func main() { mpi.Start(false) defer func() { mpi.Stop(false) }() if mpi.Rank() == 0 { chk.PrintTitle("ode04: Hairer-Wanner VII-p376 Transistor Amplifier\n") } if mpi.Size() != 3 { chk.Panic(">> error: this test requires 3 MPI processors\n") return } // data UE, UB, UF, ALPHA, BETA := 0.1, 6.0, 0.026, 0.99, 1.0e-6 R0, R1, R2, R3, R4, R5 := 1000.0, 9000.0, 9000.0, 9000.0, 9000.0, 9000.0 R6, R7, R8, R9 := 9000.0, 9000.0, 9000.0, 9000.0 W := 2.0 * 3.141592654 * 100.0 // initial values xa := 0.0 ya := []float64{0.0, UB, UB / (R6/R5 + 1.0), UB / (R6/R5 + 1.0), UB, UB / (R2/R1 + 1.0), UB / (R2/R1 + 1.0), 0.0} // endpoint of integration xb := 0.05 //xb = 0.0123 // OK //xb = 0.01235 // !OK // right-hand side of the amplifier problem w := make([]float64, 8) // workspace fcn := func(f []float64, dx, x float64, y []float64, args ...interface{}) error { UET := UE * math.Sin(W*x) FAC1 := BETA * (math.Exp((y[3]-y[2])/UF) - 1.0) FAC2 := BETA * (math.Exp((y[6]-y[5])/UF) - 1.0) la.VecFill(f, 0) switch mpi.Rank() { case 0: f[0] = y[0] / R9 case 1: f[1] = (y[1]-UB)/R8 + ALPHA*FAC1 f[2] = y[2]/R7 - FAC1 case 2: f[3] = y[3]/R5 + (y[3]-UB)/R6 + (1.0-ALPHA)*FAC1 f[4] = (y[4]-UB)/R4 + ALPHA*FAC2 f[5] = y[5]/R3 - FAC2 f[6] = y[6]/R1 + (y[6]-UB)/R2 + (1.0-ALPHA)*FAC2 f[7] = (y[7] - UET) / R0 } mpi.AllReduceSum(f, w) return nil } // Jacobian of the amplifier problem jac := func(dfdy *la.Triplet, dx, x float64, y []float64, args ...interface{}) error { FAC14 := BETA * math.Exp((y[3]-y[2])/UF) / UF FAC27 := BETA * math.Exp((y[6]-y[5])/UF) / UF if dfdy.Max() == 0 { dfdy.Init(8, 8, 16) } NU := 2 dfdy.Start() switch mpi.Rank() { case 0: dfdy.Put(2+0-NU, 0, 1.0/R9) dfdy.Put(2+1-NU, 1, 1.0/R8) dfdy.Put(1+2-NU, 2, -ALPHA*FAC14) dfdy.Put(0+3-NU, 3, ALPHA*FAC14) dfdy.Put(2+2-NU, 2, 1.0/R7+FAC14) case 1: dfdy.Put(1+3-NU, 3, -FAC14) dfdy.Put(2+3-NU, 3, 1.0/R5+1.0/R6+(1.0-ALPHA)*FAC14) dfdy.Put(3+2-NU, 2, -(1.0-ALPHA)*FAC14) dfdy.Put(2+4-NU, 4, 1.0/R4) dfdy.Put(1+5-NU, 5, -ALPHA*FAC27) case 2: dfdy.Put(0+6-NU, 6, ALPHA*FAC27) dfdy.Put(2+5-NU, 5, 1.0/R3+FAC27) dfdy.Put(1+6-NU, 6, -FAC27) dfdy.Put(2+6-NU, 6, 1.0/R1+1.0/R2+(1.0-ALPHA)*FAC27) dfdy.Put(3+5-NU, 5, -(1.0-ALPHA)*FAC27) dfdy.Put(2+7-NU, 7, 1.0/R0) } return nil } // matrix "M" c1, c2, c3, c4, c5 := 1.0e-6, 2.0e-6, 3.0e-6, 4.0e-6, 5.0e-6 var M la.Triplet M.Init(8, 8, 14) M.Start() NU := 1 switch mpi.Rank() { case 0: M.Put(1+0-NU, 0, -c5) M.Put(0+1-NU, 1, c5) M.Put(2+0-NU, 0, c5) M.Put(1+1-NU, 1, -c5) M.Put(1+2-NU, 2, -c4) M.Put(1+3-NU, 3, -c3) case 1: M.Put(0+4-NU, 4, c3) M.Put(2+3-NU, 3, c3) M.Put(1+4-NU, 4, -c3) case 2: M.Put(1+5-NU, 5, -c2) M.Put(1+6-NU, 6, -c1) M.Put(0+7-NU, 7, c1) M.Put(2+6-NU, 6, c1) M.Put(1+7-NU, 7, -c1) } // flags silent := false fixstp := false //method := "Dopri5" method := "Radau5" ndim := len(ya) numjac := false // structure to hold numerical results res := ode.Results{Method: method} // ODE solver var osol ode.Solver osol.Pll = true // solve problem if numjac { osol.Init(method, ndim, fcn, nil, &M, ode.SimpleOutput, silent) } else { osol.Init(method, ndim, fcn, jac, &M, ode.SimpleOutput, silent) } osol.IniH = 1.0e-6 // initial step size // set tolerances atol, rtol := 1e-11, 1e-5 osol.SetTol(atol, rtol) // run t0 := time.Now() if fixstp { osol.Solve(ya, xa, xb, 0.01, fixstp, &res) } else { osol.Solve(ya, xa, xb, xb-xa, fixstp, &res) } // plot if mpi.Rank() == 0 { io.Pfmag("elapsed time = %v\n", time.Now().Sub(t0)) plt.SetForEps(2.0, 400) args := "'b-', marker='.', lw=1, clip_on=0" ode.Plot("/tmp/gosl/ode", "hwamplifier_mpi.eps", &res, nil, xa, xb, "", args, func() { _, T, err := io.ReadTable("data/radau5_hwamplifier.dat") if err != nil { chk.Panic("%v", err) } for j := 0; j < ndim; j++ { plt.Subplot(ndim+1, 1, j+1) plt.Plot(T["x"], T[io.Sf("y%d", j)], "'k+',label='reference',ms=10") } }) } }
func main() { mpi.Start(false) defer func() { mpi.Stop(false) }() if mpi.Rank() == 0 { chk.PrintTitle("ode02: Hairer-Wanner VII-p5 Eq.(1.5) Van der Pol's Equation") } if mpi.Size() != 2 { chk.Panic(">> error: this test requires 2 MPI processors\n") return } eps := 1.0e-6 w := make([]float64, 2) // workspace fcn := func(f []float64, dx, x float64, y []float64, args ...interface{}) error { f[0], f[1] = 0, 0 switch mpi.Rank() { case 0: f[0] = y[1] case 1: f[1] = ((1.0-y[0]*y[0])*y[1] - y[0]) / eps } // join all f mpi.AllReduceSum(f, w) return nil } jac := func(dfdy *la.Triplet, dx, x float64, y []float64, args ...interface{}) error { if dfdy.Max() == 0 { dfdy.Init(2, 2, 4) } dfdy.Start() if false { // per column switch mpi.Rank() { case 0: dfdy.Put(0, 0, 0.0) dfdy.Put(1, 0, (-2.0*y[0]*y[1]-1.0)/eps) case 1: dfdy.Put(0, 1, 1.0) dfdy.Put(1, 1, (1.0-y[0]*y[0])/eps) } } else { // per row switch mpi.Rank() { case 0: dfdy.Put(0, 0, 0.0) dfdy.Put(0, 1, 1.0) case 1: dfdy.Put(1, 0, (-2.0*y[0]*y[1]-1.0)/eps) dfdy.Put(1, 1, (1.0-y[0]*y[0])/eps) } } return nil } // method and flags silent := false fixstp := false //method := "Dopri5" method := "Radau5" numjac := false xa, xb := 0.0, 2.0 ya := []float64{2.0, -0.6} ndim := len(ya) // structure to hold numerical results res := ode.Results{Method: method} // allocate ODE object var o ode.Solver o.Distr = true if numjac { o.Init(method, ndim, fcn, nil, nil, ode.SimpleOutput, silent) } else { o.Init(method, ndim, fcn, jac, nil, ode.SimpleOutput, silent) } // tolerances and initial step size rtol := 1e-4 atol := rtol o.IniH = 1.0e-4 o.SetTol(atol, rtol) //o.NmaxSS = 2 // solve problem y := make([]float64, ndim) copy(y, ya) t0 := time.Now() if fixstp { o.Solve(y, xa, xb, 0.05, fixstp, &res) } else { o.Solve(y, xa, xb, xb-xa, fixstp, &res) } // plot if mpi.Rank() == 0 { io.Pfmag("elapsed time = %v\n", time.Now().Sub(t0)) plt.SetForEps(1.5, 400) args := "'b-', marker='.', lw=1, ms=4, clip_on=0" ode.Plot("/tmp/gosl/ode", "vdpolA_mpi.eps", &res, nil, xa, xb, "", args, func() { _, T, err := io.ReadTable("data/vdpol_radau5_for.dat") if err != nil { chk.Panic("%v", err) } plt.Subplot(3, 1, 1) plt.Plot(T["x"], T["y0"], "'k+',label='reference',ms=7") plt.Subplot(3, 1, 2) plt.Plot(T["x"], T["y1"], "'k+',label='reference',ms=7") }) } }