func TestEncodeDecodeWIF(t *testing.T) { priv1, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{ 0x0c, 0x28, 0xfc, 0xa3, 0x86, 0xc7, 0xa2, 0x27, 0x60, 0x0b, 0x2f, 0xe5, 0x0b, 0x7c, 0xae, 0x11, 0xec, 0x86, 0xd3, 0xbf, 0x1f, 0xbe, 0x47, 0x1b, 0xe8, 0x98, 0x27, 0xe1, 0x9d, 0x72, 0xaa, 0x1d}) priv2, _ := btcec.PrivKeyFromBytes(btcec.S256(), []byte{ 0xdd, 0xa3, 0x5a, 0x14, 0x88, 0xfb, 0x97, 0xb6, 0xeb, 0x3f, 0xe6, 0xe9, 0xef, 0x2a, 0x25, 0x81, 0x4e, 0x39, 0x6f, 0xb5, 0xdc, 0x29, 0x5f, 0xe9, 0x94, 0xb9, 0x67, 0x89, 0xb2, 0x1a, 0x03, 0x98}) wif1, err := NewWIF(priv1, &chaincfg.MainNetParams, false) if err != nil { t.Fatal(err) } wif2, err := NewWIF(priv2, &chaincfg.TestNet3Params, true) if err != nil { t.Fatal(err) } tests := []struct { wif *WIF encoded string }{ { wif1, "5HueCGU8rMjxEXxiPuD5BDku4MkFqeZyd4dZ1jvhTVqvbTLvyTJ", }, { wif2, "cV1Y7ARUr9Yx7BR55nTdnR7ZXNJphZtCCMBTEZBJe1hXt2kB684q", }, } for _, test := range tests { // Test that encoding the WIF structure matches the expected string. s := test.wif.String() if s != test.encoded { t.Errorf("TestEncodeDecodePrivateKey failed: want '%s', got '%s'", test.encoded, s) continue } // Test that decoding the expected string results in the original WIF // structure. w, err := DecodeWIF(test.encoded) if err != nil { t.Error(err) continue } if got := w.String(); got != test.encoded { t.Errorf("NewWIF failed: want '%v', got '%v'", test.wif, got) } } }
// NewKeyFromString returns a new extended key instance from a base58-encoded // extended key. func NewKeyFromString(key string) (*ExtendedKey, error) { // The base58-decoded extended key must consist of a serialized payload // plus an additional 4 bytes for the checksum. decoded := base58.Decode(key) if len(decoded) != serializedKeyLen+4 { return nil, ErrInvalidKeyLen } // The serialized format is: // version (4) || depth (1) || parent fingerprint (4)) || // child num (4) || chain code (32) || key data (33) || checksum (4) // Split the payload and checksum up and ensure the checksum matches. payload := decoded[:len(decoded)-4] checkSum := decoded[len(decoded)-4:] expectedCheckSum := wire.DoubleSha256(payload)[:4] if !bytes.Equal(checkSum, expectedCheckSum) { return nil, ErrBadChecksum } // Deserialize each of the payload fields. version := payload[:4] depth := uint16(payload[4:5][0]) parentFP := payload[5:9] childNum := binary.BigEndian.Uint32(payload[9:13]) chainCode := payload[13:45] keyData := payload[45:78] // The key data is a private key if it starts with 0x00. Serialized // compressed pubkeys either start with 0x02 or 0x03. isPrivate := keyData[0] == 0x00 if isPrivate { // Ensure the private key is valid. It must be within the range // of the order of the secp256k1 curve and not be 0. keyData = keyData[1:] keyNum := new(big.Int).SetBytes(keyData) if keyNum.Cmp(btcec.S256().N) >= 0 || keyNum.Sign() == 0 { return nil, ErrUnusableSeed } } else { // Ensure the public key parses correctly and is actually on the // secp256k1 curve. _, err := btcec.ParsePubKey(keyData, btcec.S256()) if err != nil { return nil, err } } return newExtendedKey(version, keyData, chainCode, parentFP, depth, childNum, isPrivate), nil }
// This example demonstrates decrypting a message using a private key that is // first parsed from raw bytes. func Example_decryptMessage() { // Decode the hex-encoded private key. pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" + "5ea381e3ce20a2c086a2e388230811") if err != nil { fmt.Println(err) return } privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" + "002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" + "00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" + "a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" + "d14174f8b83354fac3ff56075162") // Try decrypting the message. plaintext, err := btcec.Decrypt(privKey, ciphertext) if err != nil { fmt.Println(err) return } fmt.Println(string(plaintext)) // Output: // test message }
// This example demonstrates signing a message with a secp256k1 private key that // is first parsed form raw bytes and serializing the generated signature. func Example_signMessage() { // Decode a hex-encoded private key. pkBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2d4f87" + "20ee63e502ee2869afab7de234b80c") if err != nil { fmt.Println(err) return } privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) // Sign a message using the private key. message := "test message" messageHash := wire.DoubleSha256([]byte(message)) signature, err := privKey.Sign(messageHash) if err != nil { fmt.Println(err) return } // Serialize and display the signature. fmt.Printf("Serialized Signature: %x\n", signature.Serialize()) // Verify the signature for the message using the public key. verified := signature.Verify(messageHash, pubKey) fmt.Printf("Signature Verified? %v\n", verified) // Output: // Serialized Signature: 304402201008e236fa8cd0f25df4482dddbb622e8a8b26ef0ba731719458de3ccd93805b022032f8ebe514ba5f672466eba334639282616bb3c2f0ab09998037513d1f9e3d6d // Signature Verified? true }
func TestPubKeys(t *testing.T) { for _, test := range pubKeyTests { pk, err := btcec.ParsePubKey(test.key, btcec.S256()) if err != nil { if test.isValid { t.Errorf("%s pubkey failed when shouldn't %v", test.name, err) } continue } if !test.isValid { t.Errorf("%s counted as valid when it should fail", test.name) continue } var pkStr []byte switch test.format { case btcec.TstPubkeyUncompressed: pkStr = (*btcec.PublicKey)(pk).SerializeUncompressed() case btcec.TstPubkeyCompressed: pkStr = (*btcec.PublicKey)(pk).SerializeCompressed() case btcec.TstPubkeyHybrid: pkStr = (*btcec.PublicKey)(pk).SerializeHybrid() } if !bytes.Equal(test.key, pkStr) { t.Errorf("%s pubkey: serialized keys do not match.", test.name) spew.Dump(test.key) spew.Dump(pkStr) } } }
// NewMaster creates a new master node for use in creating a hierarchical // deterministic key chain. The seed must be between 128 and 512 bits and // should be generated by a cryptographically secure random generation source. // // NOTE: There is an extremely small chance (< 1 in 2^127) the provided seed // will derive to an unusable secret key. The ErrUnusable error will be // returned if this should occur, so the caller must check for it and generate a // new seed accordingly. func NewMaster(seed []byte) (*ExtendedKey, error) { // Per [BIP32], the seed must be in range [MinSeedBytes, MaxSeedBytes]. if len(seed) < MinSeedBytes || len(seed) > MaxSeedBytes { return nil, ErrInvalidSeedLen } // First take the HMAC-SHA512 of the master key and the seed data: // I = HMAC-SHA512(Key = "Bitcoin seed", Data = S) hmac512 := hmac.New(sha512.New, masterKey) hmac512.Write(seed) lr := hmac512.Sum(nil) // Split "I" into two 32-byte sequences Il and Ir where: // Il = master secret key // Ir = master chain code secretKey := lr[:len(lr)/2] chainCode := lr[len(lr)/2:] // Ensure the key in usable. secretKeyNum := new(big.Int).SetBytes(secretKey) if secretKeyNum.Cmp(btcec.S256().N) >= 0 || secretKeyNum.Sign() == 0 { return nil, ErrUnusableSeed } parentFP := []byte{0x00, 0x00, 0x00, 0x00} return newExtendedKey(chaincfg.MainNetParams.HDPrivateKeyID[:], secretKey, chainCode, parentFP, 0, 0, true), nil }
// pubKeyBytes returns bytes for the serialized compressed public key associated // with this extended key in an efficient manner including memoization as // necessary. // // When the extended key is already a public key, the key is simply returned as // is since it's already in the correct form. However, when the extended key is // a private key, the public key will be calculated and memoized so future // accesses can simply return the cached result. func (k *ExtendedKey) pubKeyBytes() []byte { // Just return the key if it's already an extended public key. if !k.isPrivate { return k.key } // This is a private extended key, so calculate and memoize the public // key if needed. if len(k.pubKey) == 0 { pkx, pky := btcec.S256().ScalarBaseMult(k.key) pubKey := btcec.PublicKey{Curve: btcec.S256(), X: pkx, Y: pky} k.pubKey = pubKey.SerializeCompressed() } return k.pubKey }
func TestScalarMult(t *testing.T) { // Strategy for this test: // Get a random exponent from the generator point at first // This creates a new point which is used in the next iteration // Use another random exponent on the new point. // We use BaseMult to verify by multiplying the previous exponent // and the new random exponent together (mod N) s256 := btcec.S256() x, y := s256.Gx, s256.Gy exponent := big.NewInt(1) for i := 0; i < 1024; i++ { data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Fatalf("failed to read random data at %d", i) break } x, y = s256.ScalarMult(x, y, data) exponent.Mul(exponent, new(big.Int).SetBytes(data)) xWant, yWant := s256.ScalarBaseMult(exponent.Bytes()) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) break } } }
// ECPrivKey converts the extended key to a btcec private key and returns it. // As you might imagine this is only possible if the extended key is a private // extended key (as determined by the IsPrivate function). The ErrNotPrivExtKey // error will be returned if this function is called on a public extended key. func (k *ExtendedKey) ECPrivKey() (*btcec.PrivateKey, error) { if !k.isPrivate { return nil, ErrNotPrivExtKey } privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), k.key) return privKey, nil }
func TestPrivKeys(t *testing.T) { tests := []struct { name string key []byte }{ { name: "check curve", key: []byte{ 0xea, 0xf0, 0x2c, 0xa3, 0x48, 0xc5, 0x24, 0xe6, 0x39, 0x26, 0x55, 0xba, 0x4d, 0x29, 0x60, 0x3c, 0xd1, 0xa7, 0x34, 0x7d, 0x9d, 0x65, 0xcf, 0xe9, 0x3c, 0xe1, 0xeb, 0xff, 0xdc, 0xa2, 0x26, 0x94, }, }, } for _, test := range tests { priv, pub := btcec.PrivKeyFromBytes(btcec.S256(), test.key) _, err := btcec.ParsePubKey( pub.SerializeUncompressed(), btcec.S256()) if err != nil { t.Errorf("%s privkey: %v", test.name, err) continue } hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9} sig, err := priv.Sign(hash) if err != nil { t.Errorf("%s could not sign: %v", test.name, err) continue } if !sig.Verify(hash, pub) { t.Errorf("%s could not verify: %v", test.name, err) continue } serializedKey := priv.Serialize() if !bytes.Equal(serializedKey, test.key) { t.Errorf("%s unexpected serialized bytes - got: %x, "+ "want: %x", test.name, serializedKey, test.key) } } }
// This example demonstrates encrypting a message for a public key that is first // parsed from raw bytes, then decrypting it using the corresponding private key. func Example_encryptMessage() { // Decode the hex-encoded pubkey of the recipient. pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" + "359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" + "21010db67ac11b1b51b651953d2") // uncompressed pubkey if err != nil { fmt.Println(err) return } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Encrypt a message decryptable by the private key corresponding to pubKey message := "test message" ciphertext, err := btcec.Encrypt(pubKey, []byte(message)) if err != nil { fmt.Println(err) return } // Decode the hex-encoded private key. pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" + "5ea381e3ce20a2c086a2e388230811") if err != nil { fmt.Println(err) return } // note that we already have corresponding pubKey privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes) // Try decrypting and verify if it's the same message. plaintext, err := btcec.Decrypt(privKey, ciphertext) if err != nil { fmt.Println(err) return } fmt.Println(string(plaintext)) // Output: // test message }
func TestGenerateSharedSecret(t *testing.T) { privKey1, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("private key generation error: %s", err) return } privKey2, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("private key generation error: %s", err) return } secret1 := btcec.GenerateSharedSecret(privKey1, privKey2.PubKey()) secret2 := btcec.GenerateSharedSecret(privKey2, privKey1.PubKey()) if !bytes.Equal(secret1, secret2) { t.Errorf("ECDH failed, secrets mismatch - first: %x, second: %x", secret1, secret2) } }
func main() { fi, err := os.Create("secp256k1.go") if err != nil { log.Fatal(err) } defer fi.Close() // Compress the serialized byte points. serialized := btcec.S256().SerializedBytePoints() var compressed bytes.Buffer w := zlib.NewWriter(&compressed) if _, err := w.Write(serialized); err != nil { fmt.Println(err) os.Exit(1) } w.Close() // Encode the compressed byte points with base64. encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len())) base64.StdEncoding.Encode(encoded, compressed.Bytes()) fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers") fmt.Fprintln(fi, "// Use of this source code is governed by an ISC") fmt.Fprintln(fi, "// license that can be found in the LICENSE file.") fmt.Fprintln(fi) fmt.Fprintln(fi, "package btcec") fmt.Fprintln(fi) fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)") fmt.Fprintln(fi, "// DO NOT EDIT") fmt.Fprintln(fi) fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded)) a1, b1, a2, b2 := btcec.S256().EndomorphismVectors() fmt.Println("The following values are the computed linearly " + "independent vectors needed to make use of the secp256k1 " + "endomorphism:") fmt.Printf("a1: %x\n", a1) fmt.Printf("b1: %x\n", b1) fmt.Printf("a2: %x\n", a2) fmt.Printf("b2: %x\n", b2) }
func TestSignCompact(t *testing.T) { for i := 0; i < 256; i++ { name := fmt.Sprintf("test %d", i) data := make([]byte, 32) _, err := rand.Read(data) if err != nil { t.Errorf("failed to read random data for %s", name) continue } compressed := i%2 != 0 testSignCompact(t, name, btcec.S256(), data, compressed) } }
// This example demonstrates verifying a secp256k1 signature against a public // key that is first parsed from raw bytes. The signature is also parsed from // raw bytes. func Example_verifySignature() { // Decode hex-encoded serialized public key. pubKeyBytes, err := hex.DecodeString("02a673638cb9587cb68ea08dbef685c" + "6f2d2a751a8b3c6f2a7e9a4999e6e4bfaf5") if err != nil { fmt.Println(err) return } pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Decode hex-encoded serialized signature. sigBytes, err := hex.DecodeString("30450220090ebfb3690a0ff115bb1b38b" + "8b323a667b7653454f1bccb06d4bbdca42c2079022100ec95778b51e707" + "1cb1205f8bde9af6592fc978b0452dafe599481c46d6b2e479") if err != nil { fmt.Println(err) return } signature, err := btcec.ParseSignature(sigBytes, btcec.S256()) if err != nil { fmt.Println(err) return } // Verify the signature for the message using the public key. message := "test message" messageHash := wire.DoubleSha256([]byte(message)) verified := signature.Verify(messageHash, pubKey) fmt.Println("Signature Verified?", verified) // Output: // Signature Verified? true }
func TestSignatures(t *testing.T) { for _, test := range signatureTests { var err error if test.der { _, err = btcec.ParseDERSignature(test.sig, btcec.S256()) } else { _, err = btcec.ParseSignature(test.sig, btcec.S256()) } if err != nil { if test.isValid { t.Errorf("%s signature failed when shouldn't %v", test.name, err) } /* else { t.Errorf("%s got error %v", test.name, err) } */ continue } if !test.isValid { t.Errorf("%s counted as valid when it should fail", test.name) } } }
//TODO: test different curves as well? func TestBaseMult(t *testing.T) { s256 := btcec.S256() for i, e := range s256BaseMultTests { k, ok := new(big.Int).SetString(e.k, 16) if !ok { t.Errorf("%d: bad value for k: %s", i, e.k) } x, y := s256.ScalarBaseMult(k.Bytes()) if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y { t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y) } if testing.Short() && i > 5 { break } } }
// Test 2: Byte compatibility with Pyelliptic func TestCiphering(t *testing.T) { pb, _ := hex.DecodeString("fe38240982f313ae5afb3e904fb8215fb11af1200592b" + "fca26c96c4738e4bf8f") privkey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pb) in := []byte("This is just a test.") out, _ := hex.DecodeString("b0d66e5adaa5ed4e2f0ca68e17b8f2fc02ca002009e3" + "3487e7fa4ab505cf34d98f131be7bd258391588ca7804acb30251e71a04e0020ecf" + "df0f84608f8add82d7353af780fbb28868c713b7813eb4d4e61f7b75d7534dd9856" + "9b0ba77cf14348fcff80fee10e11981f1b4be372d93923e9178972f69937ec850ed" + "6c3f11ff572ddd5b2bedf9f9c0b327c54da02a28fcdce1f8369ffec") dec, err := btcec.Decrypt(privkey, out) if err != nil { t.Fatal("failed to decrypt:", err) } if !bytes.Equal(in, dec) { t.Error("decrypted data doesn't match original") } }
func TestBaseMultVerify(t *testing.T) { s256 := btcec.S256() for bytes := 1; bytes < 40; bytes++ { for i := 0; i < 30; i++ { data := make([]byte, bytes) _, err := rand.Read(data) if err != nil { t.Errorf("failed to read random data for %d", i) continue } x, y := s256.ScalarBaseMult(data) xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data) if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 { t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant) } if testing.Short() && i > 2 { break } } } }
// Test 1: Encryption and decryption func TestCipheringBasic(t *testing.T) { privkey, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Fatal("failed to generate private key") } in := []byte("Hey there dude. How are you doing? This is a test.") out, err := btcec.Encrypt(privkey.PubKey(), in) if err != nil { t.Fatal("failed to encrypt:", err) } dec, err := btcec.Decrypt(privkey, out) if err != nil { t.Fatal("failed to decrypt:", err) } if !bytes.Equal(in, dec) { t.Error("decrypted data doesn't match original") } }
// DecodeWIF creates a new WIF structure by decoding the string encoding of // the import format. // // The WIF string must be a base58-encoded string of the following byte // sequence: // // * 1 byte to identify the network, must be 0x80 for mainnet or 0xef for // either testnet3 or the regression test network // * 32 bytes of a binary-encoded, big-endian, zero-padded private key // * Optional 1 byte (equal to 0x01) if the address being imported or exported // was created by taking the RIPEMD160 after SHA256 hash of a serialized // compressed (33-byte) public key // * 4 bytes of checksum, must equal the first four bytes of the double SHA256 // of every byte before the checksum in this sequence // // If the base58-decoded byte sequence does not match this, DecodeWIF will // return a non-nil error. ErrMalformedPrivateKey is returned when the WIF // is of an impossible length or the expected compressed pubkey magic number // does not equal the expected value of 0x01. ErrChecksumMismatch is returned // if the expected WIF checksum does not match the calculated checksum. func DecodeWIF(wif string) (*WIF, error) { decoded := base58.Decode(wif) decodedLen := len(decoded) var compress bool // Length of base58 decoded WIF must be 32 bytes + an optional 1 byte // (0x01) if compressed, plus 1 byte for netID + 4 bytes of checksum. switch decodedLen { case 1 + btcec.PrivKeyBytesLen + 1 + 4: if decoded[33] != compressMagic { return nil, ErrMalformedPrivateKey } compress = true case 1 + btcec.PrivKeyBytesLen + 4: compress = false default: return nil, ErrMalformedPrivateKey } // Checksum is first four bytes of double SHA256 of the identifier byte // and privKey. Verify this matches the final 4 bytes of the decoded // private key. var tosum []byte if compress { tosum = decoded[:1+btcec.PrivKeyBytesLen+1] } else { tosum = decoded[:1+btcec.PrivKeyBytesLen] } cksum := wire.DoubleSha256(tosum)[:4] if !bytes.Equal(cksum, decoded[decodedLen-4:]) { return nil, ErrChecksumMismatch } netID := decoded[0] privKeyBytes := decoded[1 : 1+btcec.PrivKeyBytesLen] privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes) return &WIF{privKey, compress, netID}, nil }
// NewAddressPubKey returns a new AddressPubKey which represents a pay-to-pubkey // address. The serializedPubKey parameter must be a valid pubkey and can be // uncompressed, compressed, or hybrid. func NewAddressPubKey(serializedPubKey []byte, net *chaincfg.Params) (*AddressPubKey, error) { pubKey, err := btcec.ParsePubKey(serializedPubKey, btcec.S256()) if err != nil { return nil, err } // Set the format of the pubkey. This probably should be returned // from btcec, but do it here to avoid API churn. We already know the // pubkey is valid since it parsed above, so it's safe to simply examine // the leading byte to get the format. pkFormat := PKFUncompressed switch serializedPubKey[0] { case 0x02, 0x03: pkFormat = PKFCompressed case 0x06, 0x07: pkFormat = PKFHybrid } return &AddressPubKey{ pubKeyFormat: pkFormat, pubKey: pubKey, pubKeyHashID: net.PubKeyHashAddrID, }, nil }
func TestVectors(t *testing.T) { sha := sha1.New() for i, test := range testVectors { pub := btcec.PublicKey{ Curve: btcec.S256(), X: fromHex(test.Qx), Y: fromHex(test.Qy), } msg, _ := hex.DecodeString(test.msg) sha.Reset() sha.Write(msg) hashed := sha.Sum(nil) sig := btcec.Signature{R: fromHex(test.r), S: fromHex(test.s)} if f**k := sig.Verify(hashed, &pub); f**k != test.ok { //t.Errorf("%d: bad result %v %v", i, pub, hashed) t.Errorf("%d: bad result %v instead of %v", i, f**k, test.ok) } if testing.Short() { break } } }
func TestRFC6979(t *testing.T) { // Test vectors matching Trezor and CoreBitcoin implementations. // - https://github.com/trezor/trezor-crypto/blob/9fea8f8ab377dc514e40c6fd1f7c89a74c1d8dc6/tests.c#L432-L453 // - https://github.com/oleganza/CoreBitcoin/blob/e93dd71207861b5bf044415db5fa72405e7d8fbc/CoreBitcoin/BTCKey%2BTests.m#L23-L49 tests := []struct { key string msg string nonce string signature string }{ { "cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50", "sample", "2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3", "3045022100af340daf02cc15c8d5d08d7735dfe6b98a474ed373bdb5fbecf7571be52b384202205009fb27f37034a9b24b707b7c6b79ca23ddef9e25f7282e8a797efe53a8f124", }, { // This signature hits the case when S is higher than halforder. // If S is not canonicalized (lowered by halforder), this test will fail. "0000000000000000000000000000000000000000000000000000000000000001", "Satoshi Nakamoto", "8f8a276c19f4149656b280621e358cce24f5f52542772691ee69063b74f15d15", "3045022100934b1ea10a4b3c1757e2b0c017d0b6143ce3c9a7e6a4a49860d7a6ab210ee3d802202442ce9d2b916064108014783e923ec36b49743e2ffa1c4496f01a512aafd9e5", }, { "fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364140", "Satoshi Nakamoto", "33a19b60e25fb6f4435af53a3d42d493644827367e6453928554f43e49aa6f90", "3045022100fd567d121db66e382991534ada77a6bd3106f0a1098c231e47993447cd6af2d002206b39cd0eb1bc8603e159ef5c20a5c8ad685a45b06ce9bebed3f153d10d93bed5", }, { "f8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181", "Alan Turing", "525a82b70e67874398067543fd84c83d30c175fdc45fdeee082fe13b1d7cfdf1", "304402207063ae83e7f62bbb171798131b4a0564b956930092b33b07b395615d9ec7e15c022058dfcc1e00a35e1572f366ffe34ba0fc47db1e7189759b9fb233c5b05ab388ea", }, { "0000000000000000000000000000000000000000000000000000000000000001", "All those moments will be lost in time, like tears in rain. Time to die...", "38aa22d72376b4dbc472e06c3ba403ee0a394da63fc58d88686c611aba98d6b3", "30450221008600dbd41e348fe5c9465ab92d23e3db8b98b873beecd930736488696438cb6b0220547fe64427496db33bf66019dacbf0039c04199abb0122918601db38a72cfc21", }, { "e91671c46231f833a6406ccbea0e3e392c76c167bac1cb013f6f1013980455c2", "There is a computer disease that anybody who works with computers knows about. It's a very serious disease and it interferes completely with the work. The trouble with computers is that you 'play' with them!", "1f4b84c23a86a221d233f2521be018d9318639d5b8bbd6374a8a59232d16ad3d", "3045022100b552edd27580141f3b2a5463048cb7cd3e047b97c9f98076c32dbdf85a68718b0220279fa72dd19bfae05577e06c7c0c1900c371fcd5893f7e1d56a37d30174671f6", }, } for i, test := range tests { privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), decodeHex(test.key)) hash := fastsha256.Sum256([]byte(test.msg)) // Ensure deterministically generated nonce is the expected value. gotNonce := btcec.TstNonceRFC6979(privKey.D, hash[:]).Bytes() wantNonce := decodeHex(test.nonce) if !bytes.Equal(gotNonce, wantNonce) { t.Errorf("NonceRFC6979 #%d (%s): Nonce is incorrect: "+ "%x (expected %x)", i, test.msg, gotNonce, wantNonce) continue } // Ensure deterministically generated signature is the expected value. gotSig, err := privKey.Sign(hash[:]) if err != nil { t.Errorf("Sign #%d (%s): unexpected error: %v", i, test.msg, err) continue } gotSigBytes := gotSig.Serialize() wantSigBytes := decodeHex(test.signature) if !bytes.Equal(gotSigBytes, wantSigBytes) { t.Errorf("Sign #%d (%s): mismatched signature: %x "+ "(expected %x)", i, test.msg, gotSigBytes, wantSigBytes) continue } } }
func TestCipheringErrors(t *testing.T) { privkey, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Fatal("failed to generate private key") } tests1 := []struct { ciphertext []byte // input ciphertext }{ {bytes.Repeat([]byte{0x00}, 133)}, // errInputTooShort {bytes.Repeat([]byte{0x00}, 134)}, // errUnsupportedCurve {bytes.Repeat([]byte{0x02, 0xCA}, 134)}, // errInvalidXLength {bytes.Repeat([]byte{0x02, 0xCA, 0x00, 0x20}, 134)}, // errInvalidYLength {[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xCA, 0x00, 0x20, // curve and X length 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // X 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, // Y length 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Y 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }}, // invalid pubkey {[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xCA, 0x00, 0x20, // curve and X length 0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X 0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A, 0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A, 0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5, 0x00, 0x20, // Y length 0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y 0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4, 0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC, 0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext // padding not aligned to 16 bytes 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }}, // errInvalidPadding {[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0xCA, 0x00, 0x20, // curve and X length 0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X 0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A, 0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A, 0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5, 0x00, 0x20, // Y length 0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y 0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4, 0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC, 0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }}, // ErrInvalidMAC } for i, test := range tests1 { _, err = btcec.Decrypt(privkey, test.ciphertext) if err == nil { t.Errorf("Decrypt #%d did not get error", i) } } // test error from removePKCSPadding tests2 := []struct { in []byte // input data }{ {bytes.Repeat([]byte{0x11}, 17)}, {bytes.Repeat([]byte{0x07}, 15)}, } for i, test := range tests2 { _, err = btcec.TstRemovePKCSPadding(test.in) if err == nil { t.Errorf("removePKCSPadding #%d did not get error", i) } } }
// TestSignatureSerialize ensures that serializing signatures works as expected. func TestSignatureSerialize(t *testing.T) { tests := []struct { name string ecsig *btcec.Signature expected []byte }{ // signature from bitcoin blockchain tx // 0437cd7f8525ceed2324359c2d0ba26006d92d85 { "valid 1 - r and s most significant bits are zero", &btcec.Signature{ R: fromHex("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"), S: fromHex("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"), }, []byte{ 0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69, 0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3, 0xa1, 0xa2, 0x5f, 0xdf, 0x3f, 0x4f, 0x77, 0x32, 0xe9, 0xd6, 0x24, 0xc6, 0xc6, 0x15, 0x48, 0xab, 0x5f, 0xb8, 0xcd, 0x41, 0x02, 0x20, 0x18, 0x15, 0x22, 0xec, 0x8e, 0xca, 0x07, 0xde, 0x48, 0x60, 0xa4, 0xac, 0xdd, 0x12, 0x90, 0x9d, 0x83, 0x1c, 0xc5, 0x6c, 0xbb, 0xac, 0x46, 0x22, 0x08, 0x22, 0x21, 0xa8, 0x76, 0x8d, 0x1d, 0x09, }, }, // signature from bitcoin blockchain tx // cb00f8a0573b18faa8c4f467b049f5d202bf1101d9ef2633bc611be70376a4b4 { "valid 2 - r most significant bit is one", &btcec.Signature{ R: fromHex("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"), S: fromHex("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"), }, []byte{ 0x30, 0x45, 0x02, 0x21, 0x00, 0x82, 0x23, 0x5e, 0x21, 0xa2, 0x30, 0x00, 0x22, 0x73, 0x8d, 0xab, 0xb8, 0xe1, 0xbb, 0xd9, 0xd1, 0x9c, 0xfb, 0x1e, 0x7a, 0xb8, 0xc3, 0x0a, 0x23, 0xb0, 0xaf, 0xbb, 0x8d, 0x17, 0x8a, 0xbc, 0xf3, 0x02, 0x20, 0x24, 0xbf, 0x68, 0xe2, 0x56, 0xc5, 0x34, 0xdd, 0xfa, 0xf9, 0x66, 0xbf, 0x90, 0x8d, 0xeb, 0x94, 0x43, 0x05, 0x59, 0x6f, 0x7b, 0xdc, 0xc3, 0x8d, 0x69, 0xac, 0xad, 0x7f, 0x9c, 0x86, 0x87, 0x24, }, }, // signature from bitcoin blockchain tx // fda204502a3345e08afd6af27377c052e77f1fefeaeb31bdd45f1e1237ca5470 { "valid 3 - s most significant bit is one", &btcec.Signature{ R: fromHex("1cadddc2838598fee7dc35a12b340c6bde8b389f7bfd19a1252a17c4b5ed2d71"), S: new(big.Int).Add(fromHex("00c1a251bbecb14b058a8bd77f65de87e51c47e95904f4c0e9d52eddc21c1415ac"), btcec.S256().N), }, []byte{ 0x30, 0x45, 0x02, 0x20, 0x1c, 0xad, 0xdd, 0xc2, 0x83, 0x85, 0x98, 0xfe, 0xe7, 0xdc, 0x35, 0xa1, 0x2b, 0x34, 0x0c, 0x6b, 0xde, 0x8b, 0x38, 0x9f, 0x7b, 0xfd, 0x19, 0xa1, 0x25, 0x2a, 0x17, 0xc4, 0xb5, 0xed, 0x2d, 0x71, 0x02, 0x21, 0x00, 0xc1, 0xa2, 0x51, 0xbb, 0xec, 0xb1, 0x4b, 0x05, 0x8a, 0x8b, 0xd7, 0x7f, 0x65, 0xde, 0x87, 0xe5, 0x1c, 0x47, 0xe9, 0x59, 0x04, 0xf4, 0xc0, 0xe9, 0xd5, 0x2e, 0xdd, 0xc2, 0x1c, 0x14, 0x15, 0xac, }, }, { "zero signature", &btcec.Signature{ R: big.NewInt(0), S: big.NewInt(0), }, []byte{0x30, 0x06, 0x02, 0x01, 0x00, 0x02, 0x01, 0x00}, }, } for i, test := range tests { result := test.ecsig.Serialize() if !bytes.Equal(result, test.expected) { t.Errorf("Serialize #%d (%s) unexpected result:\n"+ "got: %x\nwant: %x", i, test.name, result, test.expected) } } }
// ScriptVerifyStrictEncoding defines that signature scripts and // public keys must follow the strict encoding requirements. ScriptVerifyStrictEncoding ) const ( // maxStackSize is the maximum combined height of stack and alt stack // during execution. maxStackSize = 1000 // maxScriptSize is the maximum allowed length of a raw script. maxScriptSize = 10000 ) // halforder is used to tame ECDSA malleability (see BIP0062). var halfOrder = new(big.Int).Rsh(btcec.S256().N, 1) // Engine is the virtual machine that executes scripts. type Engine struct { scripts [][]parsedOpcode scriptIdx int scriptOff int lastCodeSep int dstack stack // data stack astack stack // alt stack tx wire.MsgTx txIdx int condStack []int numOps int flags ScriptFlags bip16 bool // treat execution as pay-to-script-hash
func TestSignTxOutput(t *testing.T) { t.Parallel() // make key // make script based on key. // sign with magic pixie dust. hashTypes := []txscript.SigHashType{ txscript.SigHashOld, // no longer used but should act like all txscript.SigHashAll, txscript.SigHashNone, txscript.SigHashSingle, txscript.SigHashAll | txscript.SigHashAnyOneCanPay, txscript.SigHashNone | txscript.SigHashAnyOneCanPay, txscript.SigHashSingle | txscript.SigHashAnyOneCanPay, } tx := &wire.MsgTx{ Version: 1, TxIn: []*wire.TxIn{ &wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: wire.ShaHash{}, Index: 0, }, Sequence: 4294967295, }, &wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: wire.ShaHash{}, Index: 1, }, Sequence: 4294967295, }, &wire.TxIn{ PreviousOutPoint: wire.OutPoint{ Hash: wire.ShaHash{}, Index: 2, }, Sequence: 4294967295, }, }, TxOut: []*wire.TxOut{ &wire.TxOut{ Value: 1, }, &wire.TxOut{ Value: 2, }, &wire.TxOut{ Value: 3, }, }, LockTime: 0, } // Pay to Pubkey Hash (uncompressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } if err := signAndCheck(msg, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), nil); err != nil { t.Error(err) break } } } // Pay to Pubkey Hash (uncompressed) (merging with correct) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), sigScript) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, pkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to Pubkey Hash (compressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } if err := signAndCheck(msg, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), nil); err != nil { t.Error(err) break } } } // Pay to Pubkey Hash (compressed) with duplicate merge for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), sigScript) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, pkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to PubKey (uncompressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } if err := signAndCheck(msg, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), nil); err != nil { t.Error(err) break } } } // Pay to PubKey (uncompressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(nil), sigScript) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, pkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to PubKey (compressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } if err := signAndCheck(msg, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), nil); err != nil { t.Error(err) break } } } // Pay to PubKey (compressed) with duplicate merge for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, pkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(nil), sigScript) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, pkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // As before, but with p2sh now. // Pay to Pubkey Hash (uncompressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) break } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } if err := signAndCheck(msg, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil); err != nil { t.Error(err) break } } } // Pay to Pubkey Hash (uncompressed) with duplicate merge for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) break } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to Pubkey Hash (compressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } if err := signAndCheck(msg, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil); err != nil { t.Error(err) break } } } // Pay to Pubkey Hash (compressed) with duplicate merge for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKeyHash( btcutil.Hash160(pk), &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to PubKey (uncompressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } if err := signAndCheck(msg, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil); err != nil { t.Error(err) break } } } // Pay to PubKey (uncompressed) with duplicate merge for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeUncompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, false}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Pay to PubKey (compressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } if err := signAndCheck(msg, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil); err != nil { t.Error(err) break } } } // Pay to PubKey (compressed) for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk := (*btcec.PublicKey)(&key.PublicKey). SerializeCompressed() address, err := btcutil.NewAddressPubKey(pk, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } pkScript, err := txscript.PayToAddrScript(address) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // by the above loop, this should be valid, now sign // again and merge. sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address.EncodeAddress(): {key, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s a "+ "second time: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("twice signed script invalid for "+ "%s: %v", msg, err) break } } } // Basic Multisig for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key1, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk1 := (*btcec.PublicKey)(&key1.PublicKey). SerializeCompressed() address1, err := btcutil.NewAddressPubKey(pk1, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } key2, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey 2 for %s: %v", msg, err) break } pk2 := (*btcec.PublicKey)(&key2.PublicKey). SerializeCompressed() address2, err := btcutil.NewAddressPubKey(pk2, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address 2 for %s: %v", msg, err) break } pkScript, err := txscript.MultiSigScript( []*btcutil.AddressPubKey{address1, address2}, 2) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } if err := signAndCheck(msg, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address1.EncodeAddress(): {key1, true}, address2.EncodeAddress(): {key2, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil); err != nil { t.Error(err) break } } } // Two part multisig, sign with one key then the other. for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key1, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk1 := (*btcec.PublicKey)(&key1.PublicKey). SerializeCompressed() address1, err := btcutil.NewAddressPubKey(pk1, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } key2, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey 2 for %s: %v", msg, err) break } pk2 := (*btcec.PublicKey)(&key2.PublicKey). SerializeCompressed() address2, err := btcutil.NewAddressPubKey(pk2, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address 2 for %s: %v", msg, err) break } pkScript, err := txscript.MultiSigScript( []*btcutil.AddressPubKey{address1, address2}, 2) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address1.EncodeAddress(): {key1, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // Only 1 out of 2 signed, this *should* fail. if checkScripts(msg, tx, i, sigScript, scriptPkScript) == nil { t.Errorf("part signed script valid for %s", msg) break } // Sign with the other key and merge sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address2.EncodeAddress(): {key2, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), sigScript) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("fully signed script invalid for "+ "%s: %v", msg, err) break } } } // Two part multisig, sign with one key then both, check key dedup // correctly. for _, hashType := range hashTypes { for i := range tx.TxIn { msg := fmt.Sprintf("%d:%d", hashType, i) key1, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey for %s: %v", msg, err) break } pk1 := (*btcec.PublicKey)(&key1.PublicKey). SerializeCompressed() address1, err := btcutil.NewAddressPubKey(pk1, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address for %s: %v", msg, err) break } key2, err := btcec.NewPrivateKey(btcec.S256()) if err != nil { t.Errorf("failed to make privKey 2 for %s: %v", msg, err) break } pk2 := (*btcec.PublicKey)(&key2.PublicKey). SerializeCompressed() address2, err := btcutil.NewAddressPubKey(pk2, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make address 2 for %s: %v", msg, err) break } pkScript, err := txscript.MultiSigScript( []*btcutil.AddressPubKey{address1, address2}, 2) if err != nil { t.Errorf("failed to make pkscript "+ "for %s: %v", msg, err) } scriptAddr, err := btcutil.NewAddressScriptHash( pkScript, &chaincfg.TestNet3Params) if err != nil { t.Errorf("failed to make p2sh addr for %s: %v", msg, err) break } scriptPkScript, err := txscript.PayToAddrScript( scriptAddr) if err != nil { t.Errorf("failed to make script pkscript for "+ "%s: %v", msg, err) break } sigScript, err := txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address1.EncodeAddress(): {key1, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), nil) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // Only 1 out of 2 signed, this *should* fail. if checkScripts(msg, tx, i, sigScript, scriptPkScript) == nil { t.Errorf("part signed script valid for %s", msg) break } // Sign with the other key and merge sigScript, err = txscript.SignTxOutput( &chaincfg.TestNet3Params, tx, i, scriptPkScript, hashType, mkGetKey(map[string]addressToKey{ address1.EncodeAddress(): {key1, true}, address2.EncodeAddress(): {key2, true}, }), mkGetScript(map[string][]byte{ scriptAddr.EncodeAddress(): pkScript, }), sigScript) if err != nil { t.Errorf("failed to sign output %s: %v", msg, err) break } // Now we should pass. err = checkScripts(msg, tx, i, sigScript, scriptPkScript) if err != nil { t.Errorf("fully signed script invalid for "+ "%s: %v", msg, err) break } } } }
// Test the sigscript generation for valid and invalid inputs, all // hashTypes, and with and without compression. This test creates // sigscripts to spend fake coinbase inputs, as sigscripts cannot be // created for the MsgTxs in txTests, since they come from the blockchain // and we don't have the private keys. func TestSignatureScript(t *testing.T) { t.Parallel() privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), privKeyD) nexttest: for i := range sigScriptTests { tx := wire.NewMsgTx() output := wire.NewTxOut(500, []byte{txscript.OP_RETURN}) tx.AddTxOut(output) for _ = range sigScriptTests[i].inputs { txin := wire.NewTxIn(coinbaseOutPoint, nil) tx.AddTxIn(txin) } var script []byte var err error for j := range tx.TxIn { var idx int if sigScriptTests[i].inputs[j].indexOutOfRange { t.Errorf("at test %v", sigScriptTests[i].name) idx = len(sigScriptTests[i].inputs) } else { idx = j } script, err = txscript.SignatureScript(tx, idx, sigScriptTests[i].inputs[j].txout.PkScript, sigScriptTests[i].hashType, privKey, sigScriptTests[i].compress) if (err == nil) != sigScriptTests[i].inputs[j].sigscriptGenerates { if err == nil { t.Errorf("passed test '%v' incorrectly", sigScriptTests[i].name) } else { t.Errorf("failed test '%v': %v", sigScriptTests[i].name, err) } continue nexttest } if !sigScriptTests[i].inputs[j].sigscriptGenerates { // done with this test continue nexttest } tx.TxIn[j].SignatureScript = script } // If testing using a correct sigscript but for an incorrect // index, use last input script for first input. Requires > 0 // inputs for test. if sigScriptTests[i].scriptAtWrongIndex { tx.TxIn[0].SignatureScript = script sigScriptTests[i].inputs[0].inputValidates = false } // Validate tx input scripts scriptFlags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures for j := range tx.TxIn { vm, err := txscript.NewEngine(sigScriptTests[i]. inputs[j].txout.PkScript, tx, j, scriptFlags) if err != nil { t.Errorf("cannot create script vm for test %v: %v", sigScriptTests[i].name, err) continue nexttest } err = vm.Execute() if (err == nil) != sigScriptTests[i].inputs[j].inputValidates { if err == nil { t.Errorf("passed test '%v' validation incorrectly: %v", sigScriptTests[i].name, err) } else { t.Errorf("failed test '%v' validation: %v", sigScriptTests[i].name, err) } continue nexttest } } } }
// This example demonstrates manually creating and signing a redeem transaction. func ExampleSignTxOutput() { // Ordinarily the private key would come from whatever storage mechanism // is being used, but for this example just hard code it. privKeyBytes, err := hex.DecodeString("22a47fa09a223f2aa079edf85a7c2" + "d4f8720ee63e502ee2869afab7de234b80c") if err != nil { fmt.Println(err) return } privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), privKeyBytes) pubKeyHash := btcutil.Hash160(pubKey.SerializeCompressed()) addr, err := btcutil.NewAddressPubKeyHash(pubKeyHash, &chaincfg.MainNetParams) if err != nil { fmt.Println(err) return } // For this example, create a fake transaction that represents what // would ordinarily be the real transaction that is being spent. It // contains a single output that pays to address in the amount of 1 BTC. originTx := wire.NewMsgTx() prevOut := wire.NewOutPoint(&wire.ShaHash{}, ^uint32(0)) txIn := wire.NewTxIn(prevOut, []byte{txscript.OP_0, txscript.OP_0}) originTx.AddTxIn(txIn) pkScript, err := txscript.PayToAddrScript(addr) if err != nil { fmt.Println(err) return } txOut := wire.NewTxOut(100000000, pkScript) originTx.AddTxOut(txOut) originTxHash := originTx.TxSha() // Create the transaction to redeem the fake transaction. redeemTx := wire.NewMsgTx() // Add the input(s) the redeeming transaction will spend. There is no // signature script at this point since it hasn't been created or signed // yet, hence nil is provided for it. prevOut = wire.NewOutPoint(&originTxHash, 0) txIn = wire.NewTxIn(prevOut, nil) redeemTx.AddTxIn(txIn) // Ordinarily this would contain that actual destination of the funds, // but for this example don't bother. txOut = wire.NewTxOut(0, nil) redeemTx.AddTxOut(txOut) // Sign the redeeming transaction. lookupKey := func(a btcutil.Address) (*btcec.PrivateKey, bool, error) { // Ordinarily this function would involve looking up the private // key for the provided address, but since the only thing being // signed in this example uses the address associated with the // private key from above, simply return it with the compressed // flag set since the address is using the associated compressed // public key. // // NOTE: If you want to prove the code is actually signing the // transaction properly, uncomment the following line which // intentionally returns an invalid key to sign with, which in // turn will result in a failure during the script execution // when verifying the signature. // // privKey.D.SetInt64(12345) // return privKey, true, nil } // Notice that the script database parameter is nil here since it isn't // used. It must be specified when pay-to-script-hash transactions are // being signed. sigScript, err := txscript.SignTxOutput(&chaincfg.MainNetParams, redeemTx, 0, originTx.TxOut[0].PkScript, txscript.SigHashAll, txscript.KeyClosure(lookupKey), nil, nil) if err != nil { fmt.Println(err) return } redeemTx.TxIn[0].SignatureScript = sigScript // Prove that the transaction has been validly signed by executing the // script pair. flags := txscript.ScriptBip16 | txscript.ScriptVerifyDERSignatures | txscript.ScriptStrictMultiSig | txscript.ScriptDiscourageUpgradableNops vm, err := txscript.NewEngine(originTx.TxOut[0].PkScript, redeemTx, 0, flags) if err != nil { fmt.Println(err) return } if err := vm.Execute(); err != nil { fmt.Println(err) return } fmt.Println("Transaction successfully signed") // Output: // Transaction successfully signed }