, _ := range out.TimeInds { out.Plot("y", "uy", "rod", plt.Fmt{}, i) } for _, d := range rcmp_nod { plt.Plot(d.Y, d.Uy, "'k+', ms=5") } // show out.Draw("", "", true, nil) }
func main() { // finalise analysis process and catch errors defer out.End() // input data simfn := "onepulse-qua9co.sim" flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if io.FnExt(simfn) == "" { simfn += ".sim" } // start analysis process out.Start(simfn, 0, 0) // define entities out.Define("A B C D E", out.N{-5, -4, -3, -2, -1}) out.Define("a b c d e", out.P{{15, 8}, {13, 8}, {8, 8}, {4, 8}, {0, 0}}) // load results out.LoadResults(nil) // styles me := 10 S := []plt.Fmt{ plt.Fmt{C: "b", M: "*", Me: me}, plt.Fmt{C: "g", M: "o", Me: me}, plt.Fmt{C: "m", M: "x", Me: me}, plt.Fmt{C: "orange", M: "+", Me: me}, plt.Fmt{C: "r", M: "^", Me: me}, } // pl out.Splot("liquid pressure") for i, l := range []string{"A", "B", "C", "D", "E"} { out.Plot("t", "pl", l, S[i], -1) } // uy out.Splot("displacements") for i, l := range []string{"A", "B", "C", "D", "E"} { out.Plot("t", "uy", l, S[i], -1) } out.Splot("liquid saturation") for i, l := range []string{"a", "b", "c", "d", "e"} { out.Plot("t", "sl", l, S[i], -1) } out.Splot("stresses") for i, l := range []string{"a", "b", "c", "d", "e"} { out.Plot("t", "sy", l, S[i], -1) } // show out.Draw("", "", true, nil) }
func read_summary(simfn string) (*utl.DblSlist, string) { if simfn == "" { return nil, "" } if io.FnExt(simfn) == "" { simfn += ".sim" } defer out.End() out.Start(simfn, 0, 0) return &out.Sum.Resids, io.FnKey(simfn) }
func main() { // finalise analysis process and catch errors defer out.End() // input data simfn := "d2-simple-flux" flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if io.FnExt(simfn) == "" { simfn += ".sim" } // start analysis process out.Extrap = []string{"nwlx", "nwly"} out.Start(simfn, 0, 0) // define entities out.Define("top-middle", out.At{5, 3}) out.Define("section-A", out.N{-1}) out.Define("section-B", out.Along{{0, 0}, {10, 0}}) // load results out.LoadResults(nil) // compute water discharge along section-A nwlx_TM := out.GetRes("ex_nwlx", "top-middle", -1) Q := out.Integrate("ex_nwlx", "section-A", "y", -1) io.PfYel("Q = %g m³/s [answer: 0.0003]\n", Q) // plot kt := len(out.Times) - 1 out.Splot("") out.Plot("pl", "y", "section-A", plt.Fmt{L: "t=0"}, 0) out.Plot("pl", "y", "section-A", plt.Fmt{L: io.Sf("t=%g", out.Times[kt])}, kt) out.Splot("") out.Plot("x", "pl", "section-B", plt.Fmt{L: "t=0"}, 0) out.Plot("x", "pl", "section-B", plt.Fmt{L: io.Sf("t=%g", out.Times[kt])}, kt) out.Splot("") out.Plot("t", nwlx_TM, "top-middle", plt.Fmt{}, -1) out.Csplot.Ylbl = "$n_{\\ell}\\cdot w_{\\ell x}$" // show if true { out.Draw("", "", true, func(i, j, nplots int) { if i == 2 && j == 1 { plt.Plot([]float64{0, 10}, []float64{10, 9}, "'k--'") } }) } }
func main() { // finalise analysis process and catch errors defer out.End() // input data simfn := "a-coarse-elast-d2-q9" flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if io.FnExt(simfn) == "" { simfn += ".sim" } // start analysis process out.Start(simfn, 0, 0) // define entities out.Define("a", out.P{{18, 8}}) // load results out.LoadResults(nil) nf_a := out.GetRes("nf", "a", -1) pl_a := out.GetRes("pl", "a", -1) pc_a := make([]float64, len(pl_a)) for i, _ := range pl_a { pc_a[i] = -pl_a[i] } out.Splot("LRM") _, d, _ := io.ReadTable("lrm.dat") plt.Plot(d["pc"], d["sl"], "'c-',lw=2") out.Plot(pc_a, "sl", "a", plt.Fmt{M: "o"}, -1) out.Csplot.Xlbl = "$p_c$" out.Splot("porosity") out.Plot("t", nf_a, "a", plt.Fmt{M: "+"}, -1) out.Csplot.Ylbl = "$n_f$" // show out.Draw("", "", true, nil) }
func main() { // finalise analysis process and catch errors defer out.End() var sol ana.PressCylin sol.Init(fun.Prms{ &fun.Prm{N: "a", V: 100}, &fun.Prm{N: "b", V: 200}, &fun.Prm{N: "E", V: 210}, &fun.Prm{N: "ν", V: 0.3}, &fun.Prm{N: "σy", V: 0.24}, &fun.Prm{N: "P", V: 0.2}, }) // start analysis process datadir := "$GOPATH/src/github.com/cpmech/gofem/examples/spo751_pressurised_cylinder/" out.Start(datadir+"spo751.sim", 0, 0) // define entities out.Define("A", out.N{0}) out.Define("B", out.N{20}) out.Define("bottom", out.Along{{100, 0}, {101, 0}}) // load results out.LoadResults(nil) out.Splot("Pressure at inner and outer face") out.Plot("ux", "t", "A", plt.Fmt{C: "b", M: ".", L: "inner"}, -1) out.Plot("ux", "t", "B", plt.Fmt{C: "r", M: ".", L: "outer"}, -1) //out.Splot("radial stress") //X, _, _ := out.GetXYZ("ux", "bottom") //SR := make([]float64, len(X)) //ST := make([]float64, len(X)) //c := sol.Getc() //sol.Sig(c, X, SR, ST) //out.Plt(X, ST, "bottom", plt.FmtS{"b.-"}, -1) // show out.Draw("", "", true, nil) }
func main() { // finalise analysis process and catch errors defer out.End() // input data simfn := "data/twoqua4.sim" exnwl := false stgidx := 0 // parse flags flag.Parse() if len(flag.Args()) > 0 { simfn = flag.Arg(0) } if len(flag.Args()) > 1 { exnwl = io.Atob(flag.Arg(1)) } if len(flag.Args()) > 2 { stgidx = io.Atoi(flag.Arg(2)) } // check extension if io.FnExt(simfn) == "" { simfn += ".sim" } // print input data io.Pf("\nInput data\n") io.Pf("==========\n") io.Pf(" simfn = %30s // simulation filename\n", simfn) io.Pf(" exnwl = %30v // extrapolate nwl\n", exnwl) io.Pf(" stgidx = %30v // stage index\n", stgidx) io.Pf("\n") // start analysis process out.Start(simfn, stgidx, 0) // global variables ndim = out.Dom.Msh.Ndim verts = out.Dom.Msh.Verts cells = out.Dom.Msh.Cells nodes = out.Dom.Nodes elems = out.Dom.Elems dirout = fem.Global.Sim.Data.DirOut fnkey = fem.Global.Sim.Data.FnameKey steady = fem.Global.Sim.Data.Steady // flags has_u := out.Dom.YandC["ux"] has_pl := out.Dom.YandC["pl"] has_pg := out.Dom.YandC["pg"] has_sig := out.Ipkeys["sx"] has_nwl := out.Ipkeys["nwlx"] has_p := has_pl || has_pg lbb := has_u && has_p if fem.Global.Sim.Data.NoLBB { lbb = false } // buffers pvd := make(map[string]*bytes.Buffer) geo := make(map[string]*bytes.Buffer) vtu := make(map[string]*bytes.Buffer) if _, ok := out.Dom.YandC["ux"]; ok { pvd["u"] = new(bytes.Buffer) geo["u"] = new(bytes.Buffer) vtu["u"] = new(bytes.Buffer) } if _, ok := out.Dom.YandC["fl"]; ok { pvd["fl"] = new(bytes.Buffer) geo["fl"] = new(bytes.Buffer) vtu["fl"] = new(bytes.Buffer) } if _, ok := out.Dom.YandC["pl"]; ok { pvd["pl"] = new(bytes.Buffer) geo["pl"] = new(bytes.Buffer) vtu["pl"] = new(bytes.Buffer) } if _, ok := out.Dom.YandC["pg"]; ok { pvd["pg"] = new(bytes.Buffer) geo["pg"] = new(bytes.Buffer) vtu["pg"] = new(bytes.Buffer) } if len(out.Ipkeys) > 0 { pvd["ips"] = new(bytes.Buffer) geo["ips"] = new(bytes.Buffer) vtu["ips"] = new(bytes.Buffer) } if exnwl { pvd["ex_nwl"] = new(bytes.Buffer) geo["ex_nwl"] = new(bytes.Buffer) vtu["ex_nwl"] = new(bytes.Buffer) } // extrapolated values keys extrap_keys := []string{"nwlx", "nwly"} if ndim == 3 { extrap_keys = []string{"nwlx", "nwly", "nwlz"} } // headers for _, b := range pvd { pvd_header(b) } // process results for tidx, t := range out.Sum.OutTimes { // input results into domain if !out.Dom.In(out.Sum, tidx, true) { chk.Panic("cannot load results into domain; please check log file") } // message io.PfWhite("time = %g\r", t) // generate topology if tidx == 0 { for label, b := range geo { topology(b, label == "ips", lbb) } // allocate integration points values ipvals = make([]map[string]float64, len(out.Ipoints)) for i, _ := range out.Ipoints { ipvals[i] = make(map[string]float64) } } // get integration points values @ time t for i, p := range out.Ipoints { vals := p.Calc(out.Dom.Sol) for key, val := range vals { ipvals[i][key] = val } } // compute extrapolated values if exnwl { out.ComputeExtrapolatedValues(extrap_keys) } // for each data buffer for label, b := range vtu { // reset buffer b.Reset() // points data if label == "ips" { pdata_open(b) if has_sig { pdata_write(b, "sig", skeys, true) } if has_nwl { pdata_write(b, "nwl", nwlkeys, true) } for key, _ := range out.Ipkeys { if !is_sig[key] && !is_nwl[key] { pdata_write(b, key, []string{key}, true) } } pdata_close(b) } else { pdata_open(b) pdata_write(b, label, label2keys[label], false) pdata_close(b) } // cells data cdata_write(b, label == "ips") // write vtu file vtu_write(geo[label], b, tidx, label) } // pvd for label, b := range pvd { pvd_line(b, tidx, t, label) } } // write pvd files for label, b := range pvd { pvd_write(b, label) } }